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Abstract

differentiation and carcinogenesis.

89% specificity.

Background: To elucidate the molecular complications in many complex diseases, we argue for the priority to
construct a model representing the normal physiological state of a cell/tissue.

Results: By analyzing three independent microarray datasets on normal human tissues, we established a
quantitative molecular model GET, which consists of 24 tissue-specific Gene Expression Templates constructed from
a set of 56 genes, for predicting 24 distinct tissue types under disease-free condition. 99.2% correctness was
reached when a large-scale validation was performed on 61 new datasets to test the tissue-prediction power of
GET. Network analysis based on molecular interactions suggests a potential role of these 56 genes in tissue

Applying GET to transcriptomic datasets produced from tissue development studies the results correlated well with
developmental stages. Cancerous tissues and cell lines yielded significantly lower correlation with GET than the
normal tissues. GET distinguished melanoma from normal skin tissue or benign skin tumor with 96% sensitivity and

Conclusions: These results strongly suggest that a normal tissue or cell may uphold its normal functioning and
morphology by maintaining specific chemical stoichiometry among genes. The state of stoichiometry can be
depicted by a compact set of representative genes such as the 56 genes obtained here. A significant deviation
from normal stoichiometry may result in malfunction or abnormal growth of the cells.

Background

It has been well-recognized that within a cell, not only
genes participate in cascades of biochemical events
(pathways), but also the pathways themselves cross-talk
with each other as a delicate and intriguing network sys-
tem. Such complexity was reflected in the normal biolo-
gical processes (tissue development, for example) as well
as in the complex disease processes such as autism,
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cancer, rheumatoid arthritis and coronary artery disease
[1,2]. In addition, the genetic interactions of oncogenes
and tumor suppressor genes may perturb the normal
network system through a variety of altered molecular
properties of the normal genes, magnifying the difficul-
ties encountered in the cancer biology study [3]. Because
of this, it is important to develop quantitative molecular
models which can represent different physiological or
pathological states of a complex biological system and
can be used to predict the related states, using high
throughput molecular data. In line with this viewpoint,
we argue for the priority to construct models for the
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normal physiological states first. This is because (1) nor-
mal cells/tissues are endowed with the most stable bio-
chemical homeostasis and (2) such models may serve as
general references for contrasting with various patholo-
gical or altered physiological states.

Up to now, in part due to the limitation in sample
availability, few studies on normal human tissues have
been reported. Through the transcriptome study of the
disease-free human samples via microarray analysis,
gross patterns of tissue-gene relationships have been
observed by several teams [4-7]. A recent study which
applied statistical and network analysis to transcriptomic
data from 31 normal human tissue types has resulted in
putative tissue-specific networks for nine tissues. These
putative tissue-specific networks were suggested as
potential drug targets [8]. However, it still awaits a dee-
per investigation to find out what molecular signatures
can best represent the normal state of a specific tissue
and offer the most transparent and systematic elucida-
tion on tissue differences (regarding anatomy, pathology
and development). In this study, by re-analyzing some
of the transcriptomic datasets produced from normal
human tissues in the Gene Expression Omnibus (GEO),
we identified a set of 56 genes whose transcript profiles
are endowed with strong tissue-specific properties for
24 different tissue types under the disease-free condi-
tion. These genes present significant variation of expres-
sion amongst tissues. From the expression level of these
56 genes, we constructed 24 tissue-specific Gene Expres-
sion Templates (GETs), one for each of the 24 tissues.
We first validated that these GETs can differentiate tis-
sue types under the normal physiological condition.
Then we demonstrated how GET can be applied under
other conditions, including development and cancerous
conditions. Our results suggest that homeostasis among
various molecules in a cell/tissue may play a key role in
maintaining its normal functioning and the homeostasis
state can be characterized by the 56 genes.

Results

Characterization of 24 tissue types by the 56 genes

We searched for a set of genes whose expression profile
could best represent normal state of a specific tissue
type. We used three large-scale microarray datasets as
our training datasets to identify a group of 56 genes
with high variation in expression across different tissue
types (Additional file 1: Table S1). Briefly, we selected
the probe sets with coefficient of variation (CV) ranked
within the top 2.5% of the entire transcriptome across
all samples from each of the three training datasets.
After intersecting the three groups of highly variably
expressed probe sets, we removed redundant probe sets
that share similar expression patterns. Our procedure
yielded a set of 56 genes. [see methods for more details].
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Function enrichment analysis, based on an ontology
search against the Panther database, showed that these
56 genes were most enriched in encoding cytoskeletal
proteins, calmodulin-related proteins, and neuropeptides
(P value < 1 x 10°). Gene Ontology search indicated that
the proteins encoded by the 56 genes were mostly loca-
lized to extracellular regions (21/56, P value < 3.1 x 10™)
and were involved in the processes of response to
wounding (10/56, P value = 6.12 x 10'5), response to
steroid hormone stimulus (6/56, P value = 4.67 x 10™%)
and regulation of homeostatic process (5/56, P value =
5.94 x 10™*). While searching KEGG for the pathways
mapped by the 56 genes, we found focal adhesion, ECM-
receptor interaction, and PPAR signaling pathway over-
represented. (Additional file 1: Table S2) We conducted
hierarchical clustering with the 56 genes from the 24 tis-
sue types shared by our three training datasets. The result
showed that all of the 24 tissues were well grouped
(i.e. the same tissue from three different data sources
were grouped together as a cluster; see the dendrogram
in Figure 1A and the heat map in Additional file 1: Fig.
S1). To confirm that the tissue-clustering result is specific
to the gene set we identified, we randomly-selected 56
probe sets and applied the same hierarchical clustering
analysis to their expression profiles. We were no longer
able to find the tissue clusters; instead, the only visible
clusters were three large classes corresponding to tissues
from each data source. (Figure 1B; also see Additional file
1: Fig. S2 for heat map) In addition, as suggested by one
anonymous reviewer, we also selected the probes with
the highest expression level across all tissues as a contrast
group. This contrast group of genes (including many
house-keeping genes) failed to group tissues properly.
(see Additional file 1: Fig. S3)

Taking a closer look at the outcome of the tissue
classification obtained from the hierarchical clustering
analysis, similar to the previous reports published by
Shyamsundar et al [6] and Ge et al [3] on tissue classi-
fication, our results also showed that the tissues were
grouped largely by their physiological functions, anato-
mical locations or cellular composition. For example,
ovary and uterus, the organs from the female produc-
tive system, were clustered together; the gland tissues/
organs including thyroid, pancreas, and salivary gland
also aggregated and the testis as previously reported
[4,7,9] was grouped with the tissues from the central
nervous system like cerebellum, amygdala, and thala-
mus. However, it should be noted that we obtained the
similar tissue classification result with far smaller set of
genes (56) as the classifiers, in comparison with the
two previous reports where they used 7396 [3] genes
and 5592 [6] genes on 36 tissue types (from 36 sam-
ples) and 45 tissue types (from 115 specimens),
respectively.
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file 1: Fig. S1 and Fig. S2, respectively.

Figure 1 Dendrograms showing tissue classification by hierarchical clustering analysis with the 56 genes. The dendrograms shown were
generated with standard two-way hierarchical clustering analysis of GenePattern using the expression values of the (A) 56 signature genes or (B)
randomly selected 56 genes extracted from the 24 tissues under the three GEO datasets. The associated heatmaps are displayed in Additional
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Accurate prediction of normal tissues

We speculated that the expression profile of this com-
pact 56-gene set might represent a set of important
molecular features for tissue specification under normal
conditions. To determine whether this gene set could

accurately predict the tissue type of a sample of
unknown origin, the expression profiles of the 56 genes
from the 24 tissues were extracted from our three
microarray datasets to form the tissue-specific gene
expression templates (GET) for tissue prediction. More
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precisely, for each of the 24 tissues, we obtained a GET
which consisted of the average of the probe values of
the three datasets for the 56 selected genes. To predict
the tissue type of a new sample, we compared the
expression pattern of the 56 genes in the new sample
with each of the 24 GETs by calculating their correla-
tion coefficients (c.f.). The tissue type of the GET show-
ing the highest degree of similarity as measured by c.f. is
our prediction. As an example, we took a new dataset
from Gene Expression Omnibus, GSE5364[10], which
contained data derived from human liver, lung, and
thyroid, in non-malignant and malignant conditions.
Tissue prediction was performed by calculating the cor-
relation between the expressions of the 56 genes in each
test tissue against each of our 24 GETSs. For the non-
malignant tissues, we obtained 100% correct prediction,
strongly endorsing our speculation that the expression
profiles of the 56 genes may be used as molecular signa-
tures for normal human tissues. (Additional file 1: Table
S3) To further validate the use of these tissue-specific
GETs as predictors of normal human tissues, an exten-
sive tissue-prediction analysis was carried out on a total
of 61 microarray datasets consisting of 797 samples
from 16 different human tissues. These datasets were
obtained by searching the entire GEO database using
two criteria: (1) the tissue types must fall into the
category of the claimed 24 distinguishable normal
human tissues (2) they were hybridized on one of two
Affymetrix GeneChips, HG-U133A (GPL96) or HG-
U133plus2.0 (GPL570). Cell lines or specific cell types
from an organ were excluded (see Methods for details).
As it turned out, the overall prediction accuracy of our
method already reached 99.2% (791/797). (Table 1 and
Additional file 1: Table S4). This large-scale validation
demonstrated that the tissue-specific profiles of the 56
genes are essential for the 24 human tissue types. It also
suggests that the tissue-specific GETs very likely repre-
sent the overall biochemical equilibrium reached by all
the molecules of a tissue under normal physiological
condition.

To show how stable and robust the relative expression
level of the 56 genes is, we used Spearman’s rank corre-
lation to replace the standard Pearson correlation in the
tissue-prediction analysis and obtained 96.2% (767/797)
of accuracy (Additional file 1: Table S5). It indicates
that the relative expression of the 56 genes is a robust
feature for characterizing the normal state of a specific
human tissue.

So far, we have chosen Affymetrix as the gene expres-
sion platform to test the performance of GET. Our rea-
sons are (1) Affymetrix is the common platform used in
our three training datasets which ensures the inclusion
of the entire set of our 56 genes; (2) the data preproces-
sing procedure is standardized; (3) existence of many
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Table 1 Large-scale prediction of normal human tissues
with GETs

Tissue Datasets Samples Correctly %
predicted Accuracy
bone marrow 1 11 11 100%
fetal liver 1 6 6 100%
heart 3 28 28 100%
kidney 11 108 106 99%
liver 9 84 84 100%
lung 1M 170 169 99%
ovary 1 4 4 100%
pancrease 2 17 14 82%
pituitary gland 1 1 1 100%
placenta 4 34 34 100%
prostate 3 10 10 100%
skeletal 8 134 134 100%
muscle
skin 10 121 121 100%
testis 1 6 6 100%
thyroid 4 36 36 100%
Uterus 1 27 27 100%
Total 61 797 791 99.25%

Samples: number of tested samples derived from normal human tissues.

Correctly Predicted: the number of tested samples for which the tissue source
was correctly predicted. The source data as well as the analysis results from
each dataset can be found at the Additional file 1: Table S4.

datasets in the public domain for validation and (4) high
reproducibility. However, it remains questionable
whether GET can be applied to other platforms of mea-
suring gene expression or not. To address this issue, we
searched GEO for datasets containing enough samples
from norm human tissues. We found an ABI array gen-
erated dataset, GSE7905 [8], which contains many nor-
mal human tissue samples. Among them, there are 60
samples (20 tissue types in triplicates) matching our 24
tissue types. We treated the data generated by these ABI
array as if they were from the Affymetrix and applied
GET to make tissue prediction. Strikingly, we found that
our Affymetrix-based GETs yield a perfect result, 100%
(60/60) (Additional file 1: Table S6). This demonstrates
that GET is platform-independent.

Network analysis reveals involvement of the 56 genes in
development and tumorigenesis

The above results indicate that these tissue-specific
GETs may be more than simply a set of biomarkers cap-
able of distinguishing different tissue types. Their pro-
files may represent a “net sum” of the interplays among
the complex gene regulation pathways occurring in a
tissue. We explored the possible biological roles of the
56 genes by performing network analysis using the com-
mercial tool MetaCore from GeneGo Inc. which builds
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Figure 2 Network analysis on the 56 genes using MetaCore. This network is the highest scored one when constructed on the basic
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56 genes as input. The “analyze networks” algorithm of MetaCore builds

gene networks based on molecular interactions acquired
from experiments-based literature reports [11]. We
firstly applied the basic algorithm “analyze networks” to
our 56 genes using the default parameter settings. The
top scored results (Figure 2) showed MMP9 (matrix
metallopeptidase 9), STAT3 (signal transducer and acti-
vator of transcription 3), and PPARG (peroxisome pro-
liferator-activated receptor gamma) to be the most
connected molecules in the network (z Score = 65) with
15 of our genes included. MMP9 has been known to be
the key regulator for bone remodeling [12,13], STAT3 is
involved in embryogenesis, hematopoietic cell develop-
ment and is a biomarker for embryo stem cells[14-16],
and PPARG is involved in the regulation of neural stem
cells proliferation and differentiation [17,18]. We then
applied the algorithm “Receptor Targets Modeling”
which allows users to identify the important transcrip-
tion factors (TFs) connected to the query genes and the
signaling receptors associated with these TFs”. The best
result produced by this algorithm delivered a network
(Z score = 131) (Figure 3) with half (28) of our genes
connected to the TFs: STAT3, ESR, SRF, CEBPB, E2F1,
PPARG and TP53 and these transcription factors were

regulated by EGFR. All of these molecules are known to
be important in development and/or tumorigenesis. For
example, ESR (estrogen receptor), a ligand-activated tran-
scription factor, is essential for sexual development and
reproductive function, and is involved in breast cancer,
endometrial cancer, and osteoporosis. The signature
genes linked to ESR include ABAT, CD24, GJA, KRT13,
MSMB, PCP4 TF and THBS, among which CD24 and
THBS were responsive to hypoxia, and CD24, GJA,
KRT13 were involved in development of immune system,
neuron projection and ectoderm, respectively. SRF (c-fos
serum response element-binding transcription factor), the
transcription factor which regulates the activity of many
immediate-early genes, such as c-fos, has been known to
participate in numerous significant processes like cell
cycle regulation, apoptosis, and cell differentiation. It is
the downstream target of many pathways including the
mitogen-activated protein kinase pathway (MAPK) and is
implicated in the hepatoma progression [19]. Among the
four signature genes linked to SRF, Gro2 is a chemokine
and an oncoprotein, Desmin an intermediate filament
involved in muscle contraction and cytoskeleton organi-
zation, DLK a transmembrane protein is implicated in
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development of numerous cell types such as adipocytes,
skeletal and neural systems and MLC2 is a myosin com-
ponent involved in development of heart and muscle.
The receptor directly connected to the majority of these
TFs was EGFR, a tyrosine kinase coupled receptor known
to be tightly associated with several cancers when overex-
pressed [20-22].

Detection of developmental stages in cultured cells and
embryonic tissue

As the network analysis above suggests possible roles of
the 56 genes in tissue development and tumorigenesis,
we intended to test whether the degree of similarity to
our GETs may also reflect the physiological or develop-
mental states of a given tissue. To proceed, we were
able to obtain datasets for two embryonic tissues, skin
and lung, from GEO.

First we calculated the c.f. between our skin GET and
the 56 gene expressions from each array of the dataset
GSE6932 [23] where NHEK epidermal progenitor cells
had been treated with 2-(3,4,5-trimethoxyphenylamino)-
pyrrolo[2,3-d]pyrimidine (PP-2) for different periods of

time. PP-2 can induce terminal differentiation of epider-
mal progenitor cells to keratinocytes. We found that the
degree of similarity to adult skin as measured by corre-
lation did increase with the duration of PP-2 induction
(Figure 4): the slope of the regression line was 0.0028
with P value of t-test being 2 x 107

The other dataset, GSE14334 [24], contained tran-
scriptomic data derived from human embryonic lungs of
ages ranging from 53 to 140 days post conception. We
calculated the c.f.s of our adult lung GET and the 56-
gene profiles of these fetal lungs. Again, we found an
increasing trend with developmental stages (slope =
0.0016 with P values = 3 x 10™* on t-test, see Figure 5).
This suggests that during the developmental process,
gene expression in the embryonic cells gradually pro-
gresses toward the terminal equilibrium represented by
the 56-gene profiles in the target adult tissues. The fluc-
tuation observed in the correlation across developmental
times may be caused by genetic variation or different
pathological states among the donors.

To confirm that this trend was specific to the lung
template only, not other tissue templates, we also
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Figure 4 The 56-gene profiles correlate with developmental
progress of keratinocytes. Correlation of the 56 genes was
computed and plotted between the normal human skin and each
sample from the dataset GSE6932 where NHEK cells were treated
with PP-2 (open circle) or DMSO (cross) for various durations. The
regression lines as well as the associated formula were also
displayed with the plot. The slope of the regression line for the PP-2
treated NHEK is 0.0028 with p-value = 2 x 10 on t-test, compared
with the DMSO control whose regression line has slope of 0.0005
with p-value = 0.0531.
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performed the same correlation computation with each
of the remaining 23 training tissues and calculated the
regression coefficients of all correlation plots (Additional
file 1: Table S7). The result agreed with our main find-
ing that lung gave the highest regression coefficient
among the twenty-four tissues.

Deviation of normal expression profiles from cancerous
tissue

Relationship of our normal-tissue derived GETSs to gene
expression of the cancerous tissues was firstly studied
on the dataset GSE5364 which contained transcriptomic
data from cancerous tissues. Correct tissue prediction
was between 33%-97% (Table 2) and the c.f. to their
corresponding tissues 0.4~0.73, both significantly lower
than their paired normal parts. The decrease of predic-
tion accuracy on cancerous tissues (Table 2) might
reflect the increasingly heterogeneous nature of cancer-
ous cells in a specimen. We applied the same tissue-
prediction analysis to the transcriptomic data GSE5720
[25] from NCI60 cancer cell lines with a homogeneous
progressing cell population. As expected, this analysis
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Figure 5 The GET from adult lung in our training set positively correlates with development of human embryonic lungs. Correlation
between the 56-gene profiles from each of the human fetal lung samples (GSE14334) and that from our adult lung template were computed
and plotted. The x-axis indicates age (in “days post conception”) of the fetal samples and y-axis the correlation coefficient. As each of the
samples in the test data came from different individuals, they may show genetic variation as well as different pathology. The slope of the
regression line as displayed to the upper right corner was 0.0016 with P value = 0.00034 on t-test. The regression slopes for correlation with
each of the 24 tissues was computed, and was highest with the lung samples. (see Additional file 1: Table S4).




Hwang et al. BMC Genomics 2011, 12:439
http://www.biomedcentral.com/1471-2164/12/439

led to relatively poor prediction (Table 3), suggesting
that the overall biochemical reactions in these cancerous
cells may have become very different from those in a
normal tissue. However, the significantly lower predic-
tion accuracy using cell lines rather than cancerous tis-
sues (Table 2 and Table 3) could be due to the intrinsic
differences between these two systems.

To further test whether our GETs would be capable of
differentiating benign from malignant tumors, we ana-
lyzed dataset GSE3189 [26], from a melanoma study
that had been extensively examined by various techni-
ques. Melanoma is the most aggressive form of skin
cancer, and its diagnosis is challenging even for sea-
soned pathologists. We found, in terms of both preci-
sion of tissue prediction and of correlation with our
skin GET that the expression profiles of the 56-gene
sets in most (40/45) of the malignant tumors strongly
deviated from those in either normal skin or benign
nevus. In short, we obtained 96% sensitivity and 89%
specificity in distinguishing melanoma from normal skin
tissue or benign skin tumor using the 56-gene profiles
(Table 4). This result further supports our hypothesis
that the combinatorial expression profile of the 56 genes
accurately reflects the physiological state of a tissue. It
also suggests that these 56-gene profiles could be used
to facilitate diagnosis and as a sensitive research tool in
cancer.

Distinguishing normal skin from skin substitutes

There is a potential application of our system in quality
assessment in tissue engineering. To illustrate the con-
cept, whether our 24 GETSs can also characterize the
normal state of the corresponding tissues. To answer
the question, we used the dataset GSE3204 [27], which
was originally produced to investigate the molecular dif-
ferences between normal human skin (NHS) and

Table 2 Tissue prediction on GSE5364 using as template
the 56-gene profiles constructed from the 24 normal
tissue types

Tissue/Cell line Prediction Accuracy Correlation Coefficient

Liver® (n = 8) 8 (100%) 0.85 + 003
Lung® (n = 12) 12 (100%) 081 + 003
Thyroid® (n = 16) 16 (100%) 081 + 003
Cancer

Hepatoma® (n = 9) 3 (33%) 040 + 0.16
Lung cancer” (n=18) 4 (22%) 061 £0.13
Thyroid cancer® 34 (97%) 073 + 006

(n = 35)

? the adjacent matched normal tissues of a primary tumor surgically removed
from a cancer patient, according to the description of GSE5364 at GEO and
the article by Yu et al. 2008.

>a primary tumor sample surgically removed from a cancer patient, according
to GSE5364 at GEO and the article by Yu et al. 2008.
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Table 3 The 56-gene profiles in cancerous cells/tissues
strongly deviate from that in the normal counterpart

NCI60 cell lines
Tissue/Cell line Prediction Correlation
Accuracy?® Coefficient®
Lung (n = 8) 3 (37.5%) 021 +£0.12
Ovary (n = 8) 0(0%) 0.15 £ 0.08
Prostate (n = 2) 0(0%) 0.05 = 0.04
Kidney (n = 8) 7(87.5%) 043 £ 0.15
Skin ((n = 10) 0 (0%) 0017 + 0.05
Skin-GSE3189
Normal skin (n = 7) 7 (100%) 0.78 + 0.05
Benign nevus (n = 17 (94.4%) 0.73 £ 0.06
18)
Melanoma (n = 45) 5(11.11%) 036 + 0.14

2 Tissue prediction was as described in Methods by comparing the cf.
between the 56-gene profiles of the test against each of our 24 training
tissues.

® The cf. exhibited here is that between the 56-gene profiles of the test and
the corresponding normal tissue in our training set.

cultured skin substitutes (CSS) in order to improve CSS
for skin autograft in patients with massive skin loss
caused by burn injury. The dataset investigated the
whole-genome transcriptomes under four conditions:
those in normal human skin (NHS), in cultured skin
substitutes (CSS), in fibroblasts (CF) and keratinocytes
(CK). CF and CK were used to prepare CSS. We com-
puted the correlation of the 56-gene expression profiles
between our skin GET and each sample in GSE3204,
the NHS showed the highest correlation, followed by
the CSS. CF and CK, the two constituent cells of CSS,
were significantly lower than either of NHS and CSS
(Table 5). This is a good reflection of the actual degree
of similarity to normal skin.

Discussion

We have attempted to address the fundamental issue of
“Can the normal physiological states of various human
tissue types be quantified at the molecular level faithfully

Table 4 Specificity and sensitivity of distinction of
melanoma from nevi and normal skin using the 56-gene
profile template.

Normal Melanoma

or Benign
Predict-to-skin ~ TP: 24 FP: 5 Positive predict: 29
Predict-to- FN: 1 TN: 40 Negative predict:
other 41

Sensitivity = Specificity =

96% 89%

TP: true positives; FP: false positives; FN: false negatives; TN: true negatives
specificity = number of true negatives/[number of true negatives + number of
false positives]

sensitivity = number of true positives/[number of true positives + number of
false negatives]
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and succinctly?” In the biomedical literature, the phrase
“normal physiological state” is often brought up to con-
trast the phrase “pathological or disease state”. In physics
or engineering, a “state” of a system must be quantified
by well-defined variables. Can we do the same in the bio-
logical world? We conceptualized the issue by arguing
that one way to describe a biological state at the molecu-
lar level is to present a template consisting of (a) a list of
molecule species and (b) their relative abundance levels.
To be useful, three properties should be possessed- com-
pactness, repeatability and discrimination ability. The list
should be reasonably short and the template should be
able to predict the state accurately for as many sets of
data generated by as many different labs as possible. Tak-
ing full advantage of the rich data resource provided by
GEO (Gene Expression Omnibus), here we offered the
characterization of normal physiological state a bench
mark solution.

This report is the first to present a multi-purposed,
molecule-based molecular model that can characterize
as many as 24 different human tissue types. The success
of our tissue-specific GETs in accurately predicting the
tissue types from various sources and in discriminating
tissues/cells at different developmental stages indicates
that (A) a tissue under the disease-free condition con-
stantly maintains certain stoichiometry among many
gene products; (B) the same tissue type from different
disease-free individuals shares very similar gene-product
stoichiometry; (C) the gene-product stoichiometry can
be expressed as the relative transcription levels of a set
of representative genes, a gene expression template
(GET) (the combinatorial expression levels of the 56
genes in this study); (D) When the physiological or
developmental state of a cell shifts, the gene-product
stoichiometry may change accordingly. (E)

Severe alteration from the normal state gene-product
stoichiometry, possibly caused by multiple mutations in
genes or dramatic shifts of the overall biochemical
environment of a cell, may lead to abnormal growth like
cancer, if not death of a cell. In support of this notion,
we also demonstrated that the 56-gene expression pat-
terns in cancerous cells/tissues significantly deviate from
normal GET and that our tissue-specific GETs can be

Table 5 Distinction of native human skin from skin
substitutes by the skin GET

Tissue/cell type Correlation  Best matched
tissue type
NHS (native human skin) 0.88 + 0.03 Skin, skin, skin, skin
CSS (cultured skin substitutes)  0.74 + 0.04  Skin, skin, skin, skin
CK (cultured keratinocytes) 061 +0.02  Skin, skin, skin, skin
CF (cultured fibroblasts) 035+ 002  Uterus, lung, lung, lung

Data source: GSE3204
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used to discern melanoma from benign nevi and from
normal skin. Potential applications of our results to
tissue engineering, cancer diagnosis and development
studies are therefore inferred.

Our approach to constructing a gene signature for
predicting tissue types is simpler than existing classifica-
tion methods [28]. We first identified those genes show-
ing a similar and reproducible trend in all three large
datasets, then used the full gene group to perform tissue
classification, and finally applied the group behavior
(that is, the expression profiles of the compact 56-gene
group) as predictors to characterize tissue types under
various conditions. Without complicated modeling, our
56-gene signature provides high prediction power on
numerous public datasets. As far as we are aware of,
this is the most compact gene set capable of classifying
the largest number of tissues. The use of multiple data-
sets which served as biological replicates allowed us to
reduce the number of false positives and to find the
genes with most variable expression across various tis-
sues with better confidence. Note, however, that because
of the high accuracy already achieved by the 56 genes,
we did not explore the issue of possible existence of
other gene sets that could serve as GETs and accom-
plish the same or even better rate of prediction - per-
haps with aids of additional statistical tools such as one-
way ANOVA for gene selection.

With the abundance of interplaying gene and pathway
activities in a tissue, one may ask how the group beha-
vior of these 56 genes can represent the states of var-
ious human tissue types. Our functional study of the 56
genes reveals a variety of functional categories including
cytoskeleton (desmin, nebulin), signal transduction pro-
teins (protein kinase C betal, CDC28 protein kinase
regulatory subunit 2), neural transmitter regulator
(4-aminobutyrate aminotransferase), energy homeostasis
regulator (insulin-like growth factor binding protein 1),
and immunity (CD24 molecule) etc. It should be
emphasized, however, that the high precision of large-
scale validation on tissue prediction was not achieved
through the combinatorial on/off states of a collection
of tissue-specific markers because only 4 of the 56
genes appeared as tissue-specific genes which highly
express in one particular tissue but minimally in others.
They are TFPI2 specific for placenta, ANKRD?7 for tes-
tis, ELA2A for pancreas and APOC3 for liver. However,
the expressions of all 56 genes together as a template,
did present distinctive patterns varying from tissue to
tissue. Therefore, this gene set may be considered as
the representative genes of the key biochemical path-
ways functioning distinctively across tissues, and the
combinatorial transcription levels of the 56 genes, the
GETSs, may reflect the net sum of the relative activities
of these pathways.
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Despite that the feature of tissue-characterization of the
56 genes may not be exerted through collection of the so-
called “tissue-specific” genes as discussed above, it would
be interesting to find out how each of the 56 genes may
contribute to tissue characterization. One of our on-going
projects in reducing the gene set without compromising
its power in defining the normal physiological state of a
specified human tissue may help to answer this question.

The network analysis provided additional clues to the
biological implications of the signature in development
and carcinogenesis. Positive correlation of the 56- gene
profile to developmental stages revealed in both in vitro
and in vivo studies indicates that systematic shifts of the
global gene expression through the complicated devel-
opmental process can be characterized with our signa-
ture genes. Hence it is possible that the 56 genes may
be good candidates for modeling the human develop-
mental process. Further, the capability of the 56- gene
profiles in correlating quality of the engineered skin to
the similarities to normal skin template brought up a
potential application of the signature to serve as the
quality index for engineered tissue.

The network analysis also helped to link our model to
the current understanding of tumorigenesis. We showed
that the c.f:s of the 56-gene profiles in malignant tumors
were significantly lower than the normal tissues to the
corresponding template, indicating changes of expres-
sion in multiple genes in a cancer tissue. It coincides
with the findings that at least 4-5 mutations are
required to initiate tumor [29,30]. In our network analy-
sis, more than half of the 56 genes were found to inter-
act with those well-known cancer-related transcription
factors or signaling receptors such as STAT3, TP53,
ESR1 and EGFR which have been shown to interact
with a great number of gene products involved in vari-
eties of pathways. Therefore, it is possible that muta-
tions occurring in such genes (i.e. EGFR, STAT3 etc.)
may simultaneously affect expression of a number of the
target genes which may ultimately lead to changes in
the profile of our signature. Further, significant change
in the profile of the 56 genes indicates alterations in
relative activities of the pathways represented by these
signature genes, reflecting a dramatic shift of the cellular
homeostasis which may lead to cell necrosis or anoma-
lous growth like tumorigenesis. Alternatively, accumu-
lated mutations in the genes which affect the activities
of those pathways represented by our signature may also
affect the expression profile in one hand and lead to
similar outcome as described above on the other hand.
Taken together, despite that severe shift of the 56-gene
profile from normal may not be the initial cause of
many cancers, it could have the potential to serve as an
indicator for the cancerous state of a cell/tissue.
Whether our signature can be applied to cancer staging
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awaits further investigation. Nonetheless, this knowledge
provides a new aspect in understanding the complex
process of carcinogenesis.

Conclusions

These results strongly suggest that a normal tissue or
cell may uphold its normal morphology and functioning
by maintaining specific chemical stoichiometry among
genes. The stoichiometry of a physiological state of a
normal human tissue can be depicted by the relative
expression levels of a compact set of representative
genes such as the 56 genes obtained here. A significant
deviation from such quantitative relationship may result
in malfunction or abnormal growth of the cells.

Methods

Data

Microarray data used in this study were obtained from
the Gene Expression Omnibus (GEO) database at NCBI
by Nov. 2" of 2009. GEO series with accession numbers
GSE2361[4], GSE1133[6](2004 version of the Gene
Atlas) and GSE7307[31] (the “human body index”) were
used to find molecular features in normal tissues and to
derive the 56-gene template profiles. (Additional file 1:
Table S1) Datasets GSE14334, GSE3204, GSE5364 and
GSE6932 were used as testing data to further explore
the biological implications of GETs. Datasets GSE1133,
GSE2361, GSE5364 and GSE6932 were hybridized on
the Affymetrix GeneChip HG-U133A and GSE7307 on
the HG-U133plus2.0. The Affymetrix GeneChip HG-
U133plus2.0 contained 54,675 probe sets (representing
around 38,572 unique UniGene clusters) which cover all
the 22283 probe sets (representing 14,593 unique Uni-
Gene clusters) synthesized on the HG-U133A. The addi-
tional 62 datasets used for large-scale tissue prediction
had all been hybridized on either HG-U133A or HG-
U133plus2.0. The accession identification as well as the
associated information are summarized in Additional
file 1: Tables S1 and S3.

Molecular annotation for selected genes

The gene sets were annotated by searching the data-
bases at the DAVID server (http://david.abcc.ncifcrf.gov/
home.jsp) with Entrez Gene [32] identifier as input. Cel-
lular location and biological processes were searched
against Gene Ontology (GO) [33]. The molecular func-
tions were searched against PANTHER[34], since
PANTHER gave a more complete set of biologically-
relevant results for our gene set than GO. Pathways
were searched against KEGG [35].

Microarray Analysis
For those datasets whose CEL files are available at GEO,
the data were first subjected to quality assessment by
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AffyQualityReport to remove the poor quality arrays and
then to RMA[36] processing for data normalization.

For identification of the 56 signature genes, this pre-
processing procedure resulted in 143, 35 and 473 arrays
for GSE1133, GSE2361, and GSE7307, respectively.
Gene filtration was carried out by firstly selecting from
each of the three training datasets the genes whose coef-
ficients of variation ranked at top 2.5% of the entire
transcriptome across different tissue types. The resulted
highly variably expressed genes were then intersected to
generate a set of candidate tissue-classifier genes which
were later subjected to data redundancy elimination
through hierarchical clustering against the 24 tissues
commonly present in the three sets of training data. Fol-
lowing the hierarchical cluster analysis, one representa-
tive gene for each cluster was selected and additional
genes with highly similar expression profiles got
removed. This procedure resulted in 56 genes.

For tissue classification, the probe set intensities of the
56 genes or an equivalent number of random probe sets
of the 24 selected tissues were extracted from each of
the three GEO datasets using the programs Microsoft
Access and Excel. The extracted probe intensities from
the three datasets were then combined into a 56 x 72
matrix which was then subjected to hierarchical cluster-
ing with the GenePattern package [37] using Pearson
correlation for similarity computing and average for
clustering. Ten sets of 56 random probe sets were pro-
duced by a random number generation program written
in C. Each set was used for a separate hierarchical clus-
tering analysis.

Both AffyQualityReport and RMA were obtained from
the Bioconductor package [38] in the R package (http://
www.r-project.org/). Descriptive statistical analyses were
computed using Excel while hierarchical clustering with
the GenePattern package.

Tissue prediction using the 56 genes

Tissue prediction was performed following the KNN
method (k-nearest neighbor) with k = 1. It compares
the c.f. of the 56-gene profiles between a test tissue and
each of our 24 tissue-specific GET profiles, one for each
tissue type. The tissue type with highest correlation was
nominated as our prediction. A computer program in R
language was implemented to accomplish this task.

Dataset retrieval from GEO for large-scale tissue-
prediction

Text The entire GEO database (2009-11-2 freeze) was
searched with the following criteria: platform as GPL96
(Affymetrix HG-U133A) or GPL570 (HG-U133plus2.0),
sample source containing one of the 24 distinguishable
human organ/tissues and key word in the sample-related
fields containing “normal”. Two bioinformatics strategies
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were used to carry out the search: one was to apply
SQL commands to the local MySQL database housing
the data from the soft files of GPL96 and GPL570
which were imported from GEO website. The other
strategy was to directly query the GEO database with
Entrez keywords through the NCBI web interface. The
union of both searching results was taken, followed by
manual filtration to exclude irrelevant datasets that, for
example, came from cell lines or specific cell types.
Those datasets which had been contributed by the same
research group as the three source datasets, GSE3526
for instance, were also removed from our test set.
Expression profiles of the 56 genes were then extracted
from the 61 resulting datasets.

Datasets of 56 gene expression values were organized
into RMA-like or MAS-like according to the data pre-
processing methods. For those datasets that had been
normalized with MAS5 or equivalent method, logarith-
mic transformation was carried out prior to tissue-
prediction analysis. For three datasets (GSE13355,
GSE14951, GSE17539) it was hard to judge whether
logarithm transformation was necessary and their CEL
files were therefore preprocessed with AffyQualityReport
followed by RMA normalization before tissue-prediction
analysis.

Gene network construction

Gene networks were constructed with the MetaCore
package using the algorithms “network analysis” and
“receptor targets modeling”. The algorithms are variants
of the shortest paths algorithm where the main para-
meters are: 1) relative enrichment with the uploaded
data (the 56 genes in this study), and 2) relative satura-
tion of networks with canonical pathways. As a control
for this network analysis, a set of 56 genes randomly
selected from the Affymetrix microarray HG-U133A
was entered as a query and no network was produced
by either of the algorithms. The control experiments
were repeated twice.

Additional material

Additional file 1: Table S1. Summary of three datasets. Table S2. The
over-represented KEGG pathways mapped with the 56 genes. Table S3.
Tissue prediction on the normal human tissues in GSE5364 using as
template the 56-gene profiles constructed from the 24 normal tissue
types. Table S4. Results of the large-scale tissue prediction with the 56-
gene templates organized by dataset. Table S5. Large-scale prediction of
normal human tissues with GETs using Spearman correlation. Table S6.
Tissue prediction on the ABI-platform based dataset GSE 7905 using the
56-gene template. Table S7. Regression slopes of the correlations
between the 56-gene profiles from fetal lungs and that from each of the
24 tissue GETs. Figure S1- Hierarchical clustering analysis on the 24
tissues by the 56 signature genes. Figure S2- Heat map of hierarchical
clustering of the randomly selected 56 probe sets. Figure S3-
Dendrogram of the hierarchical clustering results for tissue classification
by the most expressed genes.
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