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Abstract

Background: Elucidation of the pig transcriptome is essential for interpreting functional elements of the genome
and understanding the genetic architecture of complex traits such as fat deposition, metabolism and growth.

Results: Here we used massive parallel high-throughput RNA sequencing to generate a high-resolution map of the
porcine mRNA and miRNA transcriptome in liver, longissimus dorsi and abdominal fat from two full-sib F, hybrid
pigs with segregated phenotypes on growth, blood physiological and biochemical parameters, and fat deposition.
We obtained 8,508,418-10,219,332 uniquely mapped reads that covered 78.0% of the current annotated transcripts
and identified 48,045-122,931 novel transcript fragments, which constituted 17,085-29,499 novel transcriptional
active regions in six tested samples. We found that about 18.8% of the annotated genes showed alternative
splicing patterns, and alternative 3’ splicing is the most common type of alternative splicing events in pigs. Cross-
tissue comparison revealed that many transcriptional events are tissue-differential and related to important
biological functions in their corresponding tissues. We also detected a total of 164 potential novel miRNAs, most of
which were tissue-specifically identified. Integrated analysis of genome-wide association study and differential gene
expression revealed interesting candidate genes for complex traits, such as IGF2, CYPIAT, CKM and CEST for heart
weight, hemoglobin, pork pH value and serum cholesterol, respectively.

Conclusions: This study provides a global view of the complexity of the pig transcriptome, and gives an extensive
new knowledge about alternative splicing, gene boundaries and miRNAs in pigs. Integrated analysis of genome
wide association study and differential gene expression allows us to find important candidate genes for porcine
complex traits.
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disease progression [1]. However, until now, only several
causative mutations have been isolated for porcine com-

Background
The pig has been providing with large scale products for

human consumption. It also services as an important
animal model for human diseases including obesity, dia-
betes, cardiovascular disease and endocrinology because
of the similarity in physiology, organ development and
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plex traits, e.g. IGF2 for muscle growth and fat deposit
[2], PRKAGS3 for glycogen content in skeletal muscle [3]
and NR6A1 for number of vertebrae [4]. Elucidating the
complexity of the pig transcriptome is not only essential
for interpreting the functional elements of the genome,
but also benefits the understanding of human related
complex traits such as fat deposition, metabolism and
growth. For example, UTR lengths are correlated with

© 2011 Chen et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:Lushenghuang@hotmail.com
http://creativecommons.org/licenses/by/2.0

Chen et al. BMC Genomics 2011, 12:448
http://www.biomedcentral.com/1471-2164/12/448

gene function, localization and requirements for regula-
tion [5]; alternative splicing plays a major part in biolo-
gical complexity in humans [6]; and non-coding RNAs
(ncRNA) are crucial for multiple biological processes
[7,8].

The global transcriptome profilings in abdominal fat,
induced fat cells, muscle, liver and pituitary gland have
been investigated in pigs by long SAGE analysis, full-
length enriched cDNA library and microarray [9-11].
However, the complexity of the porcine transcriptome is
not yet fully elucidated. The massively parallel sequen-
cing using next generation sequencer (RNA-seq) pro-
vides a huge potential to revolutionize the field of pig
transcriptome, owning to its abilities to discover exten-
sive alternative splicing and identify large-scale novel
transcripts at single-nucleotide resolution [12-15]. More-
over, the paired-end sequencing strategy of RNA-seq
further improves sequencing efficiency and extends
short read lengths for better understanding transcrip-
tome [16]. RNA-seq has opened a new horizon for our
understanding of global gene expression and has
demonstrated the complexity of mammalian transcrip-
tome vastly underestimated before.

MiRNAs are a class of small RNAs that regulate gene
expression by decreasing the target mRNA levels or
inhibiting translation of protein encoding transcripts.
Global miRNA abundance has been measured in skeletal
muscle by microarray to evaluate the roles of miRNAs
in pig development and meat production [17-19]. MiR-
Base 15.0 database has collected 189 porcine mature
miRNAs. RNA-seq also provides valuable insights into
miRNA transcriptome, especially into those miRNAs
insufficiently detected by microarray. Until now, porcine
miRNA transcriptome has been investigated by next
generation sequencer in intestine [20], pre- and postna-
tal piglet [21], developing brain [22] and skeletal muscle
[23].

We herein performed a global transcriptome analysis
on three types of tissues related to metabolism, meat
production and fat deposition: liver, longissimus dorsi
muscle (LD) and abdominal fat (AF) harvested from a
full-sib F, female pair with extreme phenotypes by
RNA-seq. The results allowed us to investigate large-
scale alternative splicing events, identify extensive num-
ber of novel transcript units, determine gene boundaries
at single nucleotide resolution and comprehensively sur-
vey porcine microRNAs in the tested tissues. To our
knowledge, this study presented the first systematical
investigation on the complexity of porcine transcriptome
with nucleotide resolution. Moreover, this study identi-
fied many important candidate genes related to growth,
meat quality, blood physiological and biochemical para-
meters by the integrated analysis of genome-wide asso-
ciation study and differential gene expression.
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Results
Sequencing and mapping of the porcine transcriptome
We sequenced cDNA libraries from 3 tissues of the full-
sib female pair using High-seq 2000 at BGI-Shenzhen,
China. The data set was analyzed according to the BGI
bioinformatics protocols for RNA-seq. The sequence
reads have been submitted to the NCBI Gene Expression
Omnibus under accession no. GSE26572. In total, we
acquired 38,808,956-40,133,362 paired-end reads of 90
bp. The total read length was 21.3 gigabases (Gb), repre-
senting about 8-fold of the porcine genome size. We
technically replicated the RNA-Seq experiments in the 6
samples with 0.90 <R? < 0.93 (Additional file 1). Further-
more, the expression patterns of 16 randomly selected
transcripts between two individuals were validated by
gRT-PCR with a relative coefficient of R* = 0.8 (Addi-
tional file 1). The technical replicates and qRT-PCR con-
firmed the high reproducibility of RNA-seq in this study.
We aligned all short reads onto the whole reference
genome (Sscrofa9.2). Tolerances were set to allow at
most two mismatches for 90 bp reads in each alignment.
About 61.4-65.6% of reads were mapped to the pig
reference genome, of which 60.2-74.9% fell in annotated
exons; 24.1-38.3% located in introns; 0.04-0.06% over-
lapped with exons, and the remaining 0.8-1.4% were
assigned to intergenic regions (Sscrofa9.2). Total 53.1-
60.8% of reads had a uniquely genomic location, and
47.9-63.1% of reads corresponded to reference genes
with 21.3-25.5% of uniquely matched reads. Unmapped
or multi-position matched reads (39.2-46.9%) were
excluded from further analyses (Table 1).

Identification of an extensive number of novel transcript
units
The uniquely mapped reads (8,508,418-10,219,332) cov-
ered 78.0% (21,414/27,444) of the annotated transcripts
in UCSC pig genome database [24] by at least one
sequence read. A total of 15,776 transcripts were
expressed in all three tissues, and 266, 175 and 2,154
transcripts were discovered exclusively in AF, LD and
liver, respectively (Figure 1). We quantified the gene
expression level by counting the number of reads per
kilobase per million mapped reads (RPKM). About 74.6-
84.3% of the annotated transcripts showed expression
with > 0.5 RPKM. The obtained transcription fragments
of more than 99.9% of the detected transcripts were >
150 bp in length (Additional file 2). The percentage of a
gene covered by reads was defined as gene coverage.
Extensive read mapping revealed about 40.3-50.9% of
the detected transcripts with more than 50.0% in gene
coverage.

We detected an extensive number of novel transcript
units by the procedures described in Methods and
Zhang et al. (2010) [25]. In total, we obtained 122,931,
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Table 1 Summary of the numbers of reads, identified genes,
extended genes
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novel transcribed units, alternative splicing genes and

2268 AF 2268 liver 2268 LD 2270 AF 2270 liver 2270 LD
total reads 40,000,000 38808956 39,020,950 40000000 40,133,362 39,164,798
total unmapped reads 14,293,709 13,771,813 14,076,474 15,445,291 14,285,367 13,457,962
reads perfectly matched to the reference genome 16,867,579 17,398,322 12,737,195 15,882,824 17,575,361 13,920,553
reads with < = 2 bp mismatch to the reference genome 8,838,712 7,638,821 12,207,281 8,671,885 8,272,634 11,786,283
reads uniquely matched to the reference genome 22,908,741 22,998,328 23,301,854 21,235,855 23,695,323 23,823,564
reads matched to the reference genome with multi-positions 2,797,550 2,038,815 1,642,622 3,318,854 2,152,672 1,883,272
annotated genes identified in this study 19,062 17,382 15,612 18,695 17,447 15,716
reads uniquely matched to annotated genes 8,508,418 9,465,873 8,615,406 9,075,466 10,219,332 9,530,691
reads matched to annotated genes with multi-positions 10,648,618 15,009,898 13,906,877 10,839,003 15,072,157 13,441,905
novel transcript units 122,931 71,394 48,045 112,052 72,401 69,677
clustered transcriptionally active regions 29,499 22,871 17,085 25,842 21,840 22,099
alternative splicing genes 2882 1,851 1,859 2,832 2,116 1,657
5" extended genes 815 610 587 793 697 593
3" extended genes 1,201 1,375 1,075 1,360 1,224 1,064
Genes extended both 5 and 3" ends 672 551 432 636 590 411

71,394, 48,045, 112,052, 72,401 and 69,677 novel tran-
script units, respectively, in the six tested samples with a
mean length of 285 bp and a size range from 150 to
39,638 bp (Table 1). Many novel transcript units (27.7-
85.1%) have > 1 exons and the largest one is 39,638 bp
in length containing 136 exons (Additional file 3). The
novel transcript units were often identified in clusters,
indicating that closely spaced transcript units are likely
to merge into longer transcripts with increasing sequen-
cing depth. By scanning the genomic location of each
novel transcribed unit, we clustered adjacent fragments
(x 3 kb) into one transcriptionally active region. In this

LD

e/

Figure 1 Comparison of the identified genes among liver, LD
and AF against the UCSC database. The number in overlapped
regions is the annotated genes that were expressed in all three
tissues or each two tissues.

AF LI

way, we identified 17,085-29,499 novel transcriptionally
active regions in the six tested samples (Table 1). A pro-
portion (3.6-16.9%) of the regions was comprised of sin-
gle exon.

To investigate whether the identified novel transcript
units were non-coding RNAs, we aligned the sequences
of the novel transcript units to non-coding RNA precur-
sor sequences in Rfam database [26]. We found that
0.12-0.17% of novel transcript units were non-coding
RNA precursors. Of these, 47.0% were in average tRNA
precursors, 26.2% were miRNA precursors and 15.6%
were snoRNA precursors.

Alternative splicing events in pig transcriptome

To investigate alternative splicing, we identified the
sequence reads that were mapped to the regions of
computationally determined theoretical splicing junc-
tions. Four known types of alternative splicing models
including alternative 3’ splicing site, alternative 5" spli-
cing site, exon skipping and intron retention were con-
sidered in this study. The distribution of alternative
splicing events is shown in Additional file 4. The alter-
native splicing events from 3 tissues of one individual
were pooled and the redundancy was removed to get a
final set of alternative splicing events. We found that up
to 4,038 genes accounting for 18.9% of the known genes
had undergone alternative splicing in these tissues, dis-
playing 10,746 alternative events in individual 2268.
Similarly, the number of alternative splicing genes and
events in individual 2270 were 4,024 (18.8% of the
known genes) and 10,854, respectively (Table 1 and
Additional file 5). Figure 2A and 2B show an example of
intron retention and alternative 5’ splicing site. We
found that about 59.0% of the alternative spliced genes
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Figure 2 An example of read distributions of genes in reference genome. The schematic diagram depicts the read distributions of
AY609431 (A) and AY609632 (B) on pig chromosomes 3 and 2. The red curve shows the expression level (log2 of RPKM) and the pink bar
denotes the genomic regions covered by reads in RNA-seq. The yellow bar shows the transcript structures of genes in UCSC. The pink lines
highlight the linkage between exons which were supported by at least two distinct junction reads. The red arrows indicate the alternative 5'
splicing in panel A and the retained intron in panel B. The plot (C) shows the distribution of the number of alternative splicing events occurred
in each gene and including all four types of alternative splicing models in individual 2268.
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underwent multiple alternative splicing events (Figure
2C), illustrating the complexity of porcine transcrip-
tome. Alternative 3’ splicing site is the most common
type of alternative splicing events accounting for 40.8%
of all alternative splicing events in pigs, while intron
retention and exon-skipping only constituted 7.5% and
15.6% in individual 2268, or 7.4% and 15.9% in indivi-
dual 2270. The average size of retained introns is 536
bp, ranging from 54 bp to 9691 bp.

Extension of annotated gene boundaries

The extensions of 5 and 3’ boundaries were determined
by comparison of the gene models obtained by RNA-seq
with the existing gene annotations. In the six tested
samples, a total of 587-815 genes were extended at the
5 end, of which more than 65.3% had an extension of
at least 50 bp in length. In comparison, 1,064-1,375
genes were extended at their 3" end, of which more than
71.0% were extended by at least 50 bp. Furthermore,
411-672 genes were extended at both ends (Table 1 and
Additional file 6). In individual 2268, total 1,399 anno-
tated genes were extended at the 5’ end, of which 10.9%
(152) were observed in all three tissues; and 2,505 anno-
tated genes were extended at the 3’ end, of which 16.0%
(401) had the extended 3’ boundary in all three tissues.
Similarly, in individual 2270, the percentage of the
extended 5’ or 3’ genes shared in all three tissues was
10.3% (147) and 17.0% (260), respectively.

Comprehensive survey of porcine microRNA by deep
sequencing

To get a comprehensive view of miRNA transcriptome
in pigs, we carried out deep sequencing of small RNA
(18-30 nt) using the tested samples mentioned above.
The obtained miRNA sequence reads have been sub-
mitted to the NCBI Gene Expression Omnibus under
accession no. GSE26572. We obtained a total of
8,951,703-13,479,372 raw reads. After removing low
quality reads and corrupted adapter sequences,
7,282,608-11,208,822 clean reads were retained for
further analyses. The majority of small RNA was 20-23
nt for all libraries (> 84.0%), with 22 nt small RNA
being the most abundant (Additional file 7), which is in
agreement with the common nucleotide length of miR-
NAs. We mapped 69.2-83.6% of clean reads to the refer-
ence genome (Sscrofa9.2). Chromosomes 1, 2, 3, 6, 12
and 17 harbored clean reads of > 1,000,000 tags (Figure
3A). After further removal of tRNA, rRNA, scRNA,
snRNA, snoRNA, exon RNA, intron RNA and repeat
regions, a total of 4,484,788-7,226,415 miRNA sequences
were obtained (Additional file 8).

Aligning miRNA sequences to the porcine mature miR-
NAs in miRBase 15.0 database [27] revealed 86.8 (164/
189)-94.7 (179/189)% of mature miRNAs in each
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sample. We pooled all identified mature miRNAs and
found that only five mature miRNAs in miRBase 15.0
database were not detected in this study (Figure 3B).
The expression levels of the identified miRNAs dis-
played a very large range, as reflected by the number of
sequence reads, which varied from single counts for rare
miRNAs to several hundred thousand reads for the
most abundant miRNAs (Additional file 9). As many as
87.3-98.4% of the clean reads belong to the miRNAs
ranked top 20 in expression levels in each sample (Fig-
ure 4).

To identify potential novel miRNA, we further analyzed
the small RNA tags that could not match known miR-
NAs and were mapped to intergenic or intronic regions
of the reference genome. The characteristic of hairpin
structure of miRNA precursor was used to predict novel
miRNA by exploring the secondary structure. In total,
26 to 98 potential novel miRNAs each supported by at
least five sequence reads, were identified in the 6 tested
samples (Figure 3B). The potential novel miRNAs of 6
samples were pooled and the redundancy was removed
to get a final set of 164 unique porcine putative novel
miRNAs. The vast majorities of these miRNAs were
expressed at low levels. Nevertheless, 6 miRNAs showed
relatively high expression levels representing by more
than 1,000 sequence reads, and 22 by more than 100
sequence reads (Additional file 10).

To determine the genomic locations of these potential
novel miRNAs, their precursor sequences were blasted
against the porcine reference genome sequence
(Sscrofa9.2). As shown in Figure 3C, 94.5% of the novel
miRNAs were assigned to the reference genome. Most
of the precursors were located on chromosome 2 (n =
20) followed by chromosomes x and 7 (n = 17), and
none of the novel miRNAs were mapped to chromo-
some 10.

Cross-tissue comparison of differential transcription
events

Deep RNA sequencing in three types of tissues allows us
to investigate the tissue-differentially transcriptional
events. Of the 21,414 identified transcripts, 266, 175 and
2,154 transcripts were discovered exclusively in AF, LD
and liver, respectively (Figure 1). Interestingly, as
reported in humans [14], the majority of alternative spli-
cing events showed clear tissue specificity, demonstrat-
ing the importance of alternative splicing in tissue
specific programs of gene expression and its major roles
in functional complexity. Functional annotations of
alternative splicing genes showed that they play impor-
tant roles in their corresponding tissues. The porcine
RYRI gene (M91451) which had the largest number of
LD-specific alternative splicing events has been asso-
ciated with malignant hyperthermia and has significant
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Figure 4 The mature miRNAs ranking top 20 in normalized expression levels in each sample. AF (A), liver (B) and LD muscle (C).

effects on pig meat quality and carcass leanness [28].
The ALB (AK232454) gene having the most number of
liver-specific alternative splicing events plays important
roles in transportation of fatty acids [29]. SLA-I

(AK231553) implicating in immune and type I diabetes
[30] had the most number of alternative splicing events
in AF that has been known as an important immune
organ. Other tissue-specifically alternative splicing genes
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also show major roles in their corresponding tissues. For
instance, MyHC-2A (AB025260), PPAP2C (FJ436381)
and APOH (AK232456) had tissue-specific alternative
splicing in LD, AF and liver, respectively, corresponding
to their roles in normal muscle development and func-
tion [31], converting phosphatidic acid to diacylglycerol
[32], transportation of fatty acids [29], and lipoprotein
metabolism [33] (Additional file 11).

The expression abundance of many miRNAs also
showed apparently tissue-differential patterns. The
mature miRNAs with high abundance in each tissue are
conserved in mammals and likely related to important
biological functions. MiR-122 is the most abundant
miRNA in human liver and also had the most abun-
dance of expressed read counts in porcine liver (Figure
4). MiR-122 plays a crucial role in cholesterol, fatty acid
and lipid metabolism [34-36]. The miR-1 and miR-206
are key mediators in proper skeletal and cardiac muscle
development and function, myogenesis during embryo-
nic development and muscle cell differentiation [37].
The two miRNAs, respectively, had the most and third
abundance of expression level in LD in this study. For
those potential novel miRNAs identified in this study,
85 of 164 putative novel miRNAs were specifically iden-
tified in AF, 23 and 24 in liver and LD, respectively
(Table 2). Their biological functions need further
investigation.

Differentially expressed transcripts and miRNAs between
two individuals

Overall, there were clear linear relationships in the gene
expression levels (0.84 <R’ < 0.88) between two indivi-
duals in all three tissues. The number of unique reads
mapped to different genes ranged from 1 to 894,235.
The differentially expressed genes were selected based
on the expression profiles and the following criteria: (1)
if the fold change in gene expression levels between
2268 and 2270 was more than or equal to two fold
(log,-fold change > 1 or < -1) and (2) if the false discov-
ery rate value was less than 0.001. With this, we identi-
fied 2,796, 1,551 and 835 differentially expressed genes
in AF, liver and LD, respectively. Of these, the

Table 2 The identified putative novel miRNAs
Liver- AF- LD- in

specific specific specific total

2268-specific 7 17 6 30
2270-specific 15 52 14 81
Both in 2268 and 2270 1 16 4 21
novel miRNAs identified in more 28

than one tissues
novel miRNAs identified in all 4
samples
total number of novel miRNA 23 85 24 164
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expressions of 1,997, 825 and 505 genes were up-regu-
lated in 2268 with respect to individual 2270 (Figure
5A-5C and Additional file 12).

To further investigate the biological relationships of
differentially expressed genes with phenotypes, we per-
formed the gene ontology (GO) analysis by querying
each differentially expressed gene into the records of the
GO database [38]. The results of GO functional annota-
tions are presented in Figure 5D-5F. The main func-
tional groups of differentially expressed genes in AF are
related to lipid metabolic process, alcohol metabolic
process, lipid binding and protein homooligomerization.
The functions of differentially expressed genes in liver
are enriched in metabolic process, catalytic activity and
oxidoreductase activity. And the differentially expressed
genes in LD are mainly associated with metabolic pro-
cess, cellular metabolic process, catalytic activity and
oxidoreductase activity.

Differentially expressed miRNAs between two indivi-
duals were identified by comparing the normalized
expression data of the mature miRNAs. In total, 10 dif-
ferentially expressed miRNAs (fold-change (log2) = 1 or
fold-change (log2) < -1; P-value < 0.01) were identified
in liver, 20 and 63 in LD and AF, respectively. Most of
the differentially expressed miRNAs had relatively low
expression levels (Additional file 13). Interestingly, some
differentially expressed miRNAs are involved in the
pathway relevant to development and diabetes. For
instance, miR-214 differentially expressed in LD enables
precisely specific the muscle cell types by sharpening
cellular responses to Hedgehog in Zebrafish [39]; a
liver-differentially expressed miRNA of miR-10b is pre-
dicted to regulate genes in pathways relevant to type 2
diabetes [40].

Investigation of candidate genes for related phenotypes
by integrated analysis of genome-wide association study
(GWAS) and differential gene expression

We selected total 500 most differentially expressed
genes including 200 from liver and AF, respectively, 100
from LD for further functional annotations (if false dis-
cover rate of 1 x 10°° was set as the threshold for
selecting the transcripts for further analyses, only 100 of
835 differentially expressed genes could be chosen from
LD). Only 359 genes could be mapped to the pig refer-
ence genome (Sscrofa9.2) and had functional annota-
tions in mammals. Of the 359 genes, 142 have the
description of phenotypes in knocked-out mice [41]. A
genome-wide association study using the pig 60K SNP
chip has been performed in the current White Duroc x
Erhualian F, resource population (unpublished data).
Seven, 11 and 4 differentially expressed genes in liver,
AF and LD are located within 2.5 Mb around the SNPs
that were most significantly associated with phenotypes
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in the GWAS and the associated phenotypes were also
observed in the corresponding gene-deficient mice
(Additional file 12). Here, we present the identification
results of interesting candidate genes IGF2, CYPIAI,
CKM and CESI for the related phenotypes by integrat-
ing the analysis of GWAS and differential gene expres-
sion in Figure 6.

Confirmation of IGF2 as a causative gene for heart weight
IGF2 is the causative gene underlying the QTL for mus-
cle growth, fat deposition and heart weight on SSC2p
[2]. A nucleotide substitution in intron 3 of IGF2 abro-
gates interaction with ZBED®6, resulting in threefold
increase of IGF2 messenger RNA expression [42]. In the

current F, population, a significant QTL for heart
weight at day 240 was located at chr2: 1.3 Mb with a
corrected P-value of 3.6 x 10 in GWAS (Figure 6).
This region overlapped with the /GF2 locus. In the
RNA-seq analysis, individual 2268 with the heavier heart
weight (307.5 g vs. 225.0 g) showed a 2.3 fold increase
in IGF2 expression level compared with individual 2270.
The result was perfectly consistent with the previous
result [2], and is another example demonstrating the
causality of this gene in the QTL.

CYP1A1 as a strong candidate gene for hemoglobin
Two founder breeds of the F, resource population are
White Duroc and Chinese Erhualian, which are
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divergent in hemoglobin concentration [43]. Blood para-
meters of hemoglobin and hematocrit at day 240 were
measured in the F, population. We identified a signifi-
cant QTL for both hemoglobin and hematocrit content
at day 240, which is located at chr7: 66.9 Mb in GWAS
(P = 4.9 x 107°). A differentially expressed gene of
CYPIAI in liver by RNA-seq is located within this QTL
region. The CYPIAI knocked-out mice had the
increased hemoglobin content [44]. A quantitative trait
transcript (QTT) analysis in this F, population also

revealed that the CYPIAI expression level was asso-
ciated with hemoglobin at day 240 (P = 2.2 x 107,
unpublished data). These results strongly support
CYPIAI as a candidate for the QTL effect on hemoglo-
bin content.

CKM as a candidate gene for pork pH value

Creatine kinase, muscle (CKM) is a cytoplasmic enzyme
involved in energy homeostasis. CKM-deficient mice
show abnormal muscle physiology and an increased
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skeletal muscle glycogen level [45]. Excess glycogen con-
tent in pig skeletal muscle is associated with low meat
pH value, leading to bad meat quality [3]. A significant
QTL for meat pH value at 45 min, 3 h and 9 h after
slaughter was detected around the region of chr2: 80.0
Mb with a P-value of 1.3 x 1072 in the F, cross. CKM
gene locates at the chr2: 79.1 Mb and was differentially
expressed in this full-sib pair with different meat pH
values. This indicates that CKM is an important candi-
date gene for meat pH value in pigs.

CES1 as an important candidate gene for serum
cholesterol and triglyceride level

The liver is an important organ for lipid metabolism.
Gene expression in liver influences the circulating cho-
lesterol level. CESI that participates in fatty acyl and
cholesterol ester metabolism [46] was one of the differ-
entially expressed genes in liver. Our previous QTT
study in liver showed that the expression level of CESI
is significantly associated with serum total cholesterol (P
= 0.02) and triglyceride level (P = 7.1 x 10) in the F,
population (Unpublished data). A significant QTL for
both low density lipoprotein cholesterol and total cho-
lesterol was identified at chr6: 18.5 Mb containing the
CESI gene in GWAS. The concordant results of QTT,
GWAS and differential expression suggest that CESI is
strong candidate gene for QTL affecting serum total
cholesterol on chromosome 6. The supporting evidence
was also from the CESI knocked-out mice that showed
decreased circulating cholesterol level [47].

Discussion

In this study, we presented the systematical transcrip-
tome profiling of pigs on three tissues related to meta-
bolism, meat production and fat deposition using high
throughput RNA-seq technology. This efficient deep
sequencing not only allows us to analyze novel tran-
scribed regions and miRNAs, but also improves gene
annotations at single nucleotide resolution. Integrated
analysis of genome-wide association study and differen-
tial gene expression between two individuals revealed
important candidate genes for related phenotypes.

A total of 38,808,956-40,133,362 reads were obtained
from RNA-seq in six samples with 53.1-60.8% of reads
uniquely mapped to the reference genome. This data set
provided comprehensive starting resources for improv-
ing the gene annotations across the porcine genome.
High R? values between technical replicates showed high
reproducibility of RNA-seq in pigs. It should be men-
tioned that there are still 34.4-38.6% of reads that can-
not be matched to the reference genome. This could be
caused by low sequence coverage of the reference gen-
ome, reference errors, sequencing errors and defined
mapping criterions. A proportion (4.2-8.3%) of mapped
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reads with multiple positions was discarded, attributing
to known duplicated genes or chromosome segments. A
majority of the annotated transcripts (78.0%) at UCSC
database [24] was covered by sequence reads, showing
the sensitivity of RNA-seq in transcript discovery even
for lowly expressed genes [48]. Furthermore, we identi-
fied large number of novel transcript units which
improved the gene annotations of the porcine genome
and transcriptome.

Alternative splicing is an important model of gene
expression regulation and has not been generally acces-
sible for microarray or SAGE methods in pigs. Some
genes showed all four types of alternative splicing mod-
els (such as CSNI1S1), revealing the complexity of alter-
native splicing in pigs. We found that alternative 3’
splicing is the most common type of alternative splicing
events in pigs. This is in contrast to the report in
human and yeast where exon-skipping is the most pre-
valent mechanism [13,14], and it is also different from
rice in which intron retention is the primary alternative
splicing type [25]. The percentage of alternative 5’ or 3’
splicing in total alternative splicing events in this study
were higher than that reported in Lim et al. (2009) [49]
where 8.0% of alternative 5’ splicing and 3% of alterna-
tive 3’ splicing were observed. We discovered that more
than 18.0% of the detected genes were alternatively
spliced. This number is much lower than the reported
86.0% in human [14] and 33.0% in rice [25]. Three types
of alternative splicing models including alternative first
exon, alternative last exon and mutually exclusive exon
were excluded from analyses because of currently
unperfected algorithms. More alternative spliced genes
would be discovered if these alternative splicing models
were considered.

As an important regulator of gene expression, miRNA
regulates the gene expression through decreasing the
target mRNA levels or repressing the translation [50,51].
In this study, the high identification rate illustrates that
the six small RNA libraries from the tested tissues
almost encompass the entire repertoire of known miR-
NAs. Consistent with the results in Li et al. (2010) [21],
porcine mature miRNAs had a broad range of expres-
sion levels. The highly expressed miRNAs are known to
have important regulatory functions in corresponding
tissues. The miR-1/206 showed high abundance of
expression levels in muscle (Figure 3C). Interestingly,
muscular hypertrophy in Texel sheep has been shown to
be caused by a mutation that creates an illegitimate
binding site for miR-1/206 in the 3’ UTR of the myosta-
tin gene, leading to efficient translational inhibition of
the myostatin gene and an increase in muscularity [8].
The miR-122 had the most abundant expression level in
liver. It has the diversity of its roles in liver, e.g. metabo-
lism, hepatocarcinogenesis [34]. Just as in humans [52],
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most of the potential novel miRNAs discovered in this
study are expressed at low levels (Additional file 10),
explaining why they were not discovered in previous
efforts and showing the advantage of RNA-seq in tran-
scriptome analysis. Furthermore, we found that most of
the novel miRNAs were tissue-specifically identified
(Table 2). We cautioned that some could be artifact due
to the low expression level, the insufficient depth of
sequencing and limited tested tissues.

Mapping genetic factors that underlie quantitative
traits in farm animals has been a challenging task [53].
The recent wave of genome-wide association studies
in human showed that a majority of SNPs associated
with disease traits locate in regulated regions [54].
Integration of gene expression with genotype and phe-
notype data to elucidate the network of molecular
interactions that underlie complex traits can facilitate
the identification of variants that contribute to pheno-
types [54]. In this study, high-throughput sequencing
allowed us to digitally discover an extensive number
of differentially expressed genes in the full-sib pair
with different phenotypes. Gene ontology analysis
indicated that the differentially expressed genes had
enrichment on functions related to metabolic process,
catalytic activity and lipid binding. The results suggest
that these differentially expressed genes are likely
related to the phenotypes of growth, metabolism or fat
deposition. By integrating GWAS, differentially
expressed genes and altered phenotypes in knocked-
out mice, we found that many differentially expressed
genes are the important candidate genes related to the
phenotypes of serum cholesterol, growth traits, hemo-
globin at day 240, fatty acid level and muscle pH
value (Additional file 14). For example, activating
transcription factor 4 (ATF4) gene differentially
expressed in muscle and located in the QTL region
for body weight at day 210 is related to decreased
body weight in ATF4 knocked-out mice (Table S12)
[55]; fatty acid binding protein 4 (FABP4) located in
the QTL region for fat deposition on SSC4 and related
to increased white adipose tissue amount in FABP4
knocked-out mice was differentially expressed in
abdominal fat in this study (Table S12) [56]. The find-
ings provide important clues for further dissecting of
the responsible genes and variants.

Conclusions

This study provides a global view of the complexity of
the pig mRNA and miRNA transcriptome, gives an
extensive new knowledge about alternative splicing,
novel transcript units, gene boundaries and novel miR-
NAs in pigs. The cross-tissue comparison identified lots
of tissue-differential transcription events. Integrated ana-
lysis of GWAS and differential gene expression allowed
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us to detect important candidate genes related to
growth, meat quality, serum lipids and fatness. The find-
ings significantly enhance the current genome annota-
tion of pigs and improve our understanding of complex
traits.

Methods

Animals and sample collection

Two F, full-sib females from a White Duroc x Erhualian
resource population were used in this study. All animals
were housed in a consistent and standard environmental
condition. The room temperatures were uncontrolled
with natural lighting. Animals were floor fed three times
a day. The phenotypes of growth (body weight at birth,
day 46, 210 and 240), pork pH value at 45 min, 3 h, 9 h,
15 h and 24 h after slaughter, blood physiological and
biochemical parameters including serum cholesterol,
hemoglobin and blood cell, carcass traits and meat fatty
acid level were measured as described previously
[57,58]. The full-sib pair had different phenotypes, such
as extremely phenotypic distribution in growth and fat-
ness (Additional file 15). Liver, LD and AF from both
individuals were harvested for RNA isolation within 30
mins after slaughter at the age of 240 day. All animal
procedures were conducted according to the guidelines
for the care and use of experimental animals established
by the Ministry of Agriculture of China.

RNA isolation and quality assessment

Total RNA was isolated with TRIzol (invitrogen) accord-
ing to the manufacture’s instructions. DNA was
removed from RNA extracts with RNase-free DNase I
(New England Biolabs) for 30 min at 37°C. The quality
of total RNA was assessed by the 2100 Bioanalyzer (Agi-
lent) and agarose gel electrophoresis.

cDNA library construction and sequencing

Poly (A) mRNA was isolated from the total RNA sam-
ples with oligo (dT) magnetic beads (invitrogen). Puri-
fied mRNA was first fragmented by the RNA
fragmentation kit (Ambion). The first-strand cDNA
synthesis was performed using random hexamer pri-
mers and reverse transcriptase (invitrogen), and the
second-strand cDNA was synthesized using RNase H
(invitrogen) and DNA polymerase I (New England
Biolabs). The cDNA libraries were prepared using the
[llumina Genomic DNA Sample Prep kit (Illumina)
following the manufacturer’s protocol, and then
loaded onto flow cell channels of the Illumina High-
seq 2000 platform for paired-end 90 bp x 2 sequen-
cing. The average insert size for the paired-end
libraries was 200 bp (from 180 to 220 bp). Total six
paired-end ¢cDNA libraries were constructed each for
six tested samples (tissues of liver, LD and AF from
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2268 and 2270). One technical replicate was per-
formed for each sample.

Small RNA library preparation and sequencing

Small RNA libraries were constructed according to the
[llumina alternative v1.5 protocol for small RNA
sequencing. Briefly, small RNA sized at 18-30 nt was
purified from total RNA through polyacrylamide gel
electrophoresis, and 3’ and 5’ [llumina RNA adapters
were ligated to the small RNA molecules by T4 RNA
ligase (New England Biolabs). The ligated small RNA
was subsequently transcribed into cDNA and then
amplified for 15 cycles with PCR using primers corre-
sponding to the ends of the adapters. After purified with
gel, the amplified cDNA constructs were sequenced
according to the Illumina GA platform sequencing
protocols.

Mapping reads to the porcine reference genome and
annotated transcripts

The porcine reference genome sequence and annotated
transcript set were downloaded from the UCSC
(Sscrofa9.2) [24]. After removing reads of low quality
(more than half of the base’s qualities were less than 5),
reads containing Ns > 5 and reads containing adapters,
clean reads were aligned to the porcine reference gen-
ome using SOAP2 [59] allowing up to two mismatches
in 90-bp reads. For the reads that were unalignable to
the reference sequences, SOAP iteratively trim several
base pairs at the 3’-end and redo the alignment, until a
match was detected or the remaining sequence was too
short for specific alignment. A similar strategy was used
to align reads to the porcine annotated transcript set.
The different insert size between paired reads (1 bp -10
kb for mapping to genome, and < 1 kb for mapping to
genes) was set to align the exon-exon junction reads.

Identification of novel transcript units

All reads that matched to the reference genome with
multi-positions were excluded for further analysis. The
intergenic regions were defined within the 200-bp down
stream of one gene to the 200-bp up stream of the next
adjacent gene using the porcine mRNA data (UCSC). A
contiguous expression region with each base supported
by at least two reads was considered as a transcription-
ally active region (TAR). The TARs that were joined by
at least one set of paired-end reads were connected into
a transcript unit. Those transcript units that were not
overlapped with an annotated gene model and located
in intergenic regions with a continuous mapping length
> 150 bp and average coverage > 2 were considered as
the putative novel transcript units. To determine
whether the novel transcript units were non-coding
RNAs, we blasted the sequences of the novel transcript
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units with RNA families in Rfam database (version 10.0)
by rfam _ scan.pl (1.0.2) with default threshold [26,60].

Identification of alternative splicing

To identify potential splicing sites, all putative junction
sites which give information about boundaries and com-
binations of different exons in a transcript were deter-
mined by TopHat [61]. All reads that did not match to
the genome were aligned onto the splice junctions to
identify the junction reads. A junction site was required
to be supported by at least two unambiguously mapped
reads with non-repetitive match position within the
splice and having a minimum of five bases on both sides
of the junction.

As described by Wang et al. (2008) [14] and Zhang et
al. (2010) [25], and according to the structures of exons,
the alternative splicing events were classified into seven
different types of alternative splicing models including
alternative 3’ splice site, alternative 5" splice site, exon
skipping, intron retention, alternative first exon, alterna-
tive last exon and mutually exclusive exon. The details
of these alternative splicing models were described in
Zhang et al. (2010) [25]. Because of the unperfected
algorithms for alternative first exon, alternative last exon
and mutually exclusive exon, only the remaining four
alternative splicing models listed above were analyzed
and presented in this study.

Determination of gene boundary

The gene structure was optimized according to the dis-
tribution of the reads, paired-end sequences and the
annotation of reference genes. After alignment of reads
to the reference genome, the genomic regions with con-
tinuous reads and uniquely mapped reads > 2 formed
transcription active regions. We connected the different
transcription active regions to form a potential gene
model using the paired-end data. The extensions of 5’
and 3’ boundaries were determined by comparison of
the potential gene model with the existing gene
annotation.

Differentially expressed genes analysis

Numbers of reads per kilobase of exon region in a gene
per million mapped reads were used as the value of nor-
malized gene expression levels [12]. Differentially
expressed genes and their corresponding P-values were
determined with methods described by Audic and Clav-
erie (1997) [62]. The significance threshold of P-value in
multiple tests was set by false discovery rate (FDR). The
fold changes (log2Ratio) were also estimated according
to the normalized gene expression level in each sample.
We use “FDR < 0.001 and the absolute value of log2Ra-
tio = 1”7 as the threshold to judge the significance of
gene expression difference.
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Gene ontology annotation

The differentially expressed genes were classified for the
categories of molecular function, cellular component
and biological process using gene ontology (GO) anno-
tation. Hypergeometric test was applied to map all dif-
ferentially expressed genes to terms in GO database [38]
and search significantly enriched GO terms in differen-
tially expressed genes comparing to the genome back-
ground. The calculated P-values were corrected through
bonferroni correction, taking corrected-P value < 0.05 as
a threshold of significance.

Real-time quantitative RT-PCR (qRT-PCR)

As the current gold standard for quantification of
mRNA, to validate the repeatability and reproducibility
of gene expression data obtained by RNA sequencing in
pigs, we performed qRT-PCR on 16 randomly selected
genes including 7 differentially expressed genes with the
total RNA used in RNA-seq. The first-strand cDNA was
synthesized with superscript II reverse transcriptase
(Invitrogen). Gene-specific primers were designed
according to the gene sequence using primer premier
5.0 (Additional file 16). The GAPDH gene was used as a
control in the experiments. qRT-PCR was carried out in
triplicate with Power SYBR Green Mastermix (Applied
Biosyetems Inc.) on an Applied Biosystems Step One
Plus system using the following program: 95°C for 5
min; 35 cycles of 95°C for 15 sec, 60°C for 15 sec, and
72°C for 40 sec; 72°C for 6 min.

Discovery and annotation of miRNA

Raw tag sequences were produced by the Illumina Gen-
ome Analyzer II at BGI-Shenzhen, China and the data
set was analyzed according to the BGI bioinformatics
protocols for small RNA. Briefly, the low quality tags
and adaptor contaminants formed by adaptor ligation
from the 35 nt tags were first filtered from the data set.
We then summarized the length distribution of the
clean tags and retained only short trimmed reads of
sizes from 18 to 30 nt.

The distributions of small RNA tags on the reference
genome were mapped by SOAP2. Those tags matched
with rRNA, scRNA, snoRNA, snRNA and tRNA in Gen-
bank and Rfam database or aligned to exonic and repetitive
regions (release 9.0) [26] were excluded from advanced
analyses. To determine mature miRNAs, the unique small
RNA tags were aligned with the known miRNAs of pigs in
miRBasel5.0 database [27] with a maximum of two mis-
matches. For those unannotated small RNA tags that could
be mapped to intergenic or intronic regions, Mireap was
used to predict potential novel miRNAs by exploring the
secondary structure, the dicer cleavage site and the mini-
mum free energy of the precursors [25].
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The expressions of miRNAs were normalized to get
the expression level of transcripts per million. The dif-
ferentially expressed miRNAs were determined by calcu-
lating the fold-change (log 2 ratios) and P-value from
the normalized expression. Fold-change (log2) > 1 or
fold-change (log2) < -1 and P-value < 0.01 were used as
the thresholds to judge the significance of differentially
expressed miRNA.

Integrated analysis of GWAS and differential gene
expression

A panel of F, animals (n = 933) was successfully geno-
typed using Porcine 60K SNP chips (Illumina) and an
internally developed SNP set. The genomic position of
each SNP (Sscrofa9.2) was determined by SOAP2. The
quality control of genotypes was performed with GenA-
BEL procedure in R. The associations of the genome-
wide SNP genotype data with phenotypic traits were
analyzed with PLINK, and the significant P-values were
adjusted by bonferroni correction.

The genomic locations of differentially expressed
genes were determined by BLAT [63]. Because of the
extensive linkage disequilibrium in F, crosses, the differ-
entially expressed genes located within 2.5 Mb around
the most significant SNPs were selected for further
functional annotation. The database in Mouse Genome
Informatics [41] was used to search phenotypes linked
with differentially expressed genes in knocked-out mice.

Additional material

Additional file 1: Figure S1 and S2. Repeatability of technical replicates
in RNA-seq by comparing the gene expression levels. Figure S1,
Scatterplots comparing the gene expression levels (Log10 (read count))
based on technical replicates of LD and LI from both individuals. Figure
S2, Comparison of the expression ratios of randomly selected genes
between two individuals obtained by RNA sequencing and gRT-PCR,
respectively. The X-axis and Y-axis show the log2 radios of gene
expression levels of the 2 tested animals determined by gRT-PCR and
High-seq 2000, respectively.

Additional file 2: Table S1. Gene expression levels and coverage of
transcripts identified in each sample.

Additional file 3: Table S2. Novel transcript units identified in each
sample.

Additional file 4: Table S3. Alternative splicing events identified in each
sample.

Additional file 5: Table S4. Summary of the number of each type of
alternative splicing events in different tissues and individuals.

Additional file 6: Table S5. The detailed description of the extension of
gene boundary in each sample.

Additional file 7: Figure S3. The distribution of the nucleotide length of
small RNAs. (A) 2268 AF; (B) 2268 LI; (C) 2268 LD; (D) 2270 AF; (E) 2270 LI;
(F) 2270 LD.

Additional file 8: Table S6. Distribution of the number of small RNA
tags among different categories.

Additional file 9: Table S7. The expression levels of the mature miRNAs
in each tissue.
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