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Abstract

Background: The new field of metagenomics studies microorganism communities by culture-independent
sequencing. With the advances in next-generation sequencing techniques, researchers are facing tremendous
challenges in metagenomic data analysis due to huge quantity and high complexity of sequence data. Analyzing
large datasets is extremely time-consuming; also metagenomic annotation involves a wide range of computational
tools, which are difficult to be installed and maintained by common users. The tools provided by the few available
web servers are also limited and have various constraints such as login requirement, long waiting time, inability to
configure pipelines etc.

Results: We developed WebMGA, a customizable web server for fast metagenomic analysis. WebMGA includes
over 20 commonly used tools such as ORF calling, sequence clustering, quality control of raw reads, removal of
sequencing artifacts and contaminations, taxonomic analysis, functional annotation etc. WebMGA provides users
with rapid metagenomic data analysis using fast and effective tools, which have been implemented to run in
parallel on our local computer cluster. Users can access WebMGA through web browsers or programming scripts
to perform individual analysis or to configure and run customized pipelines. WebMGA is freely available at http://
weizhongli-lab.org/metagenomic-analysis.

Conclusions: WebMGA offers to researchers many fast and unique tools and great flexibility for complex
metagenomic data analysis.

Background
Metagenomics is a new field that studies the environ-
mental microorganism populations using culture-inde-
pendent sequencing technologies. It provides
revolutionary and unprecedented view of the identities,
dynamics and functions of microbial communities in
various environments such as marine [1], human gut [2]
and many others [3-5].
The recent advances in next-generation sequencing

technologies [6] such as 454, Illumina, SOLiD and Heli-
Scope significantly promoted the development of meta-
genomics by offering low-cost and ultra-high
throughput sequencing. Huge amounts of available
metagenomic sequence data create tremendous chal-
lenges in data analysis. Some challenges are computa-
tional and result from the huge quantity of sequence
data. It can easily consume 104~5 CPU hours to query a

regular 454 sample with 106 reads against NCBI’s non-
redundant (NR) database using BLAST [7]. Other chal-
lenges are due to the high complexity of metagenomic
sequence data: (a) a sample may contain hundreds or
thousands of species at dramatically different abundance
levels; (b) many species are unknown; (c) next-genera-
tion sequencers produce shorter reads with higher error
rate compared to Sanger sequencers; and (d) sequence
data contain other experimental bias, artifacts and con-
taminations [8]. To address these problems, many meth-
ods have been developed such as taxonomy binning
[9-11], use of simulated datasets [12], diversity analysis
[13], ORF calling [14,15], rRNA prediction [16],
sequence clustering [17-20], assembly [21], statistical
comparison [22], fragment recruitment [1,8,23] and so
on. For example, Megan [11] assigns taxonomic groups
to query sequences based on BLAST search against a
reference database, usually the NCBI NR. CD-HIT has
been used in clustering raw reads and ORFs to identify
non-redundant sequences or gene families [24]. Mothur
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[25] is a software package with several functions such as
identification of Operational Taxonomic Units (OTUs).
QIIME [26] is another useful package for the investiga-
tion of microbial diversity using rRNAs. Software pack-
age RAMMCAP [27] provides a very fast sequence
clustering and annotation pipeline.
It is very difficult for common researchers to install

and maintain so many software tools needed in meta-
genome annotation. Many users simply do not have the
required computational resources to run some of the
tools. The available online resources that provide meta-
genomic data analysis are also limited. Currently, MG-
RAST [28] and CAMERA [29] are the major sites where
users can submit datasets for analysis. MG-RAST only
provides a fixed pipeline and the waiting time for its
jobs is often very long (sometimes weeks). CAMERA
offers a list of workflows, but many useful tools are still
missing from CAMERA’s site. In addition, both MG-
RAST and CAMERA require user registration and login,
so it is difficult to access their web servers using scripts.
In order to provide a fast, easy and flexible solution

for metagenomic data analysis, we developed WebMGA,
a web server that allows users to submit metagenomic
datasets and to run many kinds of analysis, or to per-
form a user-customized annotation pipeline. WebMGA
is freely available at http://weizhongli-lab.org/metage-
nomic-analysis to all users without any login
requirement.

Implementation
WebMGA consists of a web user interface, web service
interface, server scripts, a MySQL relational database, an
email server, daemon processes, application software
packages, wrapping and parsing scripts and a computer
cluster (Figure 1). The WebMGA web front-end is an
Apache HTTP server, which accepts jobs submitted
through web browsers. WebMGA’s web services, which
are implemented with Mojolicious software, accept cli-
ent-side scripts following Representational State Trans-
fer (REST) protocol. Job requests are processed by
server scripts, which submit jobs to a queue and return
a unique job identifier with a web link for each request.
If an email address is provided (optional), the user will
be notified by email of job status change. All the job-
related data such as job identifiers, status, date and time
are stored in the MySQL database, and managed by ser-
ver scripts and daemon processes. The daemon pro-
cesses handle the job queue, submit jobs to computer
cluster and check job status. A user can query the status
or retrieve the results of a job, using web browser or
scripts, by submitting a job identifier. The latest versions
of software packages are locally installed on our compu-
ter cluster, which runs Linux operating system and Sun
Grid Engine job queuing system. We implemented

scripts to run these applications in parallel and parse
the outputs.

Results and Discussion
Computational tools
As outlined in Figure 1, WebMGA includes a wide
range of tools for analyzing large and complex metage-
nomic sequence datasets. WebMGA is implemented
with many tested tools that can process millions of
sequences in minutes to hours. The key features of
WebMGA are: (a) rapid analysis enabled by very fast
algorithms and methods, (b) a large collection of com-
putational tools, (c) flexibility to run individual tools or
configure a pipeline consisting of individual tools, and
(d) compatibility of application and pipelines with both
web browsers and client-side scripts.
WebMGA currently has 26 individual tools that cover

the following categories:

•Quality control has 3 tools to filter or trim raw
reads and yield high quality reads. The first tool
(QC-filter-FASTQ) takes reads in FASTQ format
and yields high quality reads in FASTA format. The
second tool (QC-filter-FASTA-qual) takes a FASTA
file and a quality score file and generates high qual-
ity reads in FASTA format. The third tool (Trim)
trims low-quality tails of inputted Illumina reads
using SolexaQA [30].
•Sequence clustering has 4 tools: CD-HIT-EST,
CD-HIT, H-CD-HIT [17-20] and CD-HIT-454 [31].
The first two take DNA and protein sequences as
input respectively, perform clustering, and output
clusters and non-redundant sequences. H-CD-HIT is
a 2-step clustering analysis for proteins. The pro-
gram first performs clustering on the input dataset
and the representatives of this step are the input of
the second clustering round. H-CD-HIT produces a
hierarchical structure for proteins; it also maximizes
the computational efficiency and the quality of clus-
tering. CD-HIT-454 takes raw 454 reads and identi-
fies the artificial duplicates, which are commonly
present in 454 pyrosequencing reads.
•rRNA identification includes BLASTN-rRNA [16]
and HMM-rRNA [16]. BLASTN-rRNA identifies
rRNA from DNA fragments by querying against 5S
Ribosomal Database, European ribosomal RNA data-
base and SILVA database [32-34] through BLAST.
Despite BLASTN-rRNA shows higher specificity
than HMM-rRNA for 5S rRNA prediction, HMM-
rRNA, an HMM-based method, has much higher
speed and overall better sensitivity. For more
detailed comparison between these two tools, please
refer to reference [16]. Both programs take DNAs in
FASTA format and output 3 files: predicted rRNA
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sequences in FASTA format, a ‘TAB’ delimited text
file that lists the rRNA type and positions, and a
FASTA file for the original input sequences with the
predicted rRNAs masked by letter ‘N’. The purpose
of the masked file is to prevent false ORF calling if it
is used for ORF prediction.
•tRNA identification uses tRNA-scan [35] to iden-
tify tRNAs from the inputted DNA sequences. Simi-
lar to rRNA tools, it outputs 3 files: the predicted
tRNA sequences, a ‘TAB’ delimited text file, and a
masked input file.
•ORF calling include 3 tools for ORF prediction
from DNA sequences: ORF-finder [27], Metagene
[14] and FragGeneScan [15]. ORF-finder calls ORFs
by translating all six reading frames, where an ORF
starts at the beginning of a sequence or the first
ATG after a previous stop codon and ends at the
first stop codon or the end of that sequence. ORF-
finder covers more true ORFs and yields more spur-
ious ORFs than Metagene and FragGeneScan. It is
more suitable to use when the inputted DNA
sequences are below 200 bp. Metagene is the first ab
initio ORF prediction program that is designed for
fragmented sequences. FragGeneScan is another ab
initio program that can handle frame-shift errors,
which are typical for 454 reads. All these three tools
take nucleotide sequences as input and output ORF
protein sequences in FASTA format.
•Function annotation includes 5 tools. We imple-
mented scripts to annotate the inputted peptide
sequences against PFAM and TIGRFAM families
using HMMER3 [36] and against NCBI’s COG,
KOG and PRK databases using RPS-BLAST. We

output the annotation in ‘TAB’ delimited text files,
which include the details of hits of each query
against each reference family (alignment position, e-
value, score etc) and also several derived results. For
example, for COG annotation, we also give summar-
ized results of number of hits to each COG family
and each class (Figure 2c). For PFAM search, we
also provide Gene Ontology (GO) annotation
through the mapping between FPAM and GO.
•Pathway annotation takes peptide sequences in
FASTA format as input, searches our curated KEGG
database with BLASTP, and generates the pathway
annotation in ‘TAB’ delimited text files. The refer-
ence KEGG database was prepared to speed up the
BLASTP search. We clustered the KEGG database at
90% sequence identity, and if the sequences in one
cluster all belong to the same KO group, only the
representative sequence (the longest one) of this
cluster is used in the reference database. Otherwise
(rare situation), all sequences in that cluster are
used. Compared to the original KEGG database,
searching the curated database recovers > 99% of the
hits and is ~10 times faster.
•Sequence statistics has 2 tools: FNA-stat and FAA-
stat. They take nucleotide (FNA-stat) or protein
sequences (FAA-STSAT) as input and output the
summary information of the inputted file including
length distribution, GC content etc (Figure 2d).
•Filtering human sequence is a filtering tool for iden-
tification of human sequences from human micro-
biome samples. This tool queries the inputted reads
against human genome and mRNAs using FR-HIT [8].
If the similarity between a read and a human sequence

Figure 1 Illustration of WebMGA and its metagenomic analysis functions. The major input of WebMGA is either a DNA sequence file or a
protein sequence file. A user can run a single analysis at a time such as to prediction ORFs from the uploaded DNA sequences. A user can also
use a script to call WebMGA to run multiple analyses or run a pipeline where one job can use the output of another job.
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meets a user-specified cutoff (e.g. 95% identity over
90% of the read length), this read is filtered out. FR-
HIT can identify similar number of hits as BLASTN,
but it is about 2 orders of magnitude times faster than
BLASTN. This tool produces a file of un-filtered reads
in FASTA format and a text file that lists the filtered
reads along with alignment information to human
reference sequences.
•Taxonomy binning has 2 tools: RDP-binning and
FR-HIT-binning. The first uses the binning tool in
Ribonsomal Database Project (RDP) [37] to bin
rRNA sequences. The second tool aligns the
inputted metagenomic reads to NCBI’s Refseq data-
base and then assigns the reads to the taxon that is
the Lowest Common Ancestor (LCA) of the hits.
LCA was originally introduced in Megan [11], where
BLAST is used for alignment. Since BLAST is too
slow for large metagenomic datasets, FR-HIT is uti-
lized here.
•OTU clustering takes rRNA tags and clusters them
into OTUs. The software we used here is CD-HIT-

OTU (to be described in a separate publication),
which is a clustering program we developed that can
process millions of rRNAs in a few minutes, while
some traditional methods such as MOTHUR [25]
and ESPRIT [38] need days for millions of
sequences. CD-HIT-OTU is also more accurate than
many traditional methods that tend to overestimate
the diversity due to sequence errors.
•File conversion is a tool that converts reads from
FASTQ format to FASTA format.

Individual web servers
Each of the 26 tools introduced above was implemented
as a standalone web server. As illustrated in the screen-
shot of WebMGA web server (Figure 2a), each tool has
its own web page so that users can upload DNA or pro-
tein sequences for analysis, e.g. to call ORFs from raw
reads using FragGeneScan. Different applications gener-
ate different type of files including sequence files in
FASTA or FASTQ format (e.g. ORF or RNA prediction),

Figure 2 A screenshot and examples of output results of WebMGA. (a) A screenshot of WebMGA server (b) A plot of distribution of clusters
by CD-HIT (c) COG annotation results are in several “TAB” delimited text files, which can be easily viewed locally. (d) A plot of length distribution
by sequence statistical tool

Wu et al. BMC Genomics 2011, 12:444
http://www.biomedcentral.com/1471-2164/12/444

Page 4 of 9



TAB delimited text files (e.g. COG annotation, Figure
2c), graphic files (Figure 2b, d), raw output files and so
on. Due to the great diversity of the output types, parti-
cular visualization pages are not available for all tools.
The results produced by WebMGA and documentation
are packed into a zip file for a user to download and
analyze at client-side.

Interactively perform analysis pipelines
Most metagenomic data analysis pipelines include many
processes using different tools. Figure 3 gives a simpli-
fied pipeline as an example. With WebMGA, users can
run complex pipelines by interactively using the indivi-
dual web servers. For example, to run the pipeline in
Figure 3, a user can upload the raw reads to the quality
control tool and then input the high-quality reads into
“sequence statistics”, “rRNA prediction” and “clustering”
servers and run them in parallel. Once the rRNA predic-
tion is completed, the user can download the result and
use the masked sequences (one of the output files from
rRNA prediction) as input to run tRNA prediction fol-
lowed by ORF-finder. When ORF-finder is finished,
function and pathway annotation jobs can be submitted
in parallel using the predicted ORFs as input.

Client-side scripting
One advantage of interactively running a pipeline is that
a user can monitor and control the annotation process,
for example, by checking the results and choosing suita-
ble programs and parameters in the next step. But this
way may be too tedious for routine analyses. WebMGA
offers RESTful web services for all the tools through
which a complex pipeline can be automatically executed
using one client-side script. Two template Perl scripts,
client_submit_job.pl and Rammcap_client_submit.pl, are
available at WebMGA web site. A user can straightfor-
wardly use the template Perl scripts to configure an
annotation pipeline and run it locally.

The first template script runs a single tool: it submits
DNA sequences in a FASTA file to CD-HIT-EST web
service and downloads the clustering results. The second
script performs a more extensive annotation using
RAMMCAP pipeline [27], which is also used by CAM-
ERA project. This script starts with a FASTA file of
reads and then runs a list of web services such as
sequence statistics, clustering, rRNA and tRNA finding,
ORF calling, and function annotation and finally down-
loads all the annotation results.

Computational time and throughput
Three datasets were used to test the performance of
tools in WebMGA. The first one is a metagenomic sam-
ple (ID F3T1Le1) selected from a core gut microbiome
study [39], which contains 555,853 reads with an aver-
age length of 252 bps. The second dataset contains
571,261 ORFs with an average length of 66 letters pre-
dicted from the first dataset using Metagene [14] with
default parameters. The third dataset, which contains 33
16S rRNA samples from study [39], has 817,942 16S
rRNA reads spanning the V6 variable region (average
length 78 bps).
The wall time and total CPU time for each tool to

process the above datasets are listed in Table 1. Fast
tools like sequence statistics, file conversion, quality
control, rRNA-scan and ORF calling use only one CPU
core; clustering tools use 4 cores in parallel; other rela-
tively time-consuming jobs use up to 40 cores. When
our cluster has enough free cores for WebMGA, about
50% and 75% of jobs can complete within 10 minutes
and 1 hour respectively. All jobs need less than 3 hours
except the slowest pathway annotation against KEGG,
which needs about 20 hours.
We allocated 80 CPU cores from our cluster for

WebMGA server to use exclusively. With this computa-
tional capacity, WebMGA can process hundreds of jobs
with most tools per day (Table 1). For example, the

Figure 3 A simple example pipeline configured with tools in WebMGA.
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daily throughput for ORF-finder is about 23,000 based
on the second dataset. Function and pathway annota-
tions are the bottlenecks, but WebMGA can still process
3 (i.e. KEGG) to more than one hundred datasets (e.g.
COG) in a day. WebMGA only allows 1 KEGG job to
run with up to 40 cores at the same time so that other
fast jobs can be completed quickly.

Example
To illustrate the application of WebMGA, we annotated
the first test dataset (i.e. the core gut microbiome sam-
ple F3T1Le1) using the template script Rammcap_-
client_submit.pl. Since this dataset was already filtered
by the original authors, we skipped the quality control,
duplicates clustering and FILTER-HUMAN steps. The
annotation summaries are outlined in Table 2. The
results are comparable to those published in the refer-
ence [39]. For example, the relative abundance of COG

categories annotated in this example shows no visible
difference to that in original literature (Supplementary
Figure 17b) [39].

Comparison to other web servers
In metagenomics, MG-RAST and CAMERA are the
dominating web servers that provide online data analy-
sis. Both resources have been constantly busy and many
jobs submitted to them need to wait long time for com-
pletion. For example, we also submitted gut sample
F3T1Le1 to both MG-RAST and CAMERA for annota-
tion and it took them 5 days and 12 hours respectively.
WebMGA used 4.5 hours to annotate the same dataset
using RAMMCAP pipeline. WebMGA adds additional
computational resources for the increasing need in
metagenomic data analysis.
Compared with both MG-RAST and CAMERA, the

most important advantage of WebMGA is the flexibility

Table 1 Computational time and throughput for each tool of WebMGA

Category Tool Dataa Wall time
(h:m:s)

Total CPU time
(h:m:s)

Daily throughputb

Clustering CD-HIT-EST 1 00:08:53 00:34:08 3,113

CD-HIT 2 00:00:58 00:02:52 23,040

H-CD-HIT 2 00:20:06 01:10:26 1,600

CD-HIT-454 1 00:05:40 00:21:54 4,800

rRNA BLASTN-rRNA 1 00:12:43 13:44:53 139

hmm-rRNA 1 00:01:56 00:20:35 5,008

tRNA tRNA-scan 1 00:02:29 02:01:50 936

ORF calling ORF-finder 1 00:02:06 00:02:06 23,040

Metagene 1 00:16:21 00:15:21 6,400

FragGeneScan 1 01:27:50 01:27:50 1,294

Function COG 2 00:14:55 15:12:50 126

KOG 2 00:15:16 16:25:31 116

PRK 2 00:28:38 32:03:16 59

PFAM 2 01:33:44 115:30:23 16

TIGRFAM 2 00:53:23 62:31:51 30

Pathway KEGG 2 20:24:33 553:32:48 3

Statistics FNA-stat 1 00:00:38 00:00:38 43,746

FAA-stat 2 00:00:12 00:00:12 52,363

Quality control QC-filter-FASTQ 1 00:03:13 00:03:13 19,200

QC-filter-FASTA-qual 1 00:02:47 00:02:47 23,040

Trim 1 00:04:00 00:04:00 16,457

Filtering Filter-human 1 00:40:28 02:29:57 762

Binning RDP-binning 1 01:16:30 01:20:00 1,404

FR-HIT-binning 1 00:36:59 02:13:53 853

OTU clustering CD-HIT-OTU 3 00:05:10 00:10:23 8,861

File conversion FASTQ2FASTA 1 00:02:24 00:02:24 23,040
a See text for descriptions of the 3 datasets tested.
b Daily throughput is calculated as the daily CPU time of WebMGA cluster with 80 cores divided by the total CPU time of a job, assuming 2 minutes of
administrative CPU cost such as job queuing, file coping etc. for each job.
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to run user-customized analysis pipelines with client
scripts besides web server interface. MG-RAST has a
fixed annotation pipeline that users cannot modify,
which is essential to compare annotations of different
samples. However a fixed pipeline is not suitable for all
the diverse requirements in metagenomic studies, where
researchers need to use different tools and different
parameters. CAMERA has many analysis workflows that
can process user-uploaded data. But these tools can only
be used interactively by users that are logged in.
MG-RAST and WebMGA share many common proce-

dures such as quality control, filtering and clustering, but
they also apply different methods or resources for the
same type of annotations. Here are some examples: (1)
MG-RAST treats the reads whose first 50 bases are identi-
cal as duplicates, but WebMGA uses CD-HIT-454 for this
purpose. MG-RAST’s method is faster but may miss the
duplicates with sequence errors (indels and wrong base
calls) within the first 50 bases. CD-HIT-454 is slightly

slower, but is more sensitive and can pick the duplicates
missed by MG-RAST. (2) For host associated samples,
MG-RAST uses bowtie [40] to identify near identical
matches to host reference sequences and removes these
reads as host contaminations. WebMGA uses a slower but
more sensitive method, FR-HIT, for human-contamina-
tion removal. (3) For ORF calling, MG-RAST uses Frag-
GeneScan; while WebMGA allows users to choose from
ORF-finder, Metagene and FragGeneScan.
CAMERA and WebMGA also have many common

methods, mostly because CAMERA also adopted the
RAMMCAP pipeline we developed. But WebMGA has
many unique tools such as Filter-HUMAN, RDP-bin-
ning, FR-HIT-binning and CD-HIT-OTU that CAMERA
doesn’t have.

Conclusions
In order to assist researchers in the metagenomics field
to deal with data analysis challenges, we implemented

Table 2 Annotation summary for example dataset

Tool Annotation Summarya

FNA-stat Total reads: 555853, Length: 45~607, Average length: 251,
Total bases: 139813458, Total ambiguous bases: 96190,
Distribution of GC% and length in text files and in graphic files similar to Figure 2d

CD-HIT-EST Parameters: “-d 0 -n 10 -l 11 -r 1 -p 1 -g 1 -G 0 -c 0.95 -aS 0.8”
Clusters: 419802, Size of the largest cluster: 69,
Clusters in CD-HIT format and in ‘TAB’ delimited text file,
Distribution of clusters in graphic file similar to Figure 2b

HMM-rRNA rRNA sequences identified: 3858,
Archaeal-16S: 1, Eukaryotic-18S: 3, Bacterial-16S: 1347,
Bacterial-5S: 220, Bacterial-23S: 2285, Archaeal-5S: 2

tRNA-SCAN tRNA sequences identified: 1378

Metagene ORFs: 571261

FAA-stat Total ORFs: 555853, Length: 20-121, Average length: 66,
Total letters: 37859696, Total ambiguous letters: 87294,
Distribution length in text file and in graphic file similar to Figure 2d

CD-HIT Parameters: “-d 0 -n 5 -p 1 -g 1 -G 0 -c 0.9 -aS 0.8”
Clusters: 396559, Size of the largest cluster: 154,
Clusters in CD-HIT format and in ‘TAB’ delimited text file,
Distribution of clusters in graphic file similar to Figure 2b

COG Parameters: “-e 0.001”
Total alignments: 199002, Total ORFs aligned: 198933,
Total COG families aligned: 2848, Total COG classes aligned: 23,
Alignments and derived results in ‘TAB’ delimited text files similar to Figure 2c

PFAM Parameters: “-e 0.001”
Total alignments: 187156, Total ORFs aligned: 174115,
Total PFAM families aligned: 3131,
Total ORFs with GO annotation: 123294, Total GO terms annotated: 964
Total ORFs with EC annotation: 46207, Total EC terms annotated: 319
Alignments and derived results in ‘TAB’ delimited text files similar to Figure 2c

TIGRFAM Parameters: “-e 0.001”
Total alignments: 6357, Total ORFs aligned: 6172,
Total PFAM families aligned: 327,
Total ORFs with GO annotation: 3077, Total GO terms annotated: 252
Total ORFs with EC annotation: 564, Total EC terms annotated: 57
Alignments and derived results in ‘TAB’ delimited text files similar to Figure 2c

a Detailed parameters are explained at WebMGA website.
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WebMGA with very fast algorithms and effective meth-
ods. With WebMGA, users can use many individual
tools and assemble the tools into a pipeline for more
complicated analysis through web browsers or client-
side scripts. We are in the process of developing new
tools and validating more public tools so that, in the
future, more rapid tools and pipelines will be added to
WebMGA server.

Availability and requirements
•Project name: WebMGA
•Project home page: http://weizhongli-lab.org/meta-
genomic-analysis
•Operating system(s): Platform independent
•Programming language: Perl (client-side scripts)
•Other requirements: browsers
•License: no license needed
•Any restrictions to use by non-academics: no
restriction
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