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Abstract

model system with which to study fiber elongation.

displayed complete linkage to the Li, locus.

sequence may be the Li, gene.

Background: Cotton fiber length is an important quality attribute to the textile industry and longer fibers can be
more efficiently spun into yarns to produce superior fabrics. There is typically a negative correlation between yield
and fiber quality traits such as length. An understanding of the regulatory mechanisms controlling fiber length can
potentially provide a valuable tool for cotton breeders to improve fiber length while maintaining high yields. The
cotton (Gossypium hirsutum L.) fiber mutation Ligon lintless-2 is controlled by a single dominant gene (Li,) that
results in significantly shorter fibers than a wild-type. In a near-isogenic state with a wild-type cotton line, Li, is a

Results: Two near-isogenic lines of Ligon lintless-2 (Li;) cotton, one mutant and one wild-type, were developed
through five generations of backcrosses (BCs). An F, population was developed from a cross between the two Li,
near-isogenic lines and used to develop a linkage map of the Li, locus on chromosome 18. Five simple sequence
repeat (SSR) markers were closely mapped around the Li, locus region with two of the markers flanking the Li,
locus at 0.87 and 0.52 centimorgan. No apparent differences in fiber initiation and early fiber elongation were
observed between the mutant ovules and the wild-type ones. Gene expression profiling using microarrays
suggested roles of reactive oxygen species (ROS) homeostasis and cytokinin regulation in the Li, mutant
phenotype. Microarray gene expression data led to successful identification of an EST-SSR marker (NAU3991) that

Conclusions: In the field of cotton genomics, we report the first successful conversion of gene expression data
into an SSR marker that is associated with a genomic region harboring a gene responsible for a fiber trait. The EST-
derived SSR marker NAU3991 displayed complete linkage to the Li, locus on chromosome 18 and resided in a
gene with similarity to a putative plectin-related protein. The complete linkage suggests that this expressed

Background

Cotton seed fibers are initially ovule epidermal cells that
terminally differentiate into fiber cells typically on the
DOA. Approximately 25% of the ovule epidermal cells
differentiate into fiber cells during the initiation stage of
cotton fiber development and subsequently undergo a
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period of rapid elongation known as the elongation
stage [1,2]. The rate of fiber elongation peaks at
approximately 6 to 12 DPA and nears cessation at 22
DPA [3]. During peak elongation fiber cells can increase
in length at rates of 2 mm/day or more depending on
environment and genotype [1,4]. The length of fibers is
mostly variety specific, but can also be affected by envir-
onmental conditions such as temperature during the
elongation stage of development [5]. The elongation
stage is followed by a brief period known as the
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Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
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transition stage that usually begins from 12 to 16 DPA
in field conditions and depending on environmental fac-
tors such as lower temperatures that are shown to delay
the onset of the transition stage [6]. The SCW stage
immediately follows transition and is characterized by a
dramatic increase in SCW-related gene transcripts like
cellulose synthases and changes in cell wall composition
as large amounts of cellulose are deposited in the SCW
[7]. The SCW stage persists until about 32 DPA at
which time the fiber cell is composed of approximately
95% cellulose with the remaining 5% of non-cellulosic
materials comprised of proteins, polysaccharides, pec-
tins, and waxes that reside mostly in the PCW and cuti-
cle [3,8]. The final stage of fiber development is
maturation that ceases from 40 to 60 DPA depending
on environment and genotype [9]. At this time the cot-
ton bolls crack and open, exposing the seed fibers to
external ambient conditions causing them to desiccate
and take on the fluffy appearance normally associated
with cotton fibers.

Varieties of cultivated Upland cotton (Gossypium hir-
sutum L.) that display fiber mutation phenotypes includ-
ing lintless and fuzzless seeds were first described in the
early twentieth century [10,11]. Currently, numerous
naturally occurring cotton fiber mutations have been
identified globally and characterized at the genetic, and
more recently, gene expression levels [12-16]. These
fiber mutations include, among others, the glabrous
seeds in the fiberless mutant lines MD17, SL1-7-1, and
XZ142w [17,18]; seeds with only lint fibers and no fuzz
fibers in the Naked seed lines N; [11] and #, [19]; and
seeds that are described as extremely short lint fibers in
the Ligon lintless-1 (Li;) [20] and Ligon lintless-2 (Li,)
[21] mutant lines. The fiber mutations of N;, Li;, and
Li, are single gene dominant traits [20,21] while the n,
fiber mutation is a single gene recessive trait [19].
Recent genetic studies on the Li, mutation also indicate
that it may have incomplete penetrance as evidenced by
mutant and WT fibers at different boll locations on the
same plants [22], or possibly phenotype variation due to
epigenetics. These naturally occurring mutants and their
wild-type fiber NILs provide a unique and powerful
model system to study cotton fibers at various stages of
development including initiation, elongation, and sec-
ondary cell wall biosynthesis.

The Li; gene was mapped to chromosome 22 using
SSR [23] and RFLP [24] markers while the Li, gene was
mapped to chromosome 18 by phenotype association
with cotton aneuploid stocks [25], and linkage analysis
by RFLP markers [24]. More recently, a draft of the phy-
sical map of the diploid cotton D-genome progenitor G.
raimondii was released and used along with tetraploid
cotton A- and D- subgenome genetic maps to generate
a consensus genetic-physical map of the cotton genome
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that included flanking markers for the Li, gene on chro-
mosome 18 [26]. These were RFLP markers designated
A1552 and Gate4BCl11 that flanked the Li, gene in an
8.9 ¢cM region and were mapped using an interspecific
F, mapping population composed of 158 individuals
from a cross between G. hirsutum Li, and G. barba-
dense cv. Pima S-7. Previously, another RFLP marker
designated Gate4BF10 was reported to flank the Li,
gene along with A1552 in a 1.5 ¢M region of chromo-
some 18 [24]. However, the more recently released cot-
ton consensus genetic-physical map developed by the
same laboratory indicated that Gate4BF10 was mapped
at two locations on chromosome 18 [26], which leave
the mapping accuracy of this marker in doubt. In a
separate study, two Li, F, segregating populations were
developed and used to screen SSR markers for linkage
to the Li, genetic locus. The closest SSR marker was
mapped to chromosome 18 and located 6.051 ¢cM from
the Li, gene in an interspecific segregating population,
and 9.266 cM from the Li, gene in an intraspecific seg-
regating population [27].

In a near-isogenic state with the cotton line Texas
Marker-1 (TM-1), both the Li; and Li, mutants have
seed fibers that are extremely short (< 6 mm) compared
to WT fibers that are typically greater than 20 mm in
length [20,21,28]. As a monogenic dominant trait, the
short-fiber phenotypes of Li; and Li, are identical in
either a homozygous dominant or heterozygous state.
Unlike the Li; mutant, which exhibits pleiotropy in the
form of severely stunted and deformed plants in both
the homozygous dominant and heterozygous state [20],
the Li, mutant plants appear healthy and morphologi-
cally identical to the homozygous recessive wild-type
plants with the exception of shorter seed fibers [21].

Cytological evidence suggests that the seed fibers of
Li; mutants undergo initiation in the same manner as
WT fibers, but begin to show some distorted morpholo-
gical features during the early elongation stage of devel-
opment [23]. Since the seed fibers of Li; and Li, fibers
are shortened lint fibers, these cotton mutants represent
excellent candidates to study the molecular mechanisms
of fiber elongation. A recent gene expression study
using microarrays on Li; mutant and WT cotton NILs
that focused on the SCW stage of fiber development
identified genes potentially responsible for the phenoty-
pic differences observed in mutant Li; fibers compared
to WT fibers [12]. Several genes in particular were dif-
ferentially expressed during SCW biosynthesis that
could potentially be involved with the Li; phenotype
including EXPANSINS, tubulin genes, sucrose synthase
(SuSy), and genes encoding MYB transcription factors
[12].

Since extensive research has been ongoing with the Li;
mutant, our laboratory selected the Li, mutant in an
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established near-isogenic state with the Upland cotton
variety DP5690 as a model system to study fiber elonga-
tion events using a combined functional and structural
genomics approach of microarray gene expression and
molecular marker analysis. The Li, mutant was also
selected due to concerns over the pleiotropic effects of
the Li; mutation on development timing and the desire
to harvest fiber samples from mutant and WT plants
simultaneously. Understanding the molecular events
that control fiber elongation and identifying regulatory
elements involved in this process can provide cotton
researchers and breeders with means of improving fiber
length while maintaining yield either through marker-
assisted selection or a transgenic approach. The main
objective of this research was to identify genes that were
differentially expressed during the development of WT
and mutant Li, fibers and convert the gene expression
data into portable molecular markers for use in associa-
tion mapping to identify the Li, locus.

Here we report: 1) the development of two Li, NILs of
cotton (G. hirsutum) in the backcross five (BCs) genera-
tion; 2) no apparent phenotypic differences in seed fibers
of mutant Li,Li, plants compared to WT [i,li, plants
during the initiation and early elongation stages of fiber
development; 3) mapping the Li, locus with SSR markers;
4) the identification of genes differentially expressed in
fibers of mutant Li, plants compared to WT plants using
microarray gene expression analysis on selected develop-
mental time-points; 5) confirmation of microarray gene
expression profiles by RT-qPCR; 6) successful conversion
of differentially expressed genes into EST-SSR markers;
and 7) the identification of an EST-SSR marker repre-
senting a putative plectin-related protein or regulatory
element that has complete linkage to the Li, genetic
locus suggesting it may be the Li, gene.

Methods
Plant materials and greenhouse experimental design
Two NILs of Li, Upland cottons that were homozygous
dominant (Li,Li,) and homozygous recessive (li,li,) for
the Li, locus were developed in a backcross program at
Stoneville, MS in field and greenhouse environments.
Mutant Texas marker-1 (TM-1) cotton plants contain-
ing the Li, gene were crossed with the Upland cotton
variety DP5690 and F; progeny were backcrossed for
five generations (BCs) by SSD to DP5690 which served
as the recurrent parent in each backcross. The DP5690
recurrent parent was a pure inbred line that was self-
pollinated for nine generations via SSD. Progeny in each
backcross were selected based on phenotype for the Li,
short-fiber mutation. The pedigree of the two Li, NILs
is detailed in Additional file 1.

A total of 102 Li, cotton plants and 80 WT [i,li, cot-
ton plants were planted in the greenhouse on six tables.
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The mutant Li, plants were six BCsF; lines that origi-
nated via SSD. A total of 17 individual plants were
grown for each line to confirm that they were homozy-
gous Li,Li, [29]. Once the genotypes were confirmed
the populations were culled to 72 mutant Li,Li, plants
and 72 WT lisli, plants that were placed in the same
greenhouse on six tables in a randomized complete
block design. The individual mutant and WT cotton
plants were labeled into three pools representing three
biological replicates. Cotton bolls were harvested at the
following time-points during development: -3, -1, 0, 1, 3,
5, 8, 12, 16, and 20 DPA. Bolls from the same cotton
line, biological replicate, and developmental time-point
were harvested from all six tables to account for envir-
onmental variability within the greenhouse and bulked
for subsequent analyses. The number of bolls per bulked
sample varied according to developmental time-point,
with a greater number of bolls required for the earliest
time-point to ensure sufficient biological material and
progressively fewer bolls required for each successive
time-point. For example, at opposite ends of the devel-
opmental time-course, ovules from approximately 20 -
30 bolls were bulked for each -3 DPA sample, and
ovules with fibers attached from approximately 8 -10
bolls were bulked for each 20 DPA sample. Harvested
bolls were placed immediately on ice and transported to
the laboratory where they were dissected on ice and the
majority of the ovules frozen in liquid nitrogen and
stored at -80°C. A small number of ovules from each
sample from the -1 to 5 DPA time-points were used for
SEM as described herein.

Mapping population

A mutant Li,Li, homozygous plant was used as the
female in a cross with its near-isoline WT [isli, DP5690.
One hundred and thirty-six F, plants were planted in
the field in Stoneville, MS in 2009. The Li, trait of each
F, progeny plant was evaluated twice at approximately
30 DPA and after boll maturation and opening.

SSR marker analysis and genetic mapping

Young leaves were collected from each one of the F,
plants in the described mapping population. Total DNA
was extracted from fresh leaves using 2.0% hexadecyltri-
methylammonium bromide [30]. DNA was purified
using Omega EZNA® DNA isolation column (Omega
Bio-Tek, Norcross, GA). As previously reported, the Li,
locus resides on chromosome 18 [24,25,27]. To rapidly
identify SSR markers closely linked to the Li, locus, we
first selected 86 SSR markers that were previously
mapped on either chromosome 18 or its homeologous
chromosome 13 based on several published maps
[31-35]. The probes of the RFLP markers reported by
Rong et al. (2005) [24] were not available to us, and
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thus were not evaluated in our population. Bulked seg-
regant analysis [36] was then used to identify potentially
linked markers. For the Li, bulk, DNA of 10 F, plants
that had the Li, phenotype were pooled at equal ratio
and diluted to 10 ng/puL. The WT bulk consisted of
pooled DNA from 10 F, progeny that had normal lint
phenotype. SSR primers that generated polymorphic
patterns between bulks were tested using the 20 indivi-
dual DNA samples that were included in the bulks. The
markers linked to the Li, locus were analyzed on 136
individual F, progeny plants as previously described
[37]. All SSR primer sequences can be obtained from
Cotton Marker database (http://www.cottonmarker.org)
except DPL0547. The primer sequences of the SSR mar-
kers associated with Li, locus are listed in Additional
file 2. Segregation data for the Li, trait and SSR markers
were mapped using program JoinMap3.0 [38,39] with
logarithm of odds score = 25.

Scanning electron microscopy

To prepare the samples for SEM analysis, cotton ovules
were placed in tissue fixative consisting of 3% (v/v) glu-
taraldehyde in 0.1 M sodium phosphate, pH 7.0 and
stored at 4°C. The time-points utilized for SEM were -1
to 5 DPA. After fixation, the cotton ovules were dehy-
drated in a graded ethanol series starting from 20% (v/v)
up to 100% (v/v) ethanol. After three changes of 100%
ethanol, the ovules were placed in American Optical
microporous specimen capsules under 100% ethanol
[40] and critical point dried from liquid carbon dioxide
by standard methodology in a Ladd Critical Point Dryer
model 28,000 (Ladd Research, Williston, VT). The
ovules were mounted on standard Cambridge SEM
stubs using double-stick Avery photo tabs, #06001. The
SEM mounts were coated with 60/40 gold/palladium
using a Hummer™ II Sputter Coater (Ladd Research,
Williston, VT) to a thickness of 200 nm. The specimens
were examined in a XL30 Environmental Scanning Elec-
tron Microscope (FEI Company, Hillsboro, OR) at an
accelerating voltage from 10-15 kV under high vacuum
conditions.

Cotton fiber total RNA isolation

Cotton fibers were isolated from developing ovules using
a glass bead shearing technique to separate fibers from
the ovules [41]. Total RNA was isolated from detached
fibers using the Sigma Spectrum™ Plant Total RNA Kit
(Sigma-Aldrich, St. Louis, MO) with the optional on-
column DNasel digestion according to the manufac-
turer’s protocol. The concentration of each RNA sample
was determined using a NanoDrop 2000 spectrophot-
ometer (NanoDrop Technologies Inc., Wilmington, DE).
The RNA quality for each sample was determined by
RNA integrity number (RIN) using an Agilent
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Bioanalyzer 2100 and the RNA 6000 Nano Kit Chip
(Agilent Technologies Inc., Santa Clara, CA) with 250
ng of total RNA per sample.

Reverse transcription quantitative real-time PCR

The experimental procedures and data analysis related
to RT-qPCR were performed according to the Minimum
Information for Publication of Quantitative Real-Time
PCR Experiments (MIQE) guidelines [42]. The cDNA
synthesis reactions were performed using the iScript™
c¢DNA Synthesis Kit (Bio-Rad Laboratories, Hercules,
CA) according to the manufacturer’s instructions with 1
pg of total RNA per reaction used as template. Control
c¢DNA synthesis reactions to check for genomic DNA
contamination during RT-qPCR consisted of the same
template and components as the experimental reactions
without the reverse transcriptase enzyme. The RT-qPCR
reactions were performed with iTag™ SYBR® Green
Supermix (Bio-Rad Laboratories) in a Bio-Rad CFX96
real time PCR detection system. Thermal cycler para-
meters for RT-qPCR were as follows: 95°C 3 minutes,
50 cycles of 95°C 15 seconds, 60°C 30 seconds. A disso-
ciation curve was generated and used to validate that a
single amplicon was present for each RT-qPCR reaction.
The calculations for amplification efficiencies of the tar-
get and reference genes, RNA inhibition assays, and the
relative quantifications of the different target gene tran-
script abundances were performed using the compara-
tive Cq method as described in the ABI Guide to
Performing Relative Quantitation of Gene Expression
Using Real-Time Quantitative PCR (Applied Biosystems,
Foster City, CA) with the following modification: the
average of three reference gene C, values was deter-
mined by taking the geometric mean which was used to
calculate the ACg values for the individual target genes
[43]. The endogenous reference genes used in the RT-
qPCR reactions were the 18S rRNA (Genbank accession
U42827), ubiquitin-conjugating protein (Genebank
AI730710), and alpha-tubulin 4 (TubA4, Genbank
AF106570) [44]. The reference and target gene primer
sequences, and target gene descriptions including in
silico specificity screens using BLASTx [45] are shown
in Additional file 2.

Initial analyses of specific transcripts in fibers of Li,
mutant and WT plants were performed to determine
the most informative time-points to use for microarray
analysis. The genes selected were based on previous stu-
dies that indicated developmental regulation of these
genes during different stages of fiber development, spe-
cifically elongation and SCW biosynthesis. The elonga-
tion stage-related genes o.-expansinl (GhExpl) [46] and
Cu/Zn superoxide dismutase (GhCSD1) [47] and the
SCW-related genes cellulose synthase2 (GhCesA2) [48]
and a fB-1,3-glucanase-like gene [49] that was previously
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shown to be up-regulated in the fiber SCW stage [50]
were selected for preliminary RT-qPCR. The nucleotide
primer sequences and gene accessions are shown in
Additional file 2. The RT-qPCR reactions were per-
formed with cDNA from fibers at initiation, elongation,
and SCW thickening stages at the following time-points:
DOA, 1, 3, 5, 8, 12, 16, and 20 DPA. Three biological
replications were used for each time-point sample.

Microarray hybridizations and data analysis

The microarray experiments conducted in this study fol-
lowed the minimum information about a microarray
experiment (MIAME) guidelines [51]. The microarray
utilized was the commercially available Affymetrix Gen-
eChip® Cotton Genome Array (Affymetrix Inc., Santa
Clara, CA), that represents 21,854 transcripts gathered
from four species of cotton (G. arboreum, G. barba-
dense, G. hirsutum, and G. raimondii) and a variety of
tissue types including fibers at the initiation, elongation,
and SCW biosynthesis stages of development. For each
sample 500 ng of cotton fiber RNA was utilized for
labeling using the Affymetrix GeneChip® 3’ IVT Express
Kit and Cotton Genome Array hybridizations were per-
formed according to standardized Affymetrix protocols.
The developmental time-points from Li, mutant and
WT fibers used for microarray hybridizations were 0, 8,
and 12 DPA with two biological replicates used for each
time-point sample. Procedures for data normalization
and assessment of statistically and biologically significant
genes were performed as described by Benedito et al.
[2008][52]. The Affymetrix microarray dataset was
deposited in the ArrayExpress database with the expres-
sion number E-MEXP-3306.

To gain insight into the biological processes repre-
sented by the differentially expressed genes in the WT
and mutant Li, fibers, an over-representation analysis
(ORA) was performed on the genes that were more
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abundantly transcribed and statistically significant in
fibers of each cotton NIL at each time-point using the
program Blast2GO [53]. The Blast2GO program utilizes
a Fisher’s exact test for ORA and corrects the p-value to
control the increased false discovery rate (FDR) asso-
ciated with multiple hypotheses testing. For this experi-
ment the FDR-corrected p-value cutoff for significance
was 0.05.

Results

Confirmation of homozygosity in the mutant Li, lines
Segregation analysis of the mutant phenotype was
accomplished by visual inspection of the ovules from
each one of the 102 plants in the six mutant lines. An
example of the Li, mutant and WT fiber development
stages from the DOA to maturity are shown in Figure 1
with slight differences in fiber length evident as early as
5 DPA. Definitive confirmation of the mutant Li, phe-
notype was possible by 16 DPA and indicated that five
of the six lines were homozygous Li,Li,, while one line
was heterozygous Li,li,. The heterozygous line was
removed from the greenhouse and both the mutant and
WT population were reduced to 72 individual plants
each to achieve the randomized complete block design
of the experiment.

Morphology of mutant Li, fibers during initiation and
early elongation

SEM analyses revealed no discernable differences in the
appearances of ovules and fibers from Li, mutant and
WT (Figure 2). The WT and mutant fibers appeared to
undergo normal initiation as visualized on the DOA
with no apparent differences in the distribution or den-
sity of fiber initials on the ovule surfaces (Figure 2, C
&2I). Likewise, WT and mutant fiber morphology and
length appeared the same during the early elongation
stage of fiber development up to 5 DPA (Figure 2, D-F;

wT
(tigliz)

Mutant
(LiaLiz)

01 3 5 8 12 16 20
Days Post Anthesis

Mature

Figure 1 Comparison of Li, mutant and WT fibers and ovules during development. The differences in development of Li> mutant and WT
fibers and ovules are shown at selected time-points from DOA to 20 DPA (left panel), and at maturity following boll opening (right panel). The
scale bars in both panels are 1 cm.
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Figure 2 SEM analysis of developing Li, mutant and WT fibers and ovules. Comparison of (A - F) WT; and Li, (G - L) mutant fibers and
ovules prior to and during fiber initiation and early elongation. The developmental time-points shown are: (A, G) -3 DPA; (B, H) -1 DPA; (C, 1)
DOA; (D, J) 1 DPA; (E, K) 3 DPA; (F, L) 5 DPA. The scale bars in all panels are 200 um.

J-L). While no differences between WT and mutant
fibers were evident in the SEM (Figure 2), there does
appear to be some slight length differences at 5 DPA as
shown in Figure 1, so it can be stated that the mutant
fiber phenotype becomes evident by approximately 5
DPA. These data are consistent with comparable fiber
length measurements obtained from developing fibers of
TM-1, Li,, and F3 progeny derived from a cross of TM-
1 and Li, [28].

Preliminary RT-qPCR using genes differentially expressed
during cotton fiber development

The expression of the elongation stage-related gene
GhExpl followed a similar pattern of expression in WT
and Li, mutant fibers, with transcript abundance
decreasing at the beginning of the SCW stage from 16 -
20 DPA. However, the transcript abundance of GhExpl
was a significantly decreased (2.24-fold) in Li, mutant
fibers compared to WT fibers during the presumed
peak of fiber elongation at 8 DPA. The transcript abun-
dance of the second elongation stage-related gene,
GhCSD1, followed the previously shown pattern of
expression during fiber development with transcript
abundance higher during fiber elongation compared to
the SCW biosynthesis stage [47]. In fibers of the Li,
mutant, the expression levels of GECSD1 remained

significantly lower compared to WT fibers during elon-
gation stage time-points (5 - 12 DPA) and remained at
a seemingly basal level of expression with no change in
transcript abundance in mutant fibers over time-points
normally associated with elongation and SCW biosynth-
esis from 5 - 20 DPA (Figure 3A).

The SCW-related genes GhCesA2 and B-1,3-gluca-
nase-like followed the expected expression profiles in
WT and Li, mutant fibers with up-regulation occurring
concurrent with onset of the transition stage from 12 -
16 DPA and SCW biosynthesis 16 - 20 DPA (Figure
3B). While the pattern of expression for the SCW-
related genes was the same in WT and Li, mutant
fibers, the transcript abundance of both genes was sig-
nificantly higher in the WT fibers at 16 and 20 DPA for
GhCesA2 (3.31- and 4.62-fold, respectively) and 20 DPA
for the B-1,3-glucanase-like gene (6.64-fold) as shown in
Figure 3B.

Microarray gene expression analysis

The initial RT-qPCR analysis indicated significantly dif-
ferent expression levels of the elongation stage-related
genes GhExpl and GhCSDI1 during time-points asso-
ciated with the elongation stage of fiber development
(Figure 3A). Since there were no apparent morphologi-
cal differences between WT and Li, mutant fibers
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Figure 3 Preliminary RT-qPCR analysis on developing Li, mutant and WT fibers. Genes more abundantly transcribed during the fiber
elongation stage in normal WT tetraploid cotton fibers: (A) G. hirsutum a-expansin1 (GhExp1) and G. hirsutum Cu/Zn superoxide dismutase]
(GhCSD1). Genes more abundantly transcribed during the fiber SCW stage in normal WT tetraploid cotton fibers: (B) G. hirsutum cellulose
synthase2 (GhCesA2) and G. hirsutum B-1, 3-glucanase-like gene. Genbank accession numbers are shown in parentheses on the graph titles for
each gene. The DPA time-points that revealed a significant (> 2-fold; p-value < 0.05) difference in transcript abundance are indicated by an
asterisk and the fold-change in transcript abundance is shown on the graphs above each indicated time-point. Error bars indicate the standard

during initiation or early elongation (Figure 2), this
microarray study focused primarily on time-points
related to fiber elongation, more specifically, 8 and 12
DPA. These time points typically represent peak rates of
elongation and the beginning of the transition stage
when fibers are still elongating at lower rates. An addi-
tional time-point, DOA, was added to the microarray
experiment to serve as a reference and also to confirm
that there were no significant differences in fiber initia-
tion at the gene expression level. Global gene expression
analysis by microarray revealed a significant number of
differentially expressed genes in fibers of the mutant

and WT NILs at 8 and 12 DPA. At 8 and 12 DPA,
there were 1079 and 1106 genes, respectively, more
abundantly transcribed (> 2-fold; < Bonferroni-corrected
p-value threshold 2.07194E-06) in fibers of the WT NIL
compared to the mutant fibers. In fibers of the Li,
mutant NIL 1064 and 1473 genes were significantly and
more abundantly transcribed at 8 and 12 DPA, respec-
tively, compared to WT fibers. Far fewer genes were dif-
ferentially expressed in fibers of the WT and mutant
lines in the DOA time-point with 17 genes more abun-
dantly transcribed in WT fibers and 141 genes more
abundantly transcribed in mutant fibers.
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On the DOA, there were no significantly enriched bio-
logical processes represented by the differentially
expressed genes in WT or mutant fibers. This result
corresponded with the lack of any observable differences
in fiber morphology between WT and mutant Li, fibers
during initiation and early elongation. In 8 DPA fibers
of the WT line, over-represented biological processes
included, among others, receptor activity, signaling,
cytoskeleton, and cell growth, while genes more abun-
dantly transcribed at 8 DPA in mutant Li, fibers were
enriched in stress and stimulus responses. The genes
involved in signaling, cell growth, and cytoskeleton bio-
logical processes at 8 DPA in the WT fibers included
genes whose products are known to regulate cell elonga-
tion and expansion in Arabidopsis thaliana. Among
these were genes known to encode protein kinases that
regulate cell elongation in A. thaliana through brassi-
nosteroid (BR) signaling pathways such as orthologues
of BRASSINOSTEROID INSENSITIVEL (BRI1), and
HERCULES1 (HERK1) and HERCULES2 (HERK2).
Some of the genes that encode proteins with the poten-
tial to alter or regulate cell elongation are shown in
Table 1 along with the functionally characterized pheno-
types resulting from inhibition or over-expression in A.
thaliana. Genes of interest with higher transcript abun-
dance in Li, mutant fibers compared to WT fibers at 8
and 12 DPA, particularly those related to stress and sti-
mulus responses, involved phytohormone signaling
pathways for ethylene and cytokinin biosynthesis and
regulation of phytohormone homeostasis. The potential
implications of genes and biological processes over-
represented in WT and Li, mutant fibers during elonga-
tion are discussed later and summarized in Table 1. The
complete results of the ORA analysis are presented in
Additional file 3 which includes the individual microar-
ray probeset IDs for the over-represented biological pro-
cesses for each cotton NIL and time-point.

Corroboration of the microarray data

A total of twelve genes were selected for corroboration
of the microarray data, in addition to the cotton Cu/Zn
superoxide dismutase (GZCSDI) gene that was utilized
for preliminary RT-qPCR data to select fiber develop-
mental time-points for microarray analysis (Figure 3).
Of the four genes selected for the preliminary RT-qPCR,
only the GhZCSD1 gene is accurately represented in the
Affymetrix microarray data with the probeset ID
Ghi.2036.1.S1_s_at (Table 2, Additional file 2). The
GhCesA2 gene shares 100% homology with the probe-
sets nucleotide sequence, but is below the limit of detec-
tion during the initiation and elongation stages selected
for microarray analysis. The GhExpl and f3-1,3-gluca-
nase-like genes used to design primers for RT-qPCR
(Additional file 2) do not share enough homology with
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the Affymetrix nucleotide sequences in the regions cor-
responding to the probsets to allow for accurate com-
parison of transcript abundance between microarray and
RT-qPCR.

The genes selected for microarray corroboration by
RT-qPCR were chosen primarily from differentially
expressed genes (= 2-fold; < Bonferroni-corrected p-
value threshold 2.07194E-06) in WT and mutant fibers
at 8 and 12 DPA. Some selected genes were more abun-
dantly expressed at 8 and/or 12 DPA in WT fibers,
while others were more abundantly expressed in mutant
fibers at the same time-points. These genes encode reg-
ulatory elements such as transcription factors including
the G. hirsutum fiber initiation-related MYB transcrip-
tion factor GhMYB109; gene products involved in car-
bohydrate metabolism such as beta-galactosidase,
glycosyltransferases; and a cellulose-synthase-like cell
wall-related protein. Genes that were not differentially
expressed during elongation time-points were also
selected to confirm the validity of the microarray data.
These included genes encoding a R2R3-MYB transcrip-
tion factor (probeset ID Ghi.9209.1.S1_at) and sucrose
synthase (probeset ID Ghi.8665.1.S1_s_at). The microar-
ray data were successfully corroborated for most time-
points with the exception of the SANT/MYB transcrip-
tion factor gene (probeset ID Ghi.1711.1.S1_s_at) at 8
DPA. The complete results of the microarray data and
the corresponding RT-qPCR data for all twelve genes
and the GhCSDI gene are summarized in Table 2 and
Additional file 4.

Fine mapping the Li, locus region with codominant SSR
markers

Of the 86 SSR markers screened, 6 (6.97%) were poly-
morphic between two DNA bulks from Li, mutant and
WT plants. Except for the marker TMB2295 that had 5
recombinations with the Li, trait when the 20 indivi-
duals comprising the bulks were tested, the markers
CIR216, DC30513, DPL0547, DPL0922, and MUSB1135
co-segregated with the Li, trait. These 5 markers were
further evaluated in the whole F, population. A map
was constructed around the Li, region (Figure 4). The
Li, locus was flanked by markers DPL0547 and
DPL0922 at genetic distances of 0.87 ¢cM and 0.52 cM,
respectively.

Identification of an EST-SSR marker with complete linkage
to the Li, locus

In an effort of using gene expression data to identify
candidate molecular markers for association mapping of
the Li, gene, we conducted a BLAST search [54] of the
Cotton Marker Database (CMD) (http://www.cotton-
marker.org) using consensus sequences and singletons
representing differentially expressed genes from the
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Table 1 Heterologous functions of genes differentially expressed in Li,WT and mutant fibers during elongation

Gene more abundantly expressed in Li, WT fibers compared to mutant fibers

Microarray Sequence Desciption and Locus Tag Genbank  Mutant Phenotype Reference
Probesets ID
Ghi.3835.251_s_at A. thaliana TRH1 (TINY ROOT HAIR 1). Functions NP_194095  T-DNA insertion. Initiation sites for root hair [68]
as a potassium transporter and is required for growth are formed at trichoblasts but tip
the establishment of root tip growth. growth does not occur.
AT4G23640.
Ghi8115.1.51_s_at  G. hirsutum transcription factor GhMYB109. Fiber- AY366352 Antisense suppression. Transgenic plants have [75,76]
specific R2R3 MYB transcription factor highly impaired fiber initials that are smaller and
expressed during elongation. shrunken compared to WT. Fiber elongation is
inhibited in the transgenic plants. Mature fibers
of transgenic plants have a short-fiber
phenotype compared to WT with an ~33%
reduction in fiber length.
Ghi.8448.1.51_x_at  G. hirsutum Beta tubulin1 (BTub1): family of AF521240 Over-expression phenotype. Inducible expression [77]
small, globular proteins that form microtubules. in fission yeast resulted in longitudinal cell
Active component of the cytoskeleton. growth compared to un-induced cell and empty
expression vector controls.
GhiAffx.24518.1. A. thaliana BRASSINOSTEROID INSENSITIVE 1 NP_195650  EMS mutagenesis; T-DNA insertion. Short plant [72,86,87]
S1_s_at (BRIN): Encodes a plasma membrane localized stature and small, dark green leaves. Shortened
leucine-rich repeat receptor kinase involved in length of stem and pedicel epidermal cells.
brassinosteroid signal transduction. AT4G39400. Reduced fertility. Reduced apical dominance. De-
etiolation of dark-grown seedlings. Allelic bri1
mutants can be divided into severe,
intermediate, and weak phenotypes.
GhiAffx.36984.1. A. thaliana HERCULEST (HERK1), a receptor kinase QILX66 T-DNA insertion. Similar to WT in the herk1 [66]
S1_s_at regulated by Brassinosteroids and required for mutant. In the herkl thel double mutant,
cell elongation during vegetative growth. petioles are reduced in length by half and
Functions redundantly with THESEUST (THET). petiole cells are shortened. Over-expression of
AT3G46290. HERK1 increased petiole length by 15-20%.
GhiAffx47644.1. A. thaliana HERCULES2 (HERK2), a receptor kinase ~ NP_174345  T-DNA insertion. Similar to WT in the herk2 [67]
S1_at regulated by Brassinosteroids and required for mutant. In the herk1 herk2 thel triple mutant,
cell elongation during vegetative growth. petioles are further reduced in length compared
Functions redundantly with HERCULEST (HERKT) to the herkl thel double mutant.
and THESEUST (THE1). AT1G30570.
GhiAffx.62092.1. A thaliana XIK: Member of the type XI myosin NP_001154724 T-DNA insertion. Normal root growth but root [69]
S1_at protein family. Involved in root hair growth, hairs are reduced in length by 50%. Leaf and
trichome development, and organelle trafficking. stem trichomes have size and shape
AT5G20490. irregularities.
GhiAffx.6933.1. A. thaliana CROOKED (CRK): Belongs to the DIS NP_567216  EMS mutagenesis. Shortened leaf trichomes and  [70]
Al_at (distorted) gene family. Encodes an actin trichome branches. Reduced polarized expansion
polymerization factor. Part of the Arpc2/3 protein of hypocotyls. Cells of expanding hypocotyls are
complex as ARPCS. Involved in cell expansion of shorter.
trichomes. AT4G01710.
Gra.2039.1.51_s_at  A. thaliana COBRA (COB): NP_568930  EMS mutagenesis; x-ray mutagenesis; T-DNA [71,88]
Glycosylphosphatidylinositol (GPl)-anchored insertion. Increased root diameter and short
protein localized primarily in the plasma roots due to increased width and reduced
membrane of the longitudinal sides of root cells. length of cells. Reduced root cell division rate
Necessary for oriented cell expansion in and change in the orientation of root expansion.
Arabidopsis. AT5G60920.
Gene more abundantly expressed in Li, mutant fibers compared to WT fibers
Microarray Sequence Description and Locus Tag Genbank Mutant Phenotype Reference
Probesets ID
Ghi.7529.1. A. thaliana AHP1 (HISTIDINE-CONTAINING NP_188788  T-DNA insertion. Loss of root elongation [80]
Al_s_at; PHOSPHOTRANSMITTER 1): AHPs function as sensitivity in response to exogenous application
Ghi7529.1.51_s_at; redundant positive regulators of cytokinin of cytokinin.
Gra511.1.A1_s_at  signaling. AT3G21510.
GhiAffx.12783.1. A. thaliana homeobox protein HAT22: member NP_195493  Mutant phenotype not described. Up-regulated  [81]

S1_s_at

of the HD-Zip Il family of transcription factors.
AT4G37790.

in response to exogenous cytokinin application
in A. thaliana WT and cytokinin-deficient mutant
plants
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Table 1 Heterologous functions of genes differentially expressed in Li;WT and mutant fibers during elongation

(Continued)

Ghi.3235.1.A1_at A thaliana UDP-glucosyl transferase 73C2
(UGT73C2): Involved in cytokinin N-glucosylation.
Along with UGT73C1, glucosylates all cytokinins

at the N7 and N9 positions. AT2G36760.

A. thaliana UDP-glycosyltransferase 73C5
(UGT73C5)/DON-GLUCOSYLTRANSFERASE 1
(DOGT1): Glucosylates brassinolide and
castasterone in the 23-O position. Presumably
involved in the homeostasis of those steroid
hormones and regulation of BR activity. Also
shown to glucosylate the OH group on the Né-
side chain of the cytokinins trans-zeatin and
dihydrozeatin. AT2G36800.

A. thaliana SUPPRESSOR OF BIR1 (SOBIRT):
Encodes a leucine rich repeat transmembrane
protein that is a receptor-like kinase (RLK).
SOBIR1 is suggested to be a critical positive
regulator of cell death. AT2G31880.

Ghi9236.151_at

Ghi4551.1.51_at

DT463078

DT463077

Q9SKB2

Over-expression phenotype. Plants constitutively — [82]
over-expressing UGT73C1 were generated, but
no phenotype was reported.

Over-expression phenotype. Plants over-
expressing UGT73C5/DOGT1 displayed typical
BR-deficient dwarf phenotypes such as reduced
hypocotyl elongation, and contained reduced
levels of BRs.

[82,83]

Over-expression phenotype. Constitutive over- [89]
expression of sobirl results in activation of cell
death.

microarray data. The search criteria were set at a strin-
gent level (e-value > E-50) in order to select sequences
with a relatively high sequence alignment length and
homology to the microarray query sequences. Query
sequences included genes more abundantly expressed (>
2-fold) in fibers of both mutant and WT cottons at 8
and 12 DPA. The numbers of query sequences from
WT fibers were 1031 and the numbers of query
sequences from mutant fibers were 982. A total of 692
SSR markers were identified based on sequence homol-
ogy between the microarray query nucleotide sequences
and the SSR source nucleotide sequences. Of these 692
SSR markers, 179 were previously mapped by different
research groups [31,33-35,55], and 14 of them were
mapped on chromosome 18 or 13. Except markers
DPL0249 and TMB1767 that were developed from

genomic DNA libraries, the other 12 were EST-SSRs
(http://www.cottonmarker.org). We analyzed these 14
SSR markers in the F, population, and only one
(NAU3991) segregated among progeny plants. The mar-
ker NAU3991 was developed from G. raimondii EST
[31] and displayed complete linkage to the Li, genetic
locus in our intraspecific F, population composed of
136 individuals (Figure 4). The Blastx hits for the full-
length ¢cDNA with highest similarity in the NCBI non-
redundant database included a putative transcription
factor isolated from Ricinus communis; plectin-related
proteins from A. thaliana and Vitis vinifera; and
unknown proteins from Populus trichocarpa and Glycine
max. The full-length predicted protein sequences are
highly conserved among cotton and the other plant spe-
cies for all of the above mentioned protein sequences.

Table 2 Expression ratios and statistical significances from the microarray and RT-qPCR data

Microarray

Probesets ID Blastx Sequence Description

DOA (WT/Mutant) 8 DPA (WT/Mutant) 12 DPA (WT/Mutant)

Microarray RT-qPCR Microarray RT-qPCR Microarray RT-qPCR

Ghi.2036.1.51_s_at  Cu/Zn superoxide dismutase (GhCSD1)
Ghil1711.1.51_s_at  Putative SANT/MYB Transcription Factor
Ghi.3235.1.A1_at Putative UDP-glycosyltransferase (UGT73C2)
Ghi4377.1.A1_at Glycuronosyltransferase-like protein
Ghi6551.1.51_at BZIP domain class transcription factor
Ghi.7279.1.51_at Putative ABC transporter
Ghi.7450.1.51_s_at  ECERIFERUM 3 (CER3)

Ghi.7724.1.51_at Cellulose-synthase-like C5 (AtCSLCS5)
Ghi8115.1.51_s_at  Transcription factor GhMYB109
Ghi8665.1.51_s_at  Sucrose synthase

Ghi9209.1.51_at Putative R2R3-Myb transcription factor
Ghi.9236.151_at Putative UDP-glycosyltransferase (UGT73C5/DOGT1)
Gra.2056.1.A1_s_at Beta-galactosidase

1.48* 180* 2.52* 5.22* 1.78* 4.72*
0.80% 051 0.19* 065 0.16* 0.34*
0.72* 053 0.03*  0.0077*  023*  0.033*
0.78* 067 3.83* 7.85* 120* 2.67*
0.72% 057 1.90* 2.59* 2.94* 1.84*
143% 122% 3.82* 6.86* 6.03* 5.44*
0.79* 081 2.31% 2.35* 3.17* 1.64*
0.98* 067 2.44% 5.96* 4.37* 3.97*
097" 071" 2.02% 3457 7.80% 4.67%
117 105 0.72 053 111 0.64
094 130 027 0.60 053 1.00
0.92 0.25* 0.08*  0.0035* 0.55 0.0083*
041* 0.13 39.90*  101.53*  41.57*  38.62*

* Microarray data: significant at the Bonferroni-corrected 0.05 probability level; RT-qPCR data: significant at the 0.05 probability
level as determined by two-tailed paired t-test for means. Microarray and RT-qPCR data significant at > 2-fold difference in transcript abundance are shown in

boldface and underlined.


http://www.cottonmarker.org
http://www.ncbi.nlm.nih.gov/pubmed/463078?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/463077?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/92?dopt=Abstract

Hinchliffe et al. BMC Genomics 2011, 12:445
http://www.biomedcentral.com/1471-2164/12/445

Li, Region
Chr18

0.00 DPL0547

0.87 NAU3991 Li,

1.39 DPL0922

1.53 MUSB1135
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243 CIR216
Figure 4 Genetic linkage map of the Li, locus on chromosome
18 of G. hirsutum. The linkage map indicates SSR markers flanking
a 243 cM region of the Li, locus. The EST-SSR marker NAU3991 with
complete linkage to the Li, locus is indicated on the map by Li.

The NCBI conserved domain database (CDD) [56] indi-
cated a putative DNA binding domain present in the
predicted protein sequence.

The microarray probeset that led to the discovery of
the linkage between NAU3991 and Li, locus,
Ghi.8501.1.A1_at was represented as TC276355 in the
Dana-Farber Cancer Institute Cotton Gene Index
(DECI) 11.0 database http://compbio.dfci.harvard.edu/
tgi/. The RT-qPCR primers used to corroborate the
microarray data for probeset Ghi.8501.1.A1 at was
designed from TC276355 (Additional file 2). The
expression profile of TC276355 matched the microarray
data for probesets Ghi.8501.1.A1_at and indicated that
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the gene was up-regulated in WT fibers during the fiber
elongation and transition stages (8 - 16 DPA) with sig-
nificantly higher transcript abundance in WT fibers
compared to mutant fibers at 8 and 12 DPA (Figure 5).

Discussion

Naturally occurring cotton fiber mutations present an
excellent opportunity to study the molecular events con-
trolling fiber development. When a monogenic fiber
mutation in the homozygous state is coupled with its
homozygous WT counterpart, especially as NILs, an
ideal model system is created for a comparative study of
fiber development. Here we have presented such a
model system in the Li, short-fiber mutation as an
advanced (BCs) NIL in the G. hirsutum DP5690 back-
ground. In addition to the Li, short-fiber mutant pheno-
type being caused by a single dominant allele, no
pleiotropic effects are observed in the development,
morphology, or fecundity of mutant cotton plants as
either homozygotes or heterozygotes. Also, no pleiotro-
pic effects of the Li, mutation are observed in mutant
fiber development before the elongation stage. In this
regard, the Li, mutant is useful to study molecular
events specific to and controlling fiber elongation.

It was previously demonstrated that the fibers of
another dominant, monogenic short-fiber mutation
similar to Li,, designated Li;, have a thicker SCW than
WT fibers and Li, mutant fibers. This was demonstrated
by measuring the ratio of fiber weight-to-length to infer
the degree of SCW thickening in fibers of Li;, Li,, TM-
1, and normal homozygous recessive Li, segregates (F3)
from a cross between Li, and TM-1 [28]. The thickened
SCW of Li; fibers was further confirmed in another
study that measured the incorporation of [**C] glucose
in the SCW and indicated a five-fold increase in crystal-
line cellulose synthesis per millimeter of fiber in the Li;
mutant compared to WT fibers [57]. This suggests that
the pleiotropic effect of the short lint fiber Li; mutation
also affects multiple stages of fiber development, while
the Li, mutation remains specific to fiber length. It was
also speculated that the thickened SCW walls of Li;
fibers may be due to increased SCW cellulose synthase
activity or an increased density of cellulose synthase
subunits per unit length of fiber causing an increase in
cellulose deposition in the SCW [57]. The later specula-
tion would likely result in an increase in the transcript
abundances of SCW CesA genes such as GhCesA2 in Li,
mutant fibers compared to WT fibers during the SCW
stage. A recent comparative gene expression study on
the SCW stage of Li; mutant and WT TM-1 fibers
would have provided insight into this theory, however
the SCW CesA genes were not discussed and the micro-
array dataset was not made publically available [12]. The
authors did report 8.8-fold higher transcript levels of a
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Figure 5 Microarray and RT-gPCR gene expression profiles of
the G. hirsutum gene harboring the NAU3991 EST-SSR marker.
The cotton gene with the NAU3991 EST-SSR marker is designated
“putative plectin-related protein” based on sequence similarity to a
putative A. thaliana orthologue. (A) The transcript abundance of the
gene in Li, mutant and WT fibers as determined by microarray.
Relative expression represents signal intensity of probesets. Error
bars indicate standard deviation from 2 biological replicates. The
DPA time-points that revealed a significant (= 2-fold; < Bonferroni-
corrected p-value threshold 2.07194E-06) are indicated by an
asterisk and the fold-change in transcript abundance is shown on
the graph above each indicated time-point. (B) The transcript
abundance of the gene in Li, mutant and WT fibers as determined
by RT-gPCR. Error bars indicate standard deviation from 3 biological
replicates. The gene is represented by the indicated TC in the
Cotton Gene Index 11.0 database (http://compbio.dfci.harvard.edu/
tgi/). The DPA time-points that revealed a significant (= 2-fold; p-
value < 0.05) difference in transcript abundance are indicated by an
asterisk and the fold-change in transcript abundance is shown on
the graphs above each indicated time-point.
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sucrose synthase (SuSy) gene (Genbank accession
U73588) in Li; mutant fibers compared to WT TM-1
fibers that could support the observed increased cellu-
lose deposition in the SCW of Li; mutant fibers [12,57].
Our RT-qPCR data for the SCW-related genes GhCesA2
and B-1,3-glucanase-like indicated significantly higher
levels of expression at the beginning of SCW synthesis
in WT fiber compared to Li, mutant fibers (Figure 3B).
This would be the converse of the Li; fibers if the den-
sity of CesA subunits per unit length of fiber were
higher in Li; mutant fibers compared to WT fibers and
supports the fiber elongation-specific, non-pleiotropic
nature of the Li, mutation. The SuSy gene that was
selected as a non-differentially expressed gene for
microarray corroboration also supports this hypothesis
(Table 2; Additional file 4). The RT-qPCR on all devel-
opmental time-points in our study using primers speci-
fic for the G. hirsutum SuSy gene (Genbank accession
U73588) matched the GhCesA2 expression at 20 DPA
(Figure 3B) with statistically significant 2.54-fold higher
SuSy transcript abundance in WT fibers compared to
mutant fibers (Additional file 4).

The significantly higher expression levels of the
GhCSD1 gene in WT fibers compared to mutant fibers
coincided well with a previously postulated model that
suggested a role for the modulation of ROS in fiber cell
elongation. The model suggested that short fiber cotton
species such as the diploid G. longicalyx are unable to
regulate ROS accumulation during elongation, leading
to stress conditions, an increase in the expression of
stress-related genes, and a decrease in the rate of fiber
cell elongation [58]. Comparison of the fiber gene
expression profiles of G. longicalyx and diploid G. arbor-
eum during elongation (5 DPA) revealed over-represen-
tation of biological processes involved in response to
stress, presumably due to over-accumulation of ROS, in
the shorter fibers of G. longicalyx. Results indicating the
same differences in ROS homeostasis were obtained by
the same research laboratory in two more microarray
gene expression studies that compared short and long
fiber cotton species during elongation [59,60]. A similar
over-representation of stress response-related genes
(GO:0006950) was observed in Li, mutant fibers com-
pared to WT fibers at 8 DPA in our study, including
genes responsive to oxidative stress and involved in
ROS homeostasis (Additional file 3). A total of 105
genes were included in the over-representation of stress
responses in Li, mutant fibers at 8 DPA and included
ROS-related genes such as an NADPH-dependent aldo-
keto reductase (AKR) with high similarity to the A.
thaliana AKR4C9 protein involved in the reduction of
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reactive o,f-unsaturated carbonyls produced through
lipid peroxidation [61]; an alternative oxidase highly
similar to the stress-responsive A. thaliana ALTERNA-
TIVE OXIDASE 1A (AOX1A); a G. hirsutum ascorbate
peroxidase (GhAPX1) involved in H,O, homeostasis
[62]; a G. hirsutum class III peroxidase (GhPOX1) sug-
gested to play a role in ROS production [63]; a tran-
scription factor highly similar to the A. thaliana
MULTIPROTEIN BRIDGING FACTOR 1C (AtMBF1C)
that is over-expressed in response to multiple stimuli
including elevated H,O, levels [64]; and several putative
APETELA?2 (AP2)-domain transcription factors that are
also up-regulated in transgenic A. thaliana over-expres-
sing AtMBFIC [65]. Given that some of these gene pro-
ducts are involved in the production of ROS required
for normal fiber cell elongation, while others are
involved in the reduction oxidative stress and repair of
oxidative damage, it is possible that the mechanisms of
ROS modulation and homeostasis are compromised in
Li, mutant fibers.

Numerous genes involved in biological processes such
as cell expansion and elongation that are up-regulated
in the WT fibers compared to mutant fibers during the
time-points coinciding with peak rates of fiber elonga-
tion. Genes that were more abundantly transcribed (> 2-
fold) and statistically significant in either Li, mutant or
WT fibers during elongation were closely examined to
discern the possible effects of their up- or down-regula-
tion based on functional analysis in cotton and heterolo-
gous systems. Some examples of these genes with high
similarity to their A. thaliana orthologues are briefly
discussed. Detailed descriptions of these genes are also
shown in Table 1. The A. thaliana knockout mutants
for many of these genes developed by either T-DNA
insertion, ethyl methanesulfonate (EMS) mutagenesis, or
x-ray mutagenesis suggest roles in cell expansion and
elongation. Some examples of the genes more abun-
dantly transcribed in WT fibers during elongation
included putative A. thaliana orthologues that when
silenced by mutagenesis caused shortened petiole cells
in herkl theseusl (thel) double mutants [66] and herkl
herk2 thel triple mutants [67]; inhibition of root hair tip
growth in mutants for the potassium transporter TINY
ROOT HAIR 1 (TRH1) [68]; a 50% reduction in root
hair length in mutants for a type XI myosin protein,
XIK [69]; shortened leaf trichomes, reduced polarized
expansion of hypocotyls, and shorter hypocotyl cells in
mutants for the actin polymerization factor CROOKED
(ARPC5) [70]; reduced length of root cells in mutants
for the glycosylphosphatidylinositol (GPI)-anchored pro-
tein COBRA [71]; and reduced cell sizes resulting in
dwarfism in the mutant brassinosteroid insensitive 1
(bril) [72]. The functionality of a cotton orthologue of
BRI1 was previously demonstrated by complementation
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to rescue the WT phenotype of an A. thaliana bril
mutant. Furthermore, chemical inhibition of a BR
mediated response was demonstrated to inhibit fiber
initiation and elongation in in vitro cotton ovule cul-
tures and in planta [73,74]. Two more G. hirsutum
genes encoded the transcription factor GhMYB109 and
the microtubule protein Beta tubulinl (GhTubl) more
abundantly in WT fibers compared to mutant fibers.
Antisense suppression of GEMYBI09 in transgenic cot-
ton caused smaller and shrunken fibers initials and inhi-
bition of fiber elongation resulting in a short-fiber
phenotype [75,76]. The GhTubl gene was transcribed
46-fold and 7-fold higher in WT fibers at 8 and 12
DPA, respectively, and resulted in longitudinal cell
growth when over-expressed in fission yeast cells under
the control of an inducible promoter [77].

It is well-documented that increased levels of natural
and/or synthetic cytokinins inhibit cotton fiber cell elon-
gation in the in vitro cotton ovule culture system
[78,79]. Genes that were more abundantly transcribed in
Li, mutant fibers compared to WT fibers encode pro-
teins that are involved in cytokinin signaling and
included putative orthologues of the A. thaliana HISTI-
DINE-CONTAINING PHOSPHOTRANSMITTER 1
(AtAHP1) that functions as a positive regulator of cyto-
kinin signaling [80]; the A. thaliana homeobox domain
transcription factor HAT22 that is up-regulated in
response to exogenous application of cytokinins [81];
and orthologues of the A. thaliana UDP-glycosyltrans-
ferases UGT73C2 and UGT73C5/DON-GLUCOSYL-
TRANSFERASE 1 (AtDOGT1), glycosylate cytokinins
which are implicated in cytokinin homeostasis [82].
Over-expression of UGT73C5/DOGT1 in transgenic A.
thaliana results in a dwarf phenotype with reduced
elongation of hypocotyls similar to BR-deficient mutants
[83]. Increased cytokinin levels as determined indirectly
by enzyme-linked immunosorbent assay measurements
were previously reported in the ovules and fibers of four
cotton fiber mutants compared to WT [84]. This study
included Ligon lintless cotton, but did not specify Li; or
Li,. While immunoassays that measure plant hormone
are generally semi-quantitative, the results do coincide
with our gene expression results and suggest a possible
role for cytokinin signaling and homeostasis in the Li,
mutant phenotype (Table 1). Any one of these genes or
gene families could plausibly explain the Li, short-fiber
phenotype based on extensive functional characteriza-
tion in cotton and heterologous systems such as A.
thaliana. However, the fact that Li, is a monogenic
dominant trait suggests that the differential expression
of these genes in Li, mutant and WT fibers are down-
stream effects of a defect in a regulatory element con-
trolling fiber development, specifically elongation in the
case of the Li, mutation.
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Little information is available regarding the cotton
gene harboring the NAU3991 EST-SSR marker with
complete linkage to the Li, locus. The function of this
gene in plants is speculative and could be structural or
regulatory in nature based on the putative DNA binding
motif and homology to the mammalian plectin protein
that acts as a microfilament crosslinker in mammalian
systems [85]. Presently, no functional information is
available for this gene in any plant species and no phe-
notypes listed for mutants of A. thaliana or other plant
species.

One of the major limitations of a gene expression ana-
lysis study is the lack of empirical evidence for function-
ality of any of the identified candidate genes that may
cause an aberrant phenotype or enhance a trait of inter-
est. This leads to a great deal of speculation as we have
done here and in other cotton gene expression studies.
This is especially true for a quantitative trait such as
cotton fiber quality. The main goal of this gene expres-
sion study focused on practical concerns such as con-
version of gene expression data into quantifiable,
portable, and useable systems such as molecular mar-
kers. In regards to the regulation of a complex and
multi-tiered event such as cotton fiber development by
a single dominant gene, it should be expected that many
downstream events from the developmental point of
global regulation will be dramatically altered resulting in
a high false discovery rate of candidate genes that truly
are differentially expressed between, for example,
mutant and WT fibers, but may be acting synergistically
to cause the mutant phenotype. Since Li, is a mono-
genic dominant trait, it is possible that not one of these
genes alone is the actual mutant allele causing the phe-
notype. The discovery of an EST-SSR marker based on
gene expression data and with complete linkage to the
Li, locus presents a novel approach for data mining a
genetic marker database. Presently, we are cloning the
full-length ¢DNAs and genomic DNAs for the
NAU3991 marker gene from the Li, mutant and WT
plants and have begun screening a G. hirsutum bacterial
artificial chromosome (BAC) library. Identification of
BAC clones containing the NAU3991 marker gene(s)
will allow analysis of the genomic regions flanking the
Li, locus and facilitate functional analysis of the Li,
gene in transgenic cotton.

Conclusion

The cotton short fiber mutation Ligon lintless-2 (Li,)
appears specific to the elongation stage of fiber develop-
ment with no apparent morphological differences
between WT and mutant fibers until approximately 5
DPA. Comparative microarray gene expression profiling
identified genes differentially expressed between WT
and mutant fibers and suggested a role for ROS and
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cytokinin regulation that could result in the short fiber
phenotype observed in the Li, mutant fibers. The micro-
array gene expression data was successfully converted
into an EST-derived SSR marker, NAU3991, which dis-
played complete linkage to the Li, locus on chromo-
some 18. The complete linkage suggested that the gene
harboring the NAU3991, or another unknown gene clo-
sely linked to the EST-SSR marker, may be the Li, gene.
The function of the gene harboring the NAU3991 mar-
ker is unknown in plant species, but shares homology
with a gene encoding a plectin protein that acts as a
microfilament crosslinker in mammalian systems.

Additional material

Additional file 1: Pedigree of the Li, mutant and WT NiLs. The NILs
utilized in this study were in the G. hirsutum cv. DP5690 genetic
background and in the BCs generation.

Additional file 2: Primer pair sequences designed for marker
analysis and RT-qPCR. The forward and reverse nucleotide primer
sequences are shown along with the microarray probesets IDs, BLASTx
sequence descriptions, and relevant accession numbers.

Additional file 3: Over-representation analysis (ORA) of genes
differentially expressed in Li, WT and mutant fibers > 2-fold. The
original p-values for the ORA are shown along with the FDR-corrected
and FWER-corrected p-values. The statistical significance cutoff for the
ORA was an FDR-corrected p-value of 0.05. The TestSeqs are the
microarray probesets IDs over-represented for the indicated biological
process.

Additional file 4: Corroboration of the microarray gene expression
data by RT-qPCR on Li, mutant and WT fibers. Gene expression
profiles of twelve genes selected to verify the microarray gene
expression data. Affymetrix probeset IDs and predicted gene products
are shown on the graph titles for each gene. The DPA time-points that
revealed a significant (= 2-fold; p-value < 0.05) difference in transcript
abundance are indicated by an asterisk and the fold-change in transcript
abundance is shown on the graphs above each indicated time-point.
Error bars indicate standard deviation from 3 biological replicates.
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