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Abstract

Background: Apomixis or asexual seed formation represents a potentially important agronomic trait whose
introduction into crop plants could be an effective way to fix and perpetuate a desirable genotype through
successive seed generations. However, the gene regulatory pathways underlying apomixis remain unknown. In
particular, the potential function of microRNAs, which are known to play crucial roles in many aspects of plant
growth and development, remains to be determined with regards to the switch from sexual to apomictic
reproduction.

Results: Using bioinformatics and microarray validation procedures, 51 miRNA families conserved among
angiosperms were identified in Boechera. Microarray assay confirmed 15 of the miRNA families that were identified
by bioinformatics techniques. 30 cDNA sequences representing 26 miRNAs could fold back into stable pre-miRNAs.
19 of these pre-miRNAs had miRNAs with Boechera-specific nucleotide substitutions (NSs). Analysis of the Gibbs
free energy (ΔG) of these pre-miRNA stem-loops with NSs showed that the Boechera-specific miRNA NSs
significantly (p ≤ 0.05) enhance the stability of stem-loops. Furthermore, six transcription factors, the Squamosa
promoter binding protein like SPL6, SPL11 and SPL15, Myb domain protein 120 (MYB120), RELATED TO AP2.7 DNA
binding (RAP2.7, TOE1 RAP2.7) and TCP family transcription factor 10 (TCP10) were found to be expressed in sexual
or apomictic ovules. However, only SPL11 showed differential expression with significant (p ≤ 0.05) up-regulation at
the megaspore mother cell (MMC) stage of ovule development in apomictic genotypes.

Conclusions: This study constitutes the first extensive insight into the conservation and expression of microRNAs
in Boechera sexual and apomictic species. The miR156/157 target squamosa promoter binding protein-like 11
(SPL11) was found differentially expressed with significant (p ≤ 0.05) up-regulation at the MMC stage of ovule
development in apomictic genotypes. The results also demonstrate that nucleotide changes in mature miRNAs
significantly (p ≤ 0.05) enhance the thermodynamic stability of pre-miRNA stem-loops.

Background
Apomixis, or asexual reproduction through seeds, is a
naturally occurring reproductive form which has been
observed in more than 400 plant species. Apomictic
reproduction is, however, absent in many agriculturally
important crop plants [1]. It therefore represents a
potentially important agricultural tool, since introduc-
tion of apomixis into crops could be an effective way to
fix and propagate a given genotype for superior crop
performance. Apomixis has evolved from many different

sexual taxa [2,3], although the genetic factors underlying
apomictic reproduction remain unknown.
The genus Boechera (Bocher’s rock cress; formerly

Arabis) is monophyletic, has a basic chromosome num-
ber × = 7 [4], and wild populations are characterized by
diploid sexuals, and diploid, aneuploid, and polyploid
(mostly 2n = 3x = 21) apomicts [5]. Plants of this genus
are perennial members of the Brassicaceae which are
distributed throughout North America and Greenland
[4,6,7]. The switch from sexual to apomictic reproduc-
tion has been hypothesized to arise via de-regulation of
the developmental pathways originally leading to sexual
seed formation [8]. As virtually all asexual plants or ani-
mals are hybrid and/or polyploid, their associated gene
regulatory changes have been proposed as possible
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triggers for the switch in reproductive mode [9]. In par-
ticular, the potential function of microRNAs (miRNAs),
which are known to play crucial roles in many aspects
of plant development, remains to be determined with
regards to the switch from sex to apomixis.
MiRNAs are 20-24 nucleotide small endogenous non-

protein-coding regulatory RNA sequences that are pro-
duced by genes distinct from the genes that they regu-
late. Evidence provided by Allen et al [10] and Felippes
et al [11] show that some miRNAs evolved by inverted
duplications of target gene sequences, whereas others
originated from random sequences that either have self-
complementarity by chance or sequences that represent
highly eroded inverted duplications. Since their discov-
ery, several miRNAs have been computationally and/or
experimentally identified and characterized in different
species. A number of studies have shown that miRNAs
play key roles in regulatory functions of gene expression
for most eukaryotes [12,13], mainly at the post-tran-
scriptional levels [14,15]. Several recent findings have
implicated miRNAs in a number of biological mechan-
isms including leaf [16], stem [15] and root growth [17],
floral organ identity, control of female gamete formation
and reproductive development [18,19], auxin signaling
[20], and biotic and abiotic stress response [13].
Biogenesis of miRNAs involves nucleolytic processing

of a precursor transcript with extensive foldback struc-
ture [21-23]. miRNAs are initially expressed as part of
longer transcripts that are self-complementary foldback
hairpin structures termed primary miRNAs (pri-miR-
NAs). Pri-miRNA precursors are transcribed by miRNA
genes which are mostly independent transcript units.
These pri-miRNA precursors are first processed into
pre-miRNAs from which miRNAs are eventually gener-
ated by the ribonuclease III nucleases and Dicer-like1
(DCL1) in plants. Subsequently, the mature single
stranded miRNA is incorporated into a miRNA-induced
silencing complex (miRISC) to cleave its specific target
messenger RNA (mRNA), or to effect translational
attenuation of its target transcript [24,25]. Plant miR-
NAs bind to the protein-coding region of their target
mRNAs to induce target mRNA degradation via an
RNAi-like mechanism where an Argonaut (AGO) pro-
tein cleaves the miRNA-mRNA duplex, thereby repres-
sing expression of that particular mRNA [26]. It is also
known that gene repression can be effected by transla-
tional inhibition through deadenylation of the 3’ poly
(A) tail and decapping of the 5’ end in mRNAs, which
leads to progressive mRNA decay and degradation
[27,28].
Accurate detection and expression profiling of miR-

NAs will enable a better understanding of their role in
plant growth and development [13,18,20], and could
provide insights into miRNA-mediated apomictic gene

regulatory mechanisms. The main approaches for
miRNA identification have been widely undertaken by
computational prediction, direct cloning and sequencing.
Until recently, most sequence information including
Expressed Sequence Tags (ESTs) or Genome Survey
Sequences (GSS) used for computational prediction of
miRNAs were generated by traditional Sanger sequen-
cing methods [29,30]. Compared to highly conserved
miRNAs, less- or non-conserved miRNAs are often
expressed at lower levels, thus making their detection
more daunting using small-scale sequencing. The devel-
opment of next generation sequencing technology has
greatly improved the capacity to identify low abundance
or tissue-specific miRNAs, and has enhanced the discov-
ery of several conserved, non-conserved or lowly
expressed miRNAs through cloning and deep sequen-
cing of small RNA and transcriptome libraries in Arabi-
dopsis thaliana [31,32], Triticum aestivum (wheat; [33]),
Solanum lycopersicum (tomato [34]), Oryza sativa (rice),
Populus trichocarpa (cotton wood), and Manihot escu-
lenta (Cassava) [35-37]. To date, many varieties of miR-
NAs are reported in plants, animals, and even microbes
[38].
Although miRNAs have been studied in plants for

years, no extensive study has yet been performed on
Boechera. The objective of this work was thus to identify
and completely catalogue conserved plant miRNAs, and
to compare the expression pattern of their target genes
in the floral tissues of sexual and apomictic Boechera, in
order to shed light on the potential role of miRNAs in
the switch from sexual to apomictic reproduction. To
do so we have cloned, sequenced and validated con-
served miRNAs using bioinformatics and microarray
techniques, and have analyzed these data using sexual
and apomictic EST libraries (sequenced using 454 FLX
technology) and comparative expression profiles
between microdissected ovules from sexual and apomic-
tic genotypes [39,40].

Results and Discussion
Homology of miRNAs to Boechera ESTs
The BLASTn search using a reference set of 8433 non-
redundant known conserved plant miRNAs against
flower-specific sexual and apomictic Boechera EST
libraries led to the identification of 282 sexual and 301
apomictic transcripts with high homology to miRNAs of
other plant species (Figure 1). Of these, 13 sexual and
16 apomictic transcripts could fold back into stable hair-
pins containing conserved miRNAs (Table 1 &2; Addi-
tional file 1, Figure S1). Many EST sequences were
found that could not fold back into stem loops, although
it is unclear whether this was due to the fact that they
were not pre-miRNAs or whether this was due to
sequencing errors introduced by the 454 FLX system.
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Predominantly, the less conserved miRNA families (e.g.
miR444 to miR869) matched a small number of cDNA
sequences which in most cases were found to be trun-
cated precursor sequences in the EST libraries, and thus
could not fold into stable stem-loops (Table 1 &2).

Bioinformatically-identified conserved miRNA families
In all, 44 miRNA families across 67 plant species were
found to match at least one Boechera 454 EST read,
with A. thaliana being the predominant species (Figure
2). Conserved plant miRNA families in Boechera were
identified to a large extent based upon high homology
with reported conserved A. thaliana miRNAs (Figure 2).
In cases where Boechera and A. thaliana did not share
particular miRNA families, a search for conserved
miRNA families was performed in other plant species.
The predominant miRNA families which shared similar-
ity with the highest number of Boechera 454 reads were
miR156, miR157, miR160, miR167 and miR172 (Figure
3). It was observed also that the Boechera miRNAs

exhibit a wide variation in the length of pre-miRNA
sequences (Table 1 &2; Figure 4, 5, 6 &7). 29 families
were found to be common between the sexual and apo-
mictic genotypes. Of these, 17 mature miRNAs
(miR156, 160, 167, 170, 172, 395, 396, 408, 415, 529,
824, 835, 841, 846, 859, 860 and 865) were similar in
sequence, whereas 12 were different in sequence consti-
tution due to nucleotide differences between the two
reproductive modes. These included miRNAs miR157,
159, 161,166, 319, 394, 398, 400, 414, 854, 861 and 869
(Table 1 &2). Pre-miRNA lengths varied from 66 to 233
nucleotides, with most between 66 and 184 nucleotides,
a length similar to that of pre-miRNAs in other species.
The location of the mature miRNAs in the precursor
pre-miRNAs also varied among the miRNA families. In
12 pre-miRNAs, the miRNAs were found in the 3’ arm
while 18 were in the 5’ arm of the stem-loop hairpin
structures (Table 1 &2; Figure 4, 5, 6 &7).
Evaluation of the pre-miRNAs was also based on A

+U content. The miRNA precursors have A+U content
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Figure 1 Scheme for search of conserved miRNAs in Boechera species.
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ranging from 41.96 to 63.46% (Table 1 &2; Figure 4, 5,
6 &7), similar to proportions observed in other plant
species [41]. Consistent with general notion, the major-
ity of identified Boechera miRNA precursors contain
more A+U nucleotides than G+C [42,43]. It is also
important to note that the formation of a stem-loop
structure is not a unique feature of miRNAs, since

other RNAs such as mRNA, rRNA, and tRNA can also
form similar structures. For this reason, uniform sys-
tems for annotating new miRNAs comprising negative
minimal fold energy (MFE), adjusted minimal fold
energy (AMFE) and the minimal fold energy index
(MFEI) have been developed [42-45] and have become
generally accepted. Zhang et al [43] indicated that

Table 1 Characteristics of conserved miRNA families and stem-loops in sexual Boechera genotypes

miRNA family Mature miRNAs Plant sp., NSs NN ARM A+U% AMFE MFEI EST ID EMBL No.

miR156 UGACAGAAGAGAGAGAGCAC Ath, U/A 75 5’ 54.67 28.80 0.635 ET5PU7E02HBOCM FR869734

miR157 UUGACAGAAGAGAGAGAGCAC Sbi, U/A 75 5’ 54.67 28.80 0.635 ET5PU7E02HBOCM FR869734

miR159 UUUGGUUUGAAGGAAGCUCUA Ath, A/U, G/A - - - - - ETM6Q5C04I3XE2a FR869757

miR160 UGCCUGGCUCCCUGUAUGCCA Ath - - - - - ET5PU7E02JH8DIa FR869730

miR161 UGAAAGUGACUACAUCGGGGU Ath 92 5’ 55.43 24.67 0.554 ET5PU7E02IM9YA FR869722

miR164 UGGAGAAGCAGGGCACGUAAA Gar - - - - - ETM6Q5C04IAM5Va FR869752

miR166 CCGGACCAGGCUUCAUCCCAG Pta - - - - - ET5PU7E02JKLSIa FR869725

miR167 UGAAGCUGCCAGCAUGAUCUA Ath 100 5’ 60.00 48.20 1.201 ETM6Q5C03GWWM2 FR869745

miR170 UGAUUGAGCCGCGCCAAUAUC Ath - - - - - ETM6Q5C03GVN0Ga FR869746

miR172 AGAAUCCUGAUGAUGCUGCAU Ath, U/C - - - - - ET5PU7E02GZHSBa FR869721

miR319 UUGGAAUGAAGGGAGCUCCAC Ath, A/C, U/A, U/C - - - - - ETM6Q5C03FYJ8Ya FR869740

miR394 UUGGCAUUCUGUCCACCUCC Ath 116 5’ 57.76 46.46 1.100 ET5PU7E02IYKJ5 FR869733

miR395 AUGAAGAGUUUGGAGGAACUC Osa, U/A - - - - - ETM6Q5C03FTE98a FR869741

miR396 UCCACAGGCUUUCUUGAACGG Ghr 143 5’ 41.96 38.37 0.661 ET5PU7E02GM4DS FR869731

miR398 UGUGAUCUCAGGUAACCCCUU Ath, U/A, C/A - - - - - ETM6Q5C04IDRCBa FR869755

miR399 UGCCAAAGGAGAUAUGCCCUA Ath, U/A, G/A - - - - - ET5PU7E02FZ073a FR869726

miR400 UAUGAGAGUAUUAUAUGUCAC Ath, A/U 76 3’ 60.53 15.79 0.400 ET5PU7E02JJRIA FR869735

miR403 UUAGAUUCACGCACAAACUCC Ath, G/C 75 5’ 57.33 24.93 0.584 ET5PU7E02I3RXE FR869723

miR408 AUGCACUGCCUCUUCCCUGGC Ath 148 3’ 58.78 33.58 0.815 ETM6Q5C04JX15C FR869749

miR414 UCAUCAUCAUCAUCAUCGUCG
UCAUCAUCAUCAUCAUCGUCA
UCAUCAUCAUCAUCAUCGUCA

Ath, U/A, A/G
Ath, U/A
Ath, U/A

170
221
233

5’
3’
3’

51.18
51.01
56.65

29.29
23.62
24.64

0.600
0.482
0.568

ET5PU7E02IZWR4
ET5PU7E02GNU3F
ET5PU7E02I14IE

FR869738
FR869727
FR869724

miR415 GACAGAGAAGAAACAGAACAU Ath, A/G, C/A - - - - - ETM6Q5C03FIL8Ca FR869748

miR444 UUGCUGCCUCAAGCUCCCGGC Zma, U/C, U/G - - - - - ETM6Q5C04IXD3La FR869750

miR482 UCUUCCCUACACCGCCCAUAC Gso, U/G - - - - - ET5PU7E02HNZGIa FR869720

miR529 GCUCUUCCCUCUCUCUUCUUC Osa, C/G, G/C, A/U - - - - - ET5PU7E02HC551a FR869729

miR824 UAGACCAUUUGUGAGAAGAGA Ath, G/A - - - - - ETM6Q5C04ISA8Ka FR869754

miR835 UUUUUCCAUAUGUUCUUUAUC Ath, C/U, G/C - - - - - ETM6Q5C04JNEVJa FR869751

miR838 UUUUCUUCUACUUCUUCCCCA Ath, G/C, A/C - - - - - ETM6Q5C03FOEE6a FR869747

miR841 UACGACCCACUGGAAACUGAA Ath, G/C, U/G - - - - - ETM6Q5C03HCEISa FR869742

miR845 UAGCUCUGAUACCAAAUGAUA Vvi, U/A - - - - - ET5PU7E02F58WOa FR869732

miR846 UUGAAUUGGAGUGCUUGCAUU Ath, A/G, A/C - - - - - ETM6Q5C03FVWRYa FR869743

miR852 AAGAUAAGCGCCUUAGGUCUG Ath, U/G 89 5’ 62.92 38.31 1.033 ETM6Q5C03G2GJO FR869744

miR854 GAUGAGGAGAAGGAGGAGGAG Ath, U/G, G/A - - - - - ETM6Q5C04JC8OPa FR869756

miR859 UCUCUCUGUUGUGAAAUCAAA Ath, G/A - - - - - ET5PU7E02GYEM5a FR869736

miR860 UCAGUAGCUUGGACUAUGUAU Ath, A/G, A/C - - - - - ETM6Q5C03G8ZLDa FR869739

miR861 CCUUGGAGAAAUAUGCUUCAA Ath, G/U - - - - - ET5PU7E02IMVALa FR869728

miR865 UUUCUCCUCAAAUUUCUCCAA Ath, U/C, A/C - - - - - ETM6Q5C04JQMWDa FR869753

miR869 CAUGGUUCAAUGCAGGUGCUA Gma, U/A, U/C - - - - - ET5PU7E02JV51Fa FR869737

Plant sp, NSs, Nucleotide substitutions between known plant query miRNAs and the corresponding miRNA in Boechera sexual species; NN, Number of nucleotides
hairpin length; ARM, mature miRNA location in hairpin structure; AMFE, Adjusted minimum fold energy; MFEI, Minimum fold energy index; EST ID, Identifier of
the 454 transcripts from which miRNA was derived. Italicized, bold and underlined red letters show nucleotide substitutions in miRNAs of Boechera sexual
species. aEST could not form secondary stem-loop structures. EMBL No., European Molecular Biology Laboratory accession number; Plant species: Ath, Arabidopsis
thaliana; Gar, Gossypium arboreum; Ghr, Gossypium hirsutum; Gma, Glycine max; Gso, Glycine soja; Osa, Oryza sativa; Pta, Pinus taeda; Sbi, Sorghum bicolor; Vvi, Vitis
vinifera; Zma, Zea mays.
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most identified miRNA precursors have an MFEI
greater than 0.85, which is much higher than in tRNA
(0.64), rRNA (0.59), or mRNA (0.65). However, a num-
ber of pre-miRNAs with lower MFEIs have been
reported, provided the number of nucleotide substitu-
tions in the particular conserved miRNA compared
with other species does not exceed three (Table 1 &2;
[41]).

Microarray analysis of conserved miRNA families
The miRNAs identified from cDNA sequencing of floral
tissues, using the bioinformatics described above, were
further verified using a proprietary microarray analysis
with LC Sciences, in order to validate their expression
in sexual and apomictic Boechera flower tissues. The LC
Sciences proprietary miRNA microarray chip that was
used was designed by spotting all known plant miRNAs

Table 2 Characteristics of conserved miRNA families and stem-loops in apomictic Boechera genotypes

miRNA family Mature miRNAs Plant sp., NSs NN ARM A+U% AMFE MFEI EST ID EMBL No.

miR156 UGACAGAAGAGAGAGAGCAC
UGACAGAAGAGAGAGAGCAC

Ath, U/A
Ath, U/A

66
105

5’
5’

53.03
52.38

30.00
25.24

0.639
0.530

ETM6Q5C01AY29E
ET5PU7E01BE5BP

FR869781
FR869766

miR157 UUGACAGAAGAGAGAGGGCAC Ath, A/G 119 5’ 57.98 32.10 0.764 ET5PU7E01A5S8V FR869768

miR159 UUUGGACUGAAGGGAGCUCCU Ath, U/C - - - - - ETM6Q5C02EBWUAa FR869788

miR160 UGCCUGGCUCCCUGUAUGCCA Ath 110 5’ 58.18 42.10 1.007 ET5PU7E01AQT2A FR869776

miR161 UCAAUGCAUUGAAAGUAACUA Ath, G/A - - - - - ETM6Q5C01AMWREa FR869779

miR162 UCGAUAAACCUCUGCAUCCAG Ptc 84 3’ 55.95 48.45 1.100 ETM6Q5C01AZ87O FR869778

miR166 CCGGACCAGGCUUCAUCCCCC Pta, A/C, G/C - - - - - ET5PU7E01CXVM2a FR869765

miR167 UGAAGCUGCCAGCAUGAUCUA Ath 100 5’ 60.00 48.20 1.205 ETM6Q5C01CA126 FR869786

miR169 UGAGCCAAGGAUGAUUUGCCU Ath, C/U, G/U - - - - - ETM6Q5C01B8RXCa FR869787

miR170 UGAUUGAGCCGCGCCAAUAUC Ath 121 3’ 51.24 40.50 0.831 ET5PU7E01EN973 FR869761

miR172 AGAAUCUUGAUGAUGCUGCAU Ath 142 3’ 49.30 22.39 0.442 ET5PU7E01CV6Q5 FR869764

miR319 UUGGACUGAAGGGAGCUCCUU Ath 184 3’ 57.61 45.20 1.066 ETM6Q5C02EBWUA FR869788

miR394 UUGGCAUUCUGUCAACCUCC Ath, C/A 126 3’ 57.94 19.13 0.455 ET5PU7E01CBSOI FR869772

miR395 AUGAAGAGUUUGGAGGAACUC Osa, U/A - - - - - ETM6Q5C02DVQZ4a FR869794

miR396 UCCACAGGCUUUCUUGAACGG Ghr - - - - - ETM6Q5C02DSTK1a FR869791

miR398 UGUGUUCUCAGGUCACCCCUU Ath - - - - - ET5PU7E01B8LVWa FR869770

miR400 UAUGAGAGUAUUAUAGGUCAC Ath, A/G - - - - - ET5PU7E01AVMRYa FR869771

miR408 AUGCACUGCCUCUUCCCUGGC Ath 89 3’ 52.81 39.55 0.838 ET5PU7E01EE6T6 FR869769

miR414 UCAUCAUCAUCAUCAUCGUCU Ath, U/A, A/U 208 3’ 57.69 16.92 0.400 ET5PU7E01DL36L FR869767

UCAUCAUCAUCAUCAUCGUCG Ath, U/A, A/G 170 5’ 50.88 29.29 0.603 ET5PU7E01BXM22 FR869762

UCAUCGUCAUCAUCAUCGUCA Ath, U/G 104 5’ 63.46 29.33 0.803 ET5PU7E01D5L0P FR869759

miR415 GACAGAGAAGAAACAGAACAU Ath, A/G, C/A 135 5’ 56.30 24.96 0.571 ETM6Q5C01A4TW0 FR869780

miR472 UUUUGCCUACUCCACCCAUACC Ath, U/G, G/A - - - - - ETM6Q5C01B63E7a FR869782

miR529 CUCUUCCCUCUCUCUUCUUC Osa, G/C, A/U - - - - - ETM6Q5C02D6DWQa FR869795

miR776 UCUAAUUCUUCUAUUGAUAUU Ath, G/U, G/A - - - - - ET5PU7E01CU8R6a FR869774

miR820 UCGUACUCGUGGAUGGACCAG Osa, G/U, C/A - - - - - ET5PU7E01CXV4La FR869760

miR824 UAGACCAUUUGUGAGAAGAGA Ath, G/A - - - - - ETM6Q5C01BUUMVa FR869777

miR835 UUUUUCCAUAUGUUCUUUAUC Ath, C/U, G/C - - - - - ET5PU7E01BKF2Ja FR869773

miR840 ACACUGAAGGAGCUGAACUAAU Ath, C/G, A/G. C/U - - - - - ETM6Q5C02C26W5a FR869789

miR841 UACGACCCACUGGAAACUGAA Ath, G/C, U/G - - - - - ETM6Q5C01B0IVVa FR869785

miR846 UUGAAUUGGAGUGCUUGCAUU Ath, A/G, A/C - - - - - ETM6Q5C02D2FL9a FR869793

miR854 GAUGAUGAUAGUGAGGAGGAG Ath, G/U, G/U - - - - - ETM6Q5C01A9E26a FR869783

miR857 UUAUGUAUGUUGAAUGUGUAU Ath, U/A, G/U - - - - - ETM6Q5C01AWYYJ FR869784

miR859 UCUCUCUGUUGUGAAAUCAAA Ath, G/A - - - - - ET5PU7E01E1HDIa FR869775

miR860 UCAGUAGCUUGGACUAUGUAU Ath, A/G, A/C - - - - - ETM6Q5C02DJ9H7a FR869790

miR861 CCUUGGAGAAAUGUGCUUCAA Ath, A/G, G/U 233 5’ 51.93 31.93 0.664 ET5PU7E01A7VRK FR869763

miR865 UUUCUCCUCAAAUUUCUCCAA Ath, U/C, A/C - - - - - ETM6Q5C02DTC6Wa FR869792

miR869 CAUGGUUCAAUGCAGGUGUUA Gma, U/A - - - - - ET5PU7E01A48FHa FR869758

Plant sp, NSs, Nucleotide substitutions between known plant query miRNAs and the corresponding miRNA in Boechera apomictic species; NN, Number of
nucleotides hairpin length; ARM, mature miRNA location in hairpin structure; AMFE, Adjusted minimum fold energy; MFEI, Minimum fold energy index; EST ID,
Identifier of the 454 transcripts from which miRNA was derived. Italicized, bold and underlined red letters show nucleotide substitutions in miRNAs of Boechera
apomictic species. aEST could not form secondary stem-loop structures. EMBL No., European Molecular Biology Laboratory accession number; Plant species: Ath,
Arabidopsis thaliana; Ghr, Gossypium hirsutum; Gma, Glycine max; Osa, Oryza sativa; Pta, Pinus taeda; Ptc, Populus trichocarpa; Sbi, Sorghum bicolor.
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that were available in the miRBase Release 14 (total
1117 unique mature miRNAs) and the Plant miRNA
Database, PMRD (total 5690 unique mature miRNAs).
Subsequently hybridization was performed as described
in Methods using isolated enriched Boechera small
RNAs to confirm expressed conserved miRNAs. As
expected, most (n = 50) mature miRNAs representing
22 miRNA families were identified to be conserved
mainly compared to A. thaliana. The microarray assay
confirmed 15 conserved families identified with the
bioinformatics techniques. It is also noteworthy that 7
and 29 other miRNA families were respectively detected

separately by the microarray and bioinformatics
approaches (Additional file 2, Figure S2).

Boechera-specific miRNA nucleotide substitutions (NSs)
enhance pre-miRNA stem-loop stability
The stability of a secondary structure is quantified as the
amount of free energy released or used by forming base
pairs. The more negative the free energy of a structure,
the more likely is formation of that structure and its sta-
bility, because more stored energy is released, and this
principle is used to predict the secondary structure of a
particular sequence [46,47]. Out of the 30 stable Boe-
chera pre-miRNA stem-loop structures obtained, 19
contain miRNAs with nucleotide substitutions (NSs)
when compared with corresponding Arabidopsis or
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A. MiR156  
 
bsex156a           
|      UUGACAG   AG       -    UUU    CG  
UGUGGAU       AAG  AGAGAGC ACAG   GAGU  \ 
AUACCUG       UUU  UCUCUCG UGUU   CUUA  C 
^      UGA----   GA       A    CC-    CC  
              
bapo156a       
GA|           UGAC  AA-     AG    CAAUCAGAUUCAU     - AA  
  CGAGGAGGAGGA    AG   GAGAG  AGCA             GGAUG C  \ 
  GUUCUUCUUCUU    UC   CUCUU  UCGU             CUUAC G  C 
C-^           ----  GAG     G-    AGCAACACACUCU     U CU   
 

bapo156a    

UU    G-   AG       -|   UUU    CG  
  GACA  AAG  AGAGAGC ACAG   GAGU  \ 
  CUGU  UUU  UCUCUCG UGUU   CUUA  C 
AC    GA   GA       A^   CC-    CC  
       
 
B. MiR157  
 
bsex157a           
|      UUGACAG   AG       -    UUU    CG  
UGUGGAU       AAG  AGAGAGC ACAG   GAGU  \ 
AUACCUG       UUU  UCUCUCG UGUU   CUUA  C 
^      UGA----   GA       A    CC-    CC  
 
 
 
bapo157m    
      -| U  U     A  UGA   A          -   CAUCAA      GAGAA    C 
GAAACC CA GA GUUGA UU   CAG AGAGAGAGGG CAC      GAUCUU     GCAC C
UUUUGG GU CU CGACU AA   GUC UUUCUUUUCC GUG      UUAGAG     UGUG A
      C^ U  -     C  UAA   A          A   ------      AAG--    U 

Figure 4 Predicted pre-miRNA stem-loops of miR156/157
families with nucleotide substitutions in Boechera species.
Shaded red letters correspond to the sequence of the mature
miRNA. Nucleotide substitutions of conserved miRNAs in other plant
species compared with the corresponding miRNAs in Boechera
species are shown as italicized, bold and underlined blue letters.
MiRNA precursors could be slightly longer than the sequences
shown in this figure.
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other plant miRNAs. The frequency of A, C and G sub-
stitutions were similar between sexual and apomictic
mature miRNAs, while U appeared to show a higher
rate of substitution in the apomictic mature miRNAs
(Figure 8). Considering that a single nucleotide change
in the sequence of a target site can affect miRNA regu-
lation, NS could conceivably be under selection pressure
to enhance the conformation and thermodynamic stabi-
lity of the pre-miRNA stem-loop structure. We thus
examined whether these Boechera-specific nucleotide
changes had any effect on the structure and thermody-
namic stability of their corresponding pre-miRNAs.
To do this, all pre-miRNAs containing miRNA NSs

were selected from the various identified miRNA
families (Figure 4, 5, 6 &7). For each pre-miRNA

sequence, the Gibbs free energy (ΔG) was calculated
using the mfold web server [48]. Importantly, the ΔG
comparison was done between a pre-miRNA with the
Boechera-specific miRNA sequence, and the same pre-
miRNA with the miRNA sequence of (mostly) Arabi-
dopsis, in other words “correcting” the NSs in the Boe-
chera miRNA. In most cases, the Boechera-specific pre-
miRNA showed significantly higher (p ≤ 0.05) thermo-
dynamic stability (more negative free energy) than that
of the pre-miRNA containing the “corrected” nucleotide
substitution (Table 3). Similarly, when the correspond-
ing pre-miRNAs in Arabidopsis/Oryza were “corrected”
to Boechera miRNAs, most of the Arabidopsis/Oryza
“new pre-miRNA” versions showed significantly lower
(p ≤ 0.05) thermodynamic stability compared to the nat-
ural pre-miRNAs (Table 4).
In all, this nucleotide substitution-stability phenom-

enon was most common in our analyses of both apo-
mictic (8 out of 9 miRNA families) and sexual Boechera
(5 out of 9 miRNA families; Table 3), in addition to
Arabidopsis (9 out of 11 miRNA families; Table 4).
Naturally occurring miRNA NSs thus appear to confer
optimal thermodynamic stability on pre-miRNA stem-
loop structures in Boechera, and is consistent with simi-
lar analyses in other plants. For example, a similar com-
parison of the ΔG of predicted secondary structures of
two variants of barley miR1137 precursor with a C and
a G in the 13th position showed differences in stability
between the variants [49]. Interestingly, Thakur et al
[50] reported that species background may also be cor-
related with the calculation of both the minimum free
energy and miRNA hairpin stability, although this differ-
ence appeared to be manifested at the level of mono-
and dicots. Thus, at least with respect to the compari-
sons between closely related Boechera and Arabidopsis
used here, our data imply that natural selection has
guided sequence variation in these regulatory elements.
In one case pre-miRNA stability was also manifested

on the intraspecific level, comparing sexual and apomic-
tic Boechera. In the family miR394, the pre-miRNA of
the sexual Boechera species has the same miRNA
sequence as in Arabidopsis, however that of the apomic-
tic species shows one C to A NS change at position seven
(Figure 5A). The pre-miRNA stability was examined by
introducing the apomictic NS into the sexual sequence at
the same position and ΔGs compared. As expected there
was a decrease in the negative ΔG by 6.5 kcal/mol in the
“new” sexual pre-miRNA with the introduced apomictic
NSs, suggesting that the sexual pre-miRNA is perhaps at
its optimal thermodynamic stable state. This final evi-
dence is consistent with trans-acting regulatory differ-
ences between sexual and apomictic ovules, the result of
sequence variation in regulatory factors in the sexual

A. MiR394 
 
bsex394a      
      GA   -      UUC               UCU--|    U   U     AGC  
GACAGA  UCU UUGGCA   UGUCCACCUCCUCUC     AUAUA AUG GUAUA   G 
UUGUCU  AGA AACCGU   ACGGGUGGAGGAGAG     UGUGU UGC UAUAU   U 
      AG   U      CAU               UGUUU^    -   U     GCA   
 
bapo394a      
    C-    CCUCAAG-    AU   AU      .-ACCU|    GC  
CUGU  UGGA        GACA  AAU  CAGACA      UUGUU  \ 
GACA  ACCU        CUGU  UUA  GUUUGU      AACAG  C 
    AC    UCCUCCAA    C-   CG      \ ----^    AU  
                             42nt side-loop    
 
B. MiR396 
 
bsex396d        
|    U        CAUU  C     U  GA    CCAC    UU   UGAACGG    -       -   CA    GC 
GGACG GGCGGUAG    GA GGUGG GG  GUUU    AGGC  UCU       UUGC GGCCACG GUG  UGUG  \
CCUGC CUGCCAUU    CU UCACC CC  CAAG    UCUG  AGA       AGCG CCGGUGU CAU  ACGC  G
^    -        C---  U     U  UA    UUC-    C-   -------    A       U   A-    UC 
 
C. MiR400 
 
bsex400      
GUUCCA    AU---------      CC-|     GACU  CAA  
      UCCC           CAUGUA   CUCUUA    UG   \ 
      AGGG           GUAUAU   GAGAGU    AC   A 
C-----    CUUACAUCACU      UAU^     AUUU  CUA     
 
 
D. MiR403 
 
bsex403           
C|  AA    AAUUA   UC     CAAA--       - UA  
 GAA  ACCC     GAU  ACGCA      CUCCUUU C  \ 
 CUU  UGGG     CUA  UGCGU      GAGGAAA G  C 
-^  AC    -----   U-     CAAAAC       A AC           

Figure 5 Predicted pre-miRNA stem-loops of miRNA families
with nucleotide substitutions in Boechera species. Shaded red
letters correspond to the sequence of the mature miRNA.
Nucleotide substitutions of conserved miRNAs in other plant species
compared with the corresponding miRNAs in Boechera species are
shown as italicized, bold and underlined blue letters. MiRNA
precursors could be slightly longer than the sequences shown in
this figure.
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MiR414 

i. bapo414 (1)  

   UU       A  AC  U   UUUU    UCUUU       U  UCGACUAACACCU     .-U|  UU  
GUU  GAGAUGA GA  AG ACG    UGGU     UGAUGGU AC             GUGAC   GGU  \ 
CAA  UUCUACU CU  UC UGC    ACUA     ACUACUA UG             UACUG   CCA  C 
   U-       G  --  -   UACU    CU---       C  CUUCUUCUCCUUC     \ -^  UA  
                                                          77nt side-loop     
 
bapo414 (2) 
UCA  A  A  A  AU-  U            UA       GUGAAGC-       UUAG   --   UC-     ----    --|  UU  
   UC UC UC UC   CG CGUCGUCAUCAU  UUGGUCU        CAUUACU    CAA  GUC   UGAGC    AGCG  GCU  \ 
   GG AG AG AG   GC GCAGUAGUGGUG  AGCUAGA        GUGAUGA    GUU  CAG   GCUCG    UUGC  CGA  A 

CGA  A  A  -  GCC  -            CG       AGAAGGCA       UACA   UG   UUU     AGUU    AG^  CG      

 
bapo414 (3) 
UCAUC|           GUC  C       U  U   C  CGAG--   CGA  
     GUCAUCAUCAUC   AU AUCUUCA CU CCU CU      UGA   U 
     UAGUAGUAGUAG   UA UAGAGGU GA GGA GA      ACU   G 
UUGUU^           ACA  A       U  U   A  AAUUUA   UAA          
 

ii. bsex414 (1) 

UCA  A  A  A  AU-  U            UA       GUGAAGC-       UUAG   --   UC-     ----    --|  UU  
   UC UC UC UC   CG CGUCGUCAUCAU  UUGGUCU        CAUUACU    CAA  GUC   UGAGC    AGCG  GCU  \ 
   GG AG AG AG   GC GCAGUAGUGGUG  AGCUAGA        GUGAUGA    GUU  CAG   GCUCG    UUGC  CGA  A 

CGA  A  A  -  GCC  -            CG       AGAAGGCA       UACA   UG   UUU     AGUU    AG^  CG        
 
bsex414   (2)     
GU| UAGG  A     GAUU     UGCG  GAU     U   AAGGCG--      AGGG   AUU  GGGGAAG   G   G   UGGU     -   UA----      C      AU  

  UC    AG AUGGA    UGGCG    GA   UGAUG UGA        UGGAGA    GAG   UG       AUU AAU GUC    ACUGU GCU      CGGUUC UAAUGG  \ 

  AG    UC UACCU    ACUGC    CU   ACUAC ACU        AUCUCU    CUU   AC       UAG UUA UAG    UGACA CGA      GUUAAG GUUGCC  C 

C-^ UA--  G     ----     UA--  ACU     U   AAUAUUAA      GCAA   GU-  AUACA--   -   G   UU--     U   CAGUUC      U      UC   
 
bsex414  (3) 
   AAAGC   UA        UCUAG  GA   GA    UGGUGUG       .-UGAU    AA     UGGA--  A    A     GG-      |    G  

GGA     UGG  GUGGUGGU     GA  AUG  GAUU       CGGAGAU      GUUG  AGGCG      GA GGGG GAUUU   GGGA--AGAUU A 

CCU     ACU  UACUACUA     CU  UAC  CUAA       GUCUCUG      CGAC  UUCGU      UU CCUC CUAAG   UCCU  UCUGG A 

   -----   GC        -----  AC   UA    UAUUAA-       \ ----    GG     UAAGUG  A    -     UAA    \ ^    U  

                                               35nt side-loop                           19nt side-loop  

Figure 6 Predicted pre-miRNA stem-loops of miR414 family with nucleotide substitutions in Boechera species. Shaded red letters
correspond to the sequence of the mature miRNA. Nucleotide substitutions of conserved miRNAs in other plant species compared with the
corresponding miRNAs in Boechera species are shown as italicized, bold and underlined blue letters. MiRNA precursors could be slightly longer
than the sequences shown in this figure.
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(homozygous) versus apomictic (hybrid) genomes, as
suggested by Sharbel et al [40].

Conserved Boechera miRNAs target many transcription
factors (TFs)
The BLAST analyses here have revealed many potential
regulatory gene targets. Consistent with the results of
functional studies in other plant species, such as Arabi-
dopsis, rice and corn [26,51,52], the majority (40%) of
target proteins in Boechera are transcription factors
(Table 5; Additional file 3 Table S1). Transcription fac-
tors (TF) have been estimated in rice to be about 70%
of conserved miRNA targets, while in wheat it has been
predicted to be 35% [33,53]. The other targets are
mostly associated with plant metabolism, development,
signal transduction and response to environmental stress
including cold, salinity, drought and nutritional defi-
ciency [35,29,54,55].
The EST libraries from which the Boechera miRNAs

were mined were flower-specific [39,40], and expectedly,
a number of identified TF-targeting miRNAs have been
associated with flower development in other species. For
example, miR156 and miR157, the homologues of the

A. MiR415 
 
bapo415    
GC-  GU-   ---   A     A     A  .-UCCU|  UCCAA   UU    UGUG   AUG  U  
   CC   UGA   CAG GAAGA ACAGA CA      GGU     AUU  CCUU    CGG   GA U 
   GG   ACU   GUC CUUCU UGUCU GU      CCA     UAA  GGAA    GCC   UU C 
GCA  AGU   AUA   C     A     A  \ ----^  UG---   GG    UUA-   GAA  G  
                          17nt side-loop          
 
B. MiR852 
 
bsex852      
U|      U           AGC      G  -   AA--      C  
 GGAUAUA CAGAGAAGAUA   GCCUUA GU CUG    GAUAAG \ 
 CCUAUAU GUUUCUUCUAU   UGGAGU CG GAU    CUAUUC U 
A^      U           ---      A  U   AUAC      C   
 
C. MiR857 
 
bapo857    
AAUCU--   A  G   CU        U  AGGA-   -    CU    CU    .-GAA    GA      GG      UU 
       GUU CU GUC  AAAUUUGU UA     AAC UACA  GUCA  GGCU     UUGA  UUUAAG  UUUGGU  \
       UAG GG CGG  UUUAAAUA GU     UUG AUGU  UAGU  UCGG     AGCU  AAAUUU  GAACUA  A
GUAUUUG   A  G   U-        U  GUAAG   U    AU    U-    \ ---    AC      GG      UA 
                                                 81nt side-loop 
 
D. MiR861 
 
bapo861   
-         -    U   UCA      UU     U  C   UGU|   AGA    .-UC  AUA  
 CCUUGGAGA AAUG GCU   AGAUCC  GUCAG GA UCU   AGAU   CCAG    AC   \ 
 GGGGCCUUU UUGC CGA   UCUAGG  CAGUU CU AGA   UCUA   GGUC    UG   G 
U         C    U   ---      UC     -  -   ---^   ---    \ --  AGA  
                                                 115nt side-loop  

Figure 7 Predicted pre-miRNA stem-loops of miRNA families
with nucleotide substitutions in Boechera species. Shaded red
letters correspond to the sequence of the mature miRNA.
Nucleotide substitutions of conserved miRNAs in other plant species
compared with the corresponding miRNAs in Boechera species are
shown as italicized, bold and underlined blue letters. MiRNA
precursors could be slightly longer than the sequences shown in
this figure.
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Figure 8 Frequency of nucleotide substitutions related to
Arabidopsis thaliana in mature Boechera miRNAs.

Table 3 Boechera miRNA nucleotides substituted with
those of Arabidopsis/Oryza

Pre-miRNA NSs NN ΔG

Plant sp./
Boechera

Natural
HP

“Corrected”
HP

Sexual Species

bsex-MIR156a* U/A 75 -21.6 -19.3

bsex-MIR157a U/A 75 -21.6 -19.3

bsex-MIR396 U/G 143 -55.9 -56.8

bsex-MIR400* A/G 76 -12.0 -11.7

bsex-MIR403* G/C 75 -18.7 -15.5

bsex-MIR414* (1) U/A, A/G 170 -49.8 -48.2

bsex-MIR414 (2) U/A 221 -52.2 -56.4

bsex-MIR414 (3) U/A 233 -57.9 -60.0

bsex-MIR852 U/G 89 -34.1 -34.7

Apomictic
Species

bapo-MIR156a*(1) U/A 66 -19.8 -15.6

bapo-MIR156a*(2) U/A 105 -27.9 -26.7

bapo-MIR157m* A/G 119 -38.2 -31.3

bapo-MIR394a C/A 126 -23.8 -26.2

bapo-MIR414* (1) U/A, A/U 208 -35.2 -34.2

bapo-MIR414* (2) U/A, A/G 170 -49.8 -48.2

bapo-MIR414* (3) U/G 104 -30.5 -29.2

bapo-MIR415* A/G, C/A 135 -33.8 -30.3

bapo-MIR861* A/G, G/U 233 -79.4 -71.4

HP, Hairpin; NN, Number of nucleotides hairpin length; NSs, Nucleotide
substitutions. Asterisk indicates cases where “correction” of Boechera miRNA
NSs led to less stem-loop stability due to decrease in ΔG. Where there are two
or more pre-miRNAs with the same miRNA, they are distinguished by
numbers in brackets.
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squamosa-promoter binding proteins and whose func-
tion is well conserved across plant species [43], were
identified in both apomictic and sexual Boechera (Table
5; Additional file 3, Table S1). In Arabidopsis these TF
regulatory miRNAs have been reported to regulate the
Antirrhinum floral meristem identity squamosa promo-
ter binding protein-like (SPL) genes [56]. Other TF reg-
ulatory miRNA families which have regulatory roles
during flower development in other species were also
identified (Table 5; Additional file 3, Table S1), includ-
ing miR156, miR159, miR164 and miR172, which have
been implicated in the control of LFY expression, floral
organ identity, and flowering time [27,57,58]. miR172
has furthermore been reported to regulate stem cell fate,
and defines the inner boundary of the APETALA3 and
PISTILLATA expression domains in Arabidopsis floral
meristems [38].
A number of well-defined TF targeting miRNAs were

also identified in Boechera. For example, miR160 and
miR167 (Table 5; Additional file 3, Table S1) are asso-
ciated with post-transcriptional regulation of the A.
thaliana auxin response transcription factor (ARF)
family genes [26,59]. miR319 is known to regulate the
expression of TCP transcription factor genes whose
down-regulations cause abnormalities in leaf develop-
ment [16]. Vierstra [60] showed that miR394 regulates
the messages of F-box proteins, which in turn target
specific proteins for proteolysis by making them

substrates for ubiquitination by SCF E3 ubiquitin ligases.
Growth Regulating Factor genes, the targets of the
miR396 family, are putative transcription factors that
regulate cell expansion in leaf and cotyledon [61]. Argo-
naute, one of the important proteins in the regulation of
miRNA biogenesis, is a target of miR403 whereas
miR408 regulates a copper ion binding protein. The
miR414 family regulates a number of other genes
including the transcription factors, transducin family
protein/WD-40 repeat family protein and peptidyl-prolyl
cis-trans isomerase cyclophilin-type family protein.

Expression patterns of transcription factor (TF) targets
and apomixis in Boechera
The switch from sexual to apomictic seed production is
hypothesized to involve global regulatory changes during
ovule development which are induced by hybridization
and/or polyploidy [9,62], both common characteristics
of apomictic plants and parthenogenetic animals. Using
data from a previously-published SuperSAGE analysis
[39,40], the ovule expression patterns of putative target
TFs for the miRNAs identified here were compared
between sexual and apomictic Boechera across four
ovule developmental stages. Of the 17 TFs identified as
potential miRNA targets, expression data for 6 were
found in the SuperSAGE libraries, including: the squa-
mosa promoter binding protein like SPL6, SPL11 and
SPL15, Myb domain protein 120 (MYB120), RAP2.7,
TOE1 RAP2.7 (RELATED TO AP2.7) DNA binding and
TCP10 (TCP family transcription factor 10), which are
targets of the miRNA families miR156/157, miR159,
miR172 and miR319 respectively.
It is noteworthy that, whereas the other genes showed

no significant differential expression levels between sex-
ual and apomictic species, SPL11 was found to be signif-
icantly (p ≤ 0.05) up-regulated at the stage two of ovule
development in apomictic species in all libraries studied
(Figure 9). SPL11 also showed low level expression in all
the other apomictic ovule stages and at only stage two
of the sexual ovules. Using six apomictic and five sexual
genotypes of Boechera, the differential expression of
SPL11 at ovule stage two of floral development was
further validated using quantitative Real Time-PCR.
With the exception of a single sexual B. divaricarpa
from Mule Ranch, Montana, all apomictic accessions
clearly showed relatively higher expression of SPL11
than the sexuals (Figure 10), result which is consistent
with the expression pattern observed with the SPL11
SuperSAGE tag (Figure 9). The single sexual outlier
(Figure 10) for SLP11 implies that the expression pat-
tern of this TF may not be a key factor associated with
apomixis expression, but rather is associated with DNA
sequence variation in regulatory factors in the hybrid B.
divaricarpa. Alternatively, population-level variation for

Table 4 Known plant miRNA nucleotides substituted with
those of Boechera

Pre-miRNA Nucleotide
Substitutions

NN ΔG

Plant sp./Boechera Natural
HP

“Corrected”
HP

ath-
MIR156a*

U/A 123 -57.1 -52.4

ath-
MIR157m*

A/G 50 -10.2 -9.3

ath-MIR394* C/A 117 -53.1 -46.6

osa-MIR396* U/G 154 -64.7 -60.1

ath-MIR400* A/U 102 -38.4 -34.3

ath-MIR403* G/C 135 -38.8 -35.4

ath-MIR414 U/A, A/G 108 -22.0 -22.3

U/G -22.0 -21.8

U/A, A/U -22.0 -26.4

U/A -22.0 -23.3

U/A, A/G, A/G -22.0 -22.4

ath-MIR415* A/G, C/A 110 -27.0 -24.8

ath-MIR852 U/G 202 -80.6 -80.8

ath-MIR861* A/G, G/U 132 -56.3 -51.6

HP, Hairpin; NN, Number of nucleotides hairpin length; Asterisk indicates cases
where “correction” of Arabidopsis/Oryza miRNA NSs led to less stem-loop
stability.
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Table 5 Transcription factor targets of conserved miRNA families in Boechera species

miRNA family Target protein Function of target Target gene (UPE) E-value

miR156/157 Squamosa promoter binding protein like

SPL11 Transcription factor AT1G27360 (11.430) 1

SPL 2 AT5G43270 (11.987) 1

SPL10 AT1G27370 (12.296) 1

SPL15 AT3G57920 (14.449) 1

SPL 9 AT2G42200 (16.239) 1

SPL6 AT1G69170 (17.076) 1

miR159 Myb domain protein 120 (MYB120); DNA binding Transcription factor AT5G55020 (7.049) 3.5

miR160 Auxin Response Factor 10 (ARF10); transcription factor Transcription factor AT2G28350 (18.139) 1

miR167 Auxin response factor 8 (ARF8) Transcription factor AT5G37020 (17.281) 3.5

miR169 CCAAT-binding transcription factor (CBF-B/NF-YA) subunit B Transcription factor ATIG17590 (18.910) 2

MiR170/171 Scarecrow transcription factor family protein Transcription factor AT3G60630 (14.202) 1

miR172 RAP2.7, TOE1 | RAP2.7 (RELATED TO AP2.7) DNA binding Transcription factor AT2G28550 (16.639) 1.5

miR319 TCP10 (TCP Domain Protein 10) Transcription factor AT2G31070 (10.122) 3.5

TCP4 (TCP family transcription factor 4) Transcription factor AT3G15030 (13.479) 3.5

miR396 AtGRF4 (Growth regulating factor 4) Transcription activator AT3G52910 (14.357) 2

miR408 TIL1 (TILTED 1); DNA binding/DNA-directed DNA polymerase/nucleic acid binding/nucleotide binding/zinc ion binding Transcription factor AT1G08260 (15.881) 4

miR414 WRKY DNA -binding domain Transcription factor AT4G31550

(UPE; Maximum energy to unpair the target site, UPE range: 0.0-25.0; E-value range: 0.0-4.0)
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TF expression could be associated with the penetrance
of the apomictic phenotype, which has been shown to
be genotype-specific in Boechera [63].

Conclusions
This study constitutes the first extensive insight into the
conservation and expression of miRNAs in Boechera
sexual and apomictic species. Of the expressed miRNA
transcription factor targets observed, only the miR156/
157 family target squamosa promoter binding protein-
like 11 (SPL11) was found differentially expressed with
significant (p ≤ 0.05) up-regulation at the stage two of
ovule development in apomictic species. Also demon-
strated here is that nucleotide changes in mature miR-
NAs significantly (p ≤ 0.05) enhance the thermodynamic
stability of pre-miRNA stem-loops. This work will
enhance subsequent elucidation of the repertoire of

miRNA expression in Boechera towards revealing the
potential role of miRNAs in the switch from sexual to
apomictic reproduction.

Methods
Flower-specific Boechera 454 cDNA libraries used
Floral cDNA libraries used in this study are those pre-
viously reported by Sharbel et al. [39,40]. These libraries
were sequenced from pooled flower stages 1-12 [64] of
three diploid sexual plants (Accessions ES910-2-2 K,
105.6-1 K and B07261) and three apomictic plants
(Accessions 67.5-K, 300.6.1-1 K and 218.2-2 K).

Conserved miRNA reference set for bioinformatics
procedures
A total of 9274 previously reported non-redundant 21-
24 nucleotides long miRNAs (including their precursor
sequences) collected from 121 plant species were
obtained from the Plant MicroRNAs Database (PMRD
as of February 8, 2011; [65]). These miRNAs were
defined as a reference set of miRNA sequences for the
identification of potentially conserved miRNAs in Boe-
chera. To avoid redundant miRNAs, duplicated miRNAs
shared between different species within the database
were removed. In all, 8433 non-redundant miRNAs
were obtained, and these were used as query sequences
for a BLASTn search against all original 454 sequence
reads from the apomictic and sexual Boechera libraries.

Identification of conserved miRNAs
The bioinformatics approaches used for identification of
conserved miRNAs in Boechera species are outlined in
Figure 1. The length of the EST sequences used to
search for conserved miRNAs ranged between 51 and
478 nucleotides, with about 80% of them around 200
nucleotides long. In order to exclude all ESTs having
exact matches to tRNA or rRNA sequences from further
BLASTn searches, the sexual and apomictic EST
libraries were first queried against ribosomal RNAs data-
base from Rfam (http://www.sanger.ac.uk/Software/
Rfam/) and the Arabidopsis transfer RNAs database
(http://lowelab.ucsc.edu/GtRNAdb/Athal/). Rather than
using the miRNA precursors for BLASTn searches
against our databases, the analysis was based mainly on
the mature miRNA sequences considering that only
mature miRNAs are highly conserved in plants [42,43].
The following BLASTn parameters which gave the high-
est and most reliable number of hits (blastall -p blastn
-m 8 -e 1 -W 7 -r 1 -q -1 -i) were used. All resulting
EST sequences with an alignment length of 20-24
nucleotides, three or fewer mismatches and no gaps
compared to previously identified plant miRNAs were
selected and compared with each other to eliminate
redundancies. The obtained non-redundant sequences
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were then used for the prediction of secondary struc-
tures and screening for miRNA precursor sequences.
The secondary structures of pre-miRNAs were gener-
ated using the Mfold 3.2 software, which is based on
Zuker folding algorithm principles [48].
The secondary structure of candidate pre-miRNA

sequences were analysed and scored for their potential
to form miRNA precursors. A stem-loop was selected as
a candidate miRNA precursor if it satisfied most of the
following generally accepted criteria: (1) the mature
miRNA is 20-24nt with a maximum of three mis-
matches compared with the corresponding known
miRNA in other plant species; (2) the miRNA precursor
(pre-miRNA) sequence folds into a stable hairpin struc-
ture such that one arm of the hairpin contains the
mature miRNA sequence; (3) the predicted secondary
structure of the pre-miRNA has lower minimal free
energy (MFE ≤-10 kcal/mol) and minimal free energy
index (MFEI) than other types of RNA (e.g. tRNA,
rRNA); (4) the predicted mature miRNA has an A+U
content of 40-70%; and (5) no loop or gap in the mature
miRNA sequences [41].

Microarray validation of conserved plant miRNAs
The bioinformatically-identified miRNAs in floral tis-
sues were further verified using a proprietary microar-
ray analysis with LC Sciences, USA. The microarray
assay was performed using 4 to 8 μg total RNA sample
from pooled flower tissues of sexual and apomictic
genotypes. The total RNA was size fractionated using a
YM-100 Microcon centrifugal filter (Millipore) and the
isolated small RNAs (< 300 nt) were 3’-extended with
a poly(A) tail using poly(A) polymerase. An oligonu-
cleotide tag was then ligated to the poly(A) tail for
later fluorescent dye staining, and two different tags
were used for two RNA samples in dual-sample experi-
ments. Hybridization was performed overnight on a
μParaflo microfluidic chip [spotted with all known
plant mature miRNAs that were available in miRBase
Release 14 (total 1117 unique mature miRNAs) and
the Plant miRNA Database (total 5690 unique mature
miRNAs)] using a micro-circulation pump (Atactic
Technologies; [66]). On the microfluidic chip, each
detection probe consisted of a chemically modified
nucleotide coding segment complementary to a target
miRNA, and a spacer segment of polyethylene glycol
to extend the coding segment away from the substrate.
The detection probes were made by in situ synthesis
using PGR (photogenerated reagent) chemistry. The
hybridization melting temperatures were balanced by
chemical modifications of the detection probes, and
hybridization was performed using 100 μL 6 × SSPE
buffer (0.90 M NaCl, 60 mM Na2HPO4, 6 mM EDTA,
pH 6.8) containing 25% formamide at 34°C. After RNA

hybridization, tag-conjugating Cy3 and Cy5 dyes were
circulated through the microfluidic chip for dye stain-
ing. The fluorescence data were collected on an Axon
GenePix 4000B Microarray Scanner, and then analysed
by first subtracting the background followed by nor-
malization of the signals using a LOWESS filter
(Locally-weighted Regression; [67]). A detectable
miRNA on the array was identified if its signal inten-
sity was higher than 3×(background standard devia-
tion) and spot CV < 0.5, and p < 0.01 for the
difference between Cy3 and Cy5 signals (LC Sciences).

Prediction of Boechera gene targets of miRNA families
A BLASTn search (blastall -p blastn -m 8 -e 1 -W 7 -r 1
-q -1 -i) was employed to detect complementarity
between the validated miRNAs and predicted target
ESTs in sexual and apomictic Boechera (Additional file
3, Table S1). Putative miRNA targets were identified
based on the total numbers of mismatched nucleotides
between miRNAs and the alignment structures of
potential targets. To identify potential regulatory targets,
a BLAST search (blastall -p blastn -m 8 -e 1 -W 7 -r 1
-q -1 -i) was performed using the validated (from LC
Sciences) conserved Boechera miRNAs against the A.
thaliana protein-coding nucleotide databases (TAIR9
cDNA) using the miRU web server [68] from the Arabi-
dopsis Information Resource (TAIR). The total number
of allowed mismatches at complementary sites between
miRNA sequences and potential mRNA targets in Ara-
bidopsis were limited to a maximum of three, and no
gaps were allowed at complementary sites. Finally, the
Boechera homologues of potential targeted genes in
Arabidopsis were chosen using a BLAST search (blastall
-p blastn -m 8 -e 1 -W 7 -r 1 -q -1 -i) based on the
degree of similarity of protein-coding mRNAs between
A. thaliana and Boechera.

Expression analysis of Transcription factor (TF) targets
using SuperSAGE tags
Finally, a comparative gene expression analysis of TF
targets from 11 miRNA families was carried out. First, a
BLASTn search using TF genes from Arabidopsis
against the assembled Boechera EST database was per-
formed (blastall -p blastn -m 8 -e 1 -W 7 -r 1 -q -1 -i).
For each Arabidopsis TF, homologous Boechera TFs
with an alignment having a bit score ≥100 were selected.
Next, 100% sequence matches between the Boechera
TFs and expression tags from 8 ovule-specific Boechera
SuperSAGE libraries [40] were found using a BLASTn
search. Finally, the expression patterns of the selected
Boechera TFs corresponding to the obtained SuperSAGE
tags were compared across four different ovule develop-
mental stages between a sexual and apomictic Boechera
genotype [40].
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Quantitative RT-PCR validation of differential SPL11
expression in ovule stage two of Boechera flowers
Six accessions of apomictic and five of sexual Boechera
were selected for the validation the differential expres-
sion of SPL11 (Additional file 4, Table S2). From these
accessions, stage two ovules were micro-dissected,
RNAs isolated and cDNAs prepared as described in
Sharbel et al. [40]. The forward primer 5’-CAAAGT
GCCCAAAAGTTACCGTGAGT-3’ and reverse primer
5’-ACGCCTCGCATTATGATGAGAAAGA-3’ with
amplicon size of 137 nucleotides long were used for the
qRT-PCR. Primers were designed avoiding intronic
regions (to ensure the elimination of likely DNA con-
tamination in samples) using the following parameters:
temperature; 60°C, 20% < CG content < 80%, and PCR
product size < 150 bp. For the real-time PCR reactions,
the SYBR Green PCR Master Mix (Applied Biosystems)
was used. qRT-PCR amplifications were performed in a
7900 HT Fast RT-PCR system (Applied Biosystems)
with the following temperature profile for SYBRgreen
assays: initial denaturation at 90°C for 10 min, followed
by 40 cycles of 95°C for 15 s, and 60°C for 1 min. The
Ct, defined as the PCR cycle at which a statistically sig-
nificant increase of reporter fluorescence is first
detected, was used as a measure for the starting copy
numbers of the target gene. The mean expression level
and standard deviation for each set of three technical
replicates for each cDNA was calculated. Relative quan-
titation and normalization of the amplified targets were
performed by the comparative ΔΔCt method in refer-
ence to the expression levels of the housekeeping gene
ubiquitin [69].

Additional material

Additional file 1: Boechera stem-loop structures. List of predicted pre-
miRNA structures of conserved miRNAs identified in Boechera species.

Additional file 2: Boechera miRNA families. Grouping of miRNA
families identified by bioinformatics and microarray assay.

Additional file 3: Predicted miRNA targets. Gene targets of conserved
miRNA families in Boechera species.

Additional file 4: Boechera genotypes. Boechera genotypes used for
qRT-PCR validation of differential SPL11 expression.
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