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Abstract

Background: The Apiaceae family includes several vegetable and spice crop species among which carrot is the
most economically important member, with ~21 million tons produced yearly worldwide. Despite its
importance, molecular resources in this species are relatively underdeveloped. The availability of informative,
polymorphic, and robust PCR-based markers, such as microsatellites (or SSRs), will facilitate genetics and
breeding of carrot and other Apiaceae, including integration of linkage maps, tagging of phenotypic traits and
assisting positional gene cloning. Thus, with the purpose of isolating carrot microsatellites, two different
strategies were used; a hybridization-based library enrichment for SSRs, and bioinformatic mining of SSRs in
BAC-end sequence and EST sequence databases. This work reports on the development of 300 carrot SSR
markers and their characterization at various levels.

Results: Evaluation of microsatellites isolated from both DNA sources in subsets of 7 carrot F, mapping
populations revealed that SSRs from the hybridization-based method were longer, had more repeat units and were
more polymorphic than SSRs isolated by sequence search. Overall, 196 SSRs (65.1%) were polymorphic in at least
one mapping population, and the percentage of polymophic SSRs across F, populations ranged from 17.8 to 24.7.
Polymorphic markers in one family were evaluated in the entire F,, allowing the genetic mapping of 55 SSRs (38
codominant) onto the carrot reference map. The SSR loci were distributed throughout all 9 carrot linkage groups
(LGs), with 2 to 9 SSRs/LG. In addition, SSR evaluations in carrot-related taxa indicated that a significant fraction of
the carrot SSRs transfer successfully across Apiaceae, with heterologous amplification success rate decreasing with
the target-species evolutionary distance from carrot. SSR diversity evaluated in a collection of 65 D. carota
accessions revealed a high level of polymorphism for these selected loci, with an average of 19 alleles/locus and
0.84 expected heterozygosity.

Conclusions: The addition of 55 SSRs to the carrot map, together with marker characterizations in six other
mapping populations, will facilitate future comparative mapping studies and integration of carrot maps. The
markers developed herein will be a valuable resource for assisting breeding, genetic, diversity, and genomic studies
of carrot and other Apiaceae.
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Background

The Apiaceae family (order Apiales) contains a number
of important vegetable and spice crop species including
carrot, celery, fennel, cilantro, parsley and parsnip. Car-
rot (Daucus carota L.) is the most economically impor-
tant species in the Apiaceae, with more than 21 million
tons produced yearly worldwide (data for year 2003;
http://faostat.fao.org/faostat). Carrot consumption has
steadily increased in recent decades for several reasons,
including a heightened awareness of its health-promot-
ing attributes (carrots are the richest source of provita-
min A carotenoids in the U.S. diet [1]), development of
fresh-cut carrot products convenient for consumers, and
adaptation of improved cultivars for warmer production
areas [2].

Despite their economic importance, carrot and other
Apiaceae have relatively underdeveloped molecular
resources [3]. Three unsaturated linkage maps, mainly
based on anonymous dominant AFLP markers, have
been constructed in carrot [4,5] to assist breeding of
this species. Inheritance studies on natural carotenoid
mutants have identified factors conditioning root pig-
ment accumulation [6], and both simply inherited pig-
ment traits and QTL have been included in these maps
[4,5,7]. The more recent addition of 22 genes from the
carotenoid biosynthetic pathway [8], as well as Transpo-
son-Display markers [9], onto one of the maps has
increased both maker informativeness and coverage.
The latter map, which was constructed using an F,
family derived from a cultivated x wild carrot cross, is
considered the carrot reference map because it harbors
important phenotypic traits, has fairly good coverage
and includes the largest number of informative markers.
However, direct comparisons between the reference and
other carrot maps are currently difficult due to the lack
of common markers across maps. This fact seriously
limits the usefulness of these maps for assisting breed-
ing, especially considering that a number of important
carrot traits, including nematode resistance [10], antho-
cyanin pigmentation and reduced-sugar accumulation
[4], have been mapped in unrelated genetic back-
grounds. The lack of common markers across carrot
maps is mainly due to an insufficient availability of
informative and robust PCR-based markers. The carote-
noid genes mapped by Just et al. [8] are not easily trans-
ferred to other maps with different genetic backgrounds,
since they were mainly mapped by sequence detection
of single polymorphism nucleotides (SNPs), rather than
by fragment length polymorphisms, and because
sequence conservation was very high (i.e., lack of poly-
morphism) in some carotenoid genes [8]. Thus, for
these genes, little SNP polymorphism may be expected.
The development of polymorphic and robust PCR-based
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markers in carrot, such as microsatellites, would facili-
tate their inclusion in different maps, thus serving as
anchoring points for map integration. This would imme-
diately increase map marker density, SSR-tagging rele-
vant phenotypic traits and, perhaps, facilitate
applications such as positional gene-cloning. In addition,
other carrot genetic research studies, such as analysis of
genetic diversity and phylogenetic reconstructions, pre-
viously approached using anonymous dominant AFLP
markers [11] or laborious time-consuming codominant
RFLPs [12], would also benefit from the development of
microsatellite markers.

Microsatellites, or simple sequence repeats (SSRs), are
the marker of choice in many molecular genetic applica-
tions including mapping, fingerprinting, genetic diver-
sity, population structure analysis, gene flow and
germplasm conservation studies. Their widespread adop-
tion is due to several desirable characteristics: they are
codominant, frequently and evenly distributed through-
out genomes, selectively neutral, highly reproducible and
rely on simple polymerase chain reaction (PCR) technol-
ogy. In addition they are ubiquitous (SSRs can be found
in nuclear and mitochondrial genomes of all organisms,
as well as in plastid genomes) and hypervariable. The
latter property is attributed to a high mutation rate of
these repeats resulting from DNA polymerase slippage
during DNA synthesis [13]. This mutational mechanism
generates gains or losses of one or a few repeat units in
the microsatellite, which accumulate more rapidly than
point mutations and InDels [14], leading to a high num-
ber of alleles per locus. In plants, the high polymorph-
ism found in microsatellites has allowed the detection of
variability in species otherwise characterized by low
levels of genetic diversity [15].

In Apiaceae, very few publicly available SSRs have
been reported previously, and these were developed
from carrot (9 SSRs [16]) and celery (11 SSRs [17]), the
two most economically important species in the family.
The availability of a large set of SSRs in carrot is likely
to benefit research in other Apiaceae, since significant
marker transferability has been observed across related
taxa [18]. This is of particular interest to research
groups working in minor crops or species with limited
research funds; many laboratories have sufficient
resources and expertise for running SSR-based PCR ana-
lyses, although perhaps not for the isolation and charac-
terization of new loci.

In this study we report on the development of 300
new carrot SSR markers. Further characterization of
these loci includes analysis of SSR distributions in
genomic and EST sequence, linkage mapping onto the
carrot reference map, evaluation of their mapping
potential in subsets of seven carrot F, mapping
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populations, evaluation of their potential for assessing
genetic diversity among Daucus carota accessions, and
evaluation of SSR marker transferability across 24 Apia-
ceae taxa.

Results

Distribution of microsatellites in genomic and EST
sequence

Substantial variation in SSR frequency and distribution
between genomic and EST sequence of carrot was
found (Table 1). Because frequency distributions for
GSSRs mainly reflect the library enrichment procedure
(i.e., GSSRs are not a random sample of SSRs from
genomic DNA), conditioning the type, length and
sequence motifs of the SSRs obtained, only SSRs from
BAC end sequence (BSSRs) were used as representatives
of genomic SSRs in comparisons with SSRs from EST
sequence (ESSRs). Overall, SSRs occurred at a lower
density in genomic DNA (BAC ends) (134.5 SSRs/Mbp)
than in ESTs (214.8 SSRs/Mbp). Dinucleotide (~17%),
trinucleotide (~42%), and tetranucleotide repeats (~24%)
predominated in genomic DNA, whereas in ESTs trinu-
cleotides were the predominant repeats accounting for
50% of the total SSRs. The absolute density for this
repeat type in EST data (108 trimers/Mbp) was nearly
twice its density found in genomic sequence (56 tri-
mers/Mbp). The same was observed for dinucleotide
and hexanucleotide repeats, which were more than
twice as frequent in ESTs (54.1 dimers/Mbp and 10.2
hexamers/Mbp) compared to genomic DNA (22.4
dimers/Mbp and 4.0 hexamers/Mbp) (Table 1). Conver-
sely, the density of pentanucleotides, heptanucleotides
and octanucleotides was more than 2 fold higher in
genomic sequence than in EST sequence.

Comparisons among microsatellites isolated from the
different sequence datasets (GSSRs, BSSRs, and ESSRs)
revealed that di-, tri-, and tetranucleotide repeats
accounted for 82.6% to 97.6% of the SSRs among the
three types evaluated, with di- and tetranucleotide
motifs accounting for most of the GSSRs, while trinu-
cleotide motifs were most common among BSSRs and
ESSRs (Table 1).

Within genomic DNA, variation was also found
between the two sequence datasets examined. Overall,
GSSRs had more repeat units (7.9 versus 4.4) and conse-
quently were longer (23.1 bp versus 13.9 bp) than BSSRs
(P < 0.0001). The larger number of repeat units in
GSSRs compared to BSSRs was evident and significant
(P < 0.01) for di, tri, and tetranucleotides, whereas penta
to octanucleotides had the same mean number of
repeats in both datasets. SSR length had a similar rela-
tionship for these repeat types in both datasets. With
regard to repeat types, GSSRs yielded a higher propor-
tion of di and tetranucleotides, as compared to BSSRs,
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whereas trinucleotides and penta to octanucleotides
were more frequent in the latter group. In addition,
GSSRs included a significant fraction (16.5%) of often
long, compound microsatellites, such repeats being
nearly 7 times more frequent in this group compared to
BSSRs.

Based upon posterior probabilities, the distributions of
sequence motifs ((AT),, (AC),, (CG),, etc.; (AAC),,
(ACC),, (ACG),, etc.) in the dinucleotide and trinucleo-
tide classes were not random for BSSRs and ESSRs
(Table 2). In BAC end sequence, (AT), and (CG), dinu-
cleotides were more and less frequent than expected,
respectively. In ESTs, (AT), repeats were less frequent
than expected whereas (AG), and (CT), dinucleotides
occurred at a higher-than-expected incidence. AG and
AC motifs occurred frequently in dinucleotide SSRs of
all sequence origins, although AT dinucleotides were
most frequent among BSSRs. Repeats of AAG, ACT,
and AAAT were abundant and common to both geno-
mic and ESSRs. On the other hand, repeats of AAC,
AGT, ACAT, AATT, and AAAAG, predominated
mainly among genomic microsatellites, whereas AGG,
AGC, AAAG, AGCCC, AAAAAG, and AAAGAG
motifs were most frequent in EST SSRs (Table 1). Com-
parisons between observed and expected trinucleotide
repeat motifs presented no clear trends but observed
distributions differed from those expected for many
motifs to result in significant deviation based upon chi-
square analysis (Table 2).

Microsatellite distribution was not uniform across
coding and non-coding regions of carrot. Frequency dis-
tributions of both repeat types and sequence motifs for
each microsatellite origin, i.e., a library enrichment pro-
cedure (GSSRs), BAC end-derived (BSSRs) and EST-
derived SSRs (ESSRs), varied markedly across these
DNA fractions (Figure 1). Among GSSRs, di- and tetra-
nucleotide repeats were most common, and tetranucleo-
tide repeats were distinctive in being the only GSSR
repeat type with a significantly different occurrence
inside and outside of ORFS, with over 70% of tetranu-
cleotide SSRs inside ORFs. Analysis of repeats in BAC
end sequence (BSSRs) revealed a predominance of trinu-
cleotides in coding sequences, (accounting for 25% of
the total SSRs and nearly half of the repeats found in
ORFs) compared to non coding regions, whereas tetra-
nucleotides were somewhat more abundant in non-cod-
ing regions. The overrepresentation of trinucleotides in
ORFs of genomic DNA was higher than expected by
chi-square analysis (Table 3) and associated to a high
frequency of AAG, AAC, AGT, ACT, ACG, and ACC
motifs, whereas non-coding regions rich in tetranucleo-
tides were particularly GC-poor with an abundance of
AAAT and AATT motifs (Figure 1). Dinucleotide, pen-
tanucleotide, and hexanucleotide repeats were nearly



Table 1 Distribution of microsatellites GSSRs (BSSRs), and ESSRs) of carrot*

GSSRs BSSRs ESSRs
SSR type Count Mean # of repeat Most Count Mean # of repeat Density * Most frequent Count Mean # of repeat Density ¥ Most frequent
(%) units/mean SSR frequent (%) units/mean SSR (SSR/Mb) motifs* (%) units/mean SSR (SSR/Mb) motifs*
length (bp) motifs* length (bp) length (bp)
Dinucleotide 116 10.0/21.2 AG(61), AC 39 7.8/155 224 AT(46), AC, AG 207 8.1/165 54.1 AG(78), AC
(46.8) (34) (16.7) (25.2)
Trinucleotide 28 7.0/213 AAC, AGT, 97 4.3/129 557 AAG(27), AAC(17), 411 44/131 107.5 AAG(25), ACT
(11.3) AAG (41.5) AGT(13), ACT(12), (50.1) (15), AGG(10),
AAG(27) AGC(10)
Tetranucleotide 98 59/262 ACAT (59), 57 33/122 328 AAAT(33), AATT(21) 129 3.1/123 337 AAAG, AAAT
(39.5) AAAC (24.4) (15.7)
Pentanucleotide 2 (0.8) 3.0/15.0 - 27 3.0/15.2 155 AAAAG, AGCCG 29 (3.5) 3.1/157 76 AGCCC
(11.5)
Hexanucleotide 2 (0.8) 3.0/180 - 7 (3.0) 3.0/180 4.0 - 39 (4.8) 32/189 10.2 AAAAAG,
AAAGAG
Heptanucleotide 0 (0) 3.0/21.0 - 4(1.7) 3.0/21.0 23 - 4 (0.5) 3.0/21.0 1.0 -
Octanucleotide 2 (0.8) 3.0/24.0 - 3(1.3) 3.0/24.0 1.7 - 202 3.5/280 0.5 -
Total perfect 248 7.9/23.1 234 44/139 134.5 821 5.0/14.2 2148
SSRs (100) (100) (100)
Compound 41 -/49.9 6 (2.6) -/383 34 26 (3.1) -/329 6.8
SSRs (16.5)
Total seq. 0.04 1.74 382
(Mbp)®
GC content (%) 379 383 423

* A minimum of 6 repeat units (r.u.) for dinucleotides, 4 r.u. for trinucleotides, and 3 r.u. for tetra-, penta-, hexa- hepta- and octanucleotides were used as parameters for searching microsatellites in genomic and EST
sequence of carrot. * Only density values for SSRs from BAC end sequences (BSSRs) and from ESTs (ESSRs) are presented (because GSSRs derive from an SSR-enriched library, analyses of this dataset would result in
an overestimation of the SSR density in genomic DNA). ¥ SSR motif considering complementary (e.g., “AAG” includes AAG + CTT motifs); SSR motifs occurring at a rate of at least 5% of the total are listed with
occurrence as percentage within each SSR type class in parentheses; SSR classes without predominance of a particular motif are denoted as “-". ¢ Total length of sequences analyzed. " Includes both GSSRs and

BSSRs.
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Table 2 Departure of dinucleotide and trinucleotide
genomic (BAC end, BSSR) and EST (ESSR) motifs from
expected distributions*

SSR type v df p
BSSR dinucleotide 68 5 < 0.0001
BSSR trinucleotide 38 19 0.006
ESSR dinucleotide 6986 5 < 0.0001
ESSR trinucleotide 82 19 < 0.0001

*A minimum of 6 repeat units (r.u.) for dinucleotides were used as parameters
for searching microsatellites in genomic and EST sequence of carrot. Chi-
squared distributions indicate comparison of observed SSR distribution of SSR
motif types ((AT),, (AQ),, (CG),, etc.; (AAQ),, (ACC),, (ACG),, etc.) to posterior
probabilities. Tests are partitioned by library and sequence motif. y2 = chi-
square statistic; df = degrees of freedom. SSRs were non-randomly distributed
across motif types.

equally frequent in protein coding and non-coding
regions of BAC end sequence (Figure 1B).

The distribution of SSR types in EST sequences was
especially variable, with trinucleotides predominating in
OREFs, representing more than 65% of the SSRs found
inside ORFs (data not presented) and 26% of all ESSRs,
and dinucleotides and tetranucleotides predominating in
non-protein coding sequences of the ESTs (i.e., mainly
UTRs) (Figure 1C). In EST ORFs, the most frequent tri-
nucleotide motifs were AAG, ACT, AGG, AGC, and
ACC. In the dinucleotides-rich UTR region of ESTs, AG
and AC motifs were three times more frequent than in
protein-coding regions of ESTs (Figure 1F).

SSR marker development

Primer pairs for 156 GSSR and 144 BSSR loci were
designed. Of these 300 primers pairs, 243 flanked single
SSRs (202 perfect repeats and 41 compound SSRs) and
57 flanked multiple SSRs (i.e., the template sequence
flanked by the primers annealing sites included more
than one SSR). Markers with single perfect repeats
included 59 dinucleotides, 56 trinucleotides, 64
tetranucleotides, 10 pentanucleotides, 7 hexanucleotides,
3 heptanucleotides, and 1 each of mono, octa and
nonanucleotides. Further information on these 300 SSR
markers is presented in Additional File 1 - Table S1,
including primer sequence, annealing temperature,
repeat motif and its position in template sequence,
expected amplicon length, and the template DNA
sequence carrying the SSR (for developing alternative
primers if desired). For a number of microsatellites
detected computationally, we were not able to design
primers because they either lacked suitable flanking
sequences or the total sequence length was too short
(< 120 bp).

Marker polymorphism analyses in carrot F, families
A total of 300 SSRs (156 GSSRs and 144 BSSRs) were
successfully characterized in subsets of 7 carrot F,
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families (Table 4). Details on the performance of each
SSR marker in the different mapping populations are
presented in Additional File 1 - Table S2. Overall, 196
SSRs (65.1%) were polymorphic in at least one mapping
population. These included 120 GSSRs and 76 BSSRs.
Of particular interest for map merging is the fact that
123 SSRs (87 GSSRs and 36 BSSRs) were polymorphic
in two or more mapping populations, suggesting that
these common markers may serve as anchoring points
across maps. Overall, the percentage of potentially map-
able markers in the F, families, as resolved by high-resolu-
tion agarose gel electrophoresis, ranged from 17.8% (in
population #4, Table 4) to 24.7% (population #5). Codomi-
nant segregation was observed in 38% (population #2) to
78% (population #6) of the segregating markers, whereas
dominant segregation accounted for 22% (population #6)
to 62% (population #2) of the segregating markers.

Substantial variation in the degree of polymorphism
was found between the two sets of markers (GSSRs and
BSSRs). In general, GSSRs were more polymorphic than
BSSRs. Depending on the F, family, 21.7 - 35% (mean
29.6%) of the GSSRs, and 6.3 - 17.4% (mean 12.8%) of
the BSSRs, were polymorphic. Overall, nearly 77% of
GSSRs and 52% of BSSRs were polymorphic in at least
one F, family. The mean polymorphism index (PI),
which takes in account the type of polymorphism (e.g.,
dominant, codominant), was significantly higher (P <
0.001) for GSSRs (23.6%) compared to BSSRs (9.8%),
regardless of the mapping population.

SSR polymorphism -as evaluated in 7 mapping popu-
lations- was related to repeat number. Figure 2 presents
mean polymorphism indexes for perfect microsatellites
across four repeat number classes. A general trend
showing increasing rates of polymorphism associated
with increased repeat number was observed. Supporting
this observation, significant correlations (P < 0.0001)
between number of repeat units -and total SSR length-
and polymorphism index (PI) were detected. Also, the
percentage of polymorphic loci (i.e., the % of markers
that were polymorphic in at least one F, population) fol-
lowed a similar trend across the repeat number classes,
with values of 51.8%, 65.8%, 85.2% and 76.5% for SSR
markers with < 6, 6-10, 11-15, and > 15 repeat units,
respectively (Figure 2).

Markers harboring multiple perfect microsatellites in
their amplicon sequence (i.e., “multiple SSRs/amplicon”)
with 11-15 repeat units were the most polymorphic
markers, followed by long dinucleotides and tetranucleo-
tides with more than 11 repeat units. With the excep-
tion of trinucleotides, for which there was no clear
increase in polymorphism with increased repeat number,
the SSR markers considered altogether revealed a clear
positive relationship between the two variables, with a
nearly 3-fold increase in polymorphism when comparing
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Figure 1 Distribution of microsatellites in genomic and transcript sequences of carrot. Frequency distribution (%) of predominant repeat
types (A-C) and sequence motifs (D-F), by microsatellites origins GSSRs (A, D), BSSRs (B, E), and EST-derived SSRs (ESSRs) (C, F), inside and outside

Sequence motifs

the lowest (< 6; PI = 9%) and highest (> 15; PI = 26%)
repeat number classes.

Marker transferability across Apiaceae

A total of 300 SSR loci were assessed across 23 Apiaceae
accessions for a total of 6,900 primer/accession combi-
nations. Of these, 4,346 (63%) produced fragments
within the expected size range. Combinations that pro-
duced fragments outside the expected size range (i.e., >
100 bp larger or smaller than the original carrot
sequence) were considered non-specific amplifications
and regarded as negative results. This range was

arbitrarily selected to simplify the analysis, especially in
the cases where more than two bands were amplified.
All successful amplifications were obtained at annealing
temperatures between 0 and -2° of the recommended
value. Alternative PCR protocols, such as touchdown,
did not significantly improve amplification success.

The potential transferability of SSRs across Apiaceae
taxa varied widely among the accessions (see Additional
File 1 - Table S3 for details on the accessions used) and
this was highly associated with the accessions’ phyloge-
netic relatedness to carrot, the species from which the
markers were developed (Figure 3). Thus, for carrot (D.
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Table 3 Placement and chi-square significance of
microsatellite distribution inside and outside of ORFs
from GSSRs, BSSRs, and ESSRs of carrot*

Repeat type GSSRs BSSRs ESSRs
¥ plf=1 x> pdf=1) %> p(df=1)
Dinucleotide 279 0.10 0.23 063 60.89 0.00

Trinucleotide 0.14 0.71 455 0.03 1.30 025
Tetranucleotide  18.00 0.00 2.96 0.09 17.06 0.00
Pentanucleotide  2.00 0.16 0.04 0.84 357 0.06
Hexanucleotide  0.00 1.00 0.14 0.71 042 0.52
Total 2.73 0.10 0.15 0.70 29.70 0.00

* A minimum of 6 repeat units (r.u.) for dinucleotides, 4 r.u. for trinucleotides,
and 3 r.u. for tetra-, penta-, hexa-, hepta-,and octanucleotides were used as
parameters for searching microsatellites in genomic and EST sequence of
carrot. Chi-square distributions indicate observed SSR motif types inside
versus outside ORFs as compared to posterior probabilities. > = chi-squared
statistic; df = degrees of freedom. Observed distributions generally fit those
expected (p =0.05) except for tetranucleotides for GSSRs (from a
hybridization-based enrichment of genomic library), and trinucleotides for
BSSRs (from BAC end sequence). For ESSRs (from ESTs) the observed
distributions only fit expected ones for tri-, penta-, and hexanucleotide
repeats, with observed occurrence of di- and tetranucleotide repeats
occurring much more often outside ORFs than expected.

carota) accessions, the total number of markers that
produced amplicons of expected size was high, and ran-
ged from 242 (81%), for the wild carrot ‘QAL’, to 268
(89%), in the Nantes-type French cultivar ‘De La Halle’,
with a mean value of 258 (86%) markers. PCR amplifica-
tion efficiencies in non-carota Daucus accessions were
intermediate between carrot and non-Daucus Apiaceae
accessions, with a mean of 175 (58%) successful amplifi-
cations, and ranging from 128 (43%) in D. gutattus to
224 (75%) in D. capillifolius. As expected, D. capillifo-
lius, which is a close relative of D. carota and the only
species in our data set with the same chromosome num-
ber as carrot (2n = 2x = 18), had the highest success
rate, almost as high as the D. carota accessions (Figure
3). The more distantly related non-Daucus Apiaceae
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species generated SSR amplicons with 91 (30% in cilan-
tro) to 134 (45% in Orlaya grandiflora) of the markers,
with an average of 123 (41%) for this group. Again, the
species most closely related to carrot within this group,
O. grandiflora, had higher SSR amplification efficiency
than other non-Daucus accessions.

Consistent with the previous analysis, the number of
SSR primer pairs that produced expected-size amplicons
across all the Daucus carota accessions (8), non-carota
Daucus (16) and Apiaceae (23) was 200, 23, and 8,
respectively. The performance of each SSR marker
across the 23 Apiaceae accessions is presented in Addi-
tional File 1 - Table S4.

Linkage mapping

Of the 300 SSR markers evaluated for polymorphism
and mode of segregation in the B493 x QAL popula-
tion (see Additional File 1 - Table S2), 170 (56.7%)
were monomorphic and 66 (22%) polymorphic,
whereas 28 SSRs (9.3%) did not produce amplicons
and 36 (12%) yielded ambiguous band patterns that
did not allow their inclusion in the previous classes.
The polymorphic markers were assayed in the entire
F, population. Of these, 11 SSR markers were omitted
because severe segregation distortion and/or multiple
PCR products (presumably due to duplicated loci or
non-specific amplifications) were observed. The
remaining 55 markers -13 BSSRs and 42 GSSRs- gen-
erated robust and easily interpretable genotypes that
could satisfactorily be used for individual genotyping
and genetic mapping. These included 38 codominant
and 17 dominant SSRs, which were successfully placed
in the carrot reference linkage maps (Figure 4). No
segregation distortion was detected in this SSR marker
array as evaluated by F, chi-square segregation ana-
lyses. The parental maps of QAL and B493 included

Table 4 Carrot F, mapping populations used to evaluate SSR markers

Ref. Pedigree Phenotypic segregating traits of interest Reference
1. B493 x QAL QTL for carotenoid accumulation Just et al. (2007) [7], Just et al. (2009) [8]
(22 structural carotenoid genes mapped)
HCM x Brasilia QTL for carotenoid accumulation Santos and Simon (2002) [5]

B9304 x YC7262

Y, - Differential xylem/phloem carotene levels

Vivek and Simon (1999) [4]

Rs - Sugar type (reducing/non-reducing) in roots
P; - Purple/yellow pigment accumulation in roots

4. Biennial5 x Criolla INTA Vernl - Vernalization requirement Unpublished
Rf1 - Fertility restoration
5. 70349 Y, - Differential xylem/phloem carotene levels Unpublished
[(SNts x Camberly) x Rs - Sugar type (reducing/non-reducing) in roots
(Turkish x 2566B)] P; - Purple/yellow pigment accumulation in roots
P - Purple/green petiole
6. 10117 Y, - Differential xylem/phloem carotene levels Unpublished
(PI173687 x B10138) x P; - Purple/yellow pigment accumulation in roots
(P1173687 x B493)
7. (Ping Ding x YC7262) x 8542 Mj, - Resistance to Meloidogyne javanica Unpublished
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Figure 4 Genetic linkage maps of the wild carrot parent QAL and cultivated parent B493. Microsatellites mapped in this work are
denoted in red. Carotenoid biosynthesis genes [8] and DcMTD markers [9] are denoted in blue and green letters, respectively. Codominant
markers present in both QAL and 493 maps are underlined. B493-map positions for significant QTL for root total carotenes (displaying 95%
support intervals) in LG5 (former LG2) and LG/ (former LG5), were estimated based on data published previously [7,58], and represented by
yellow circles. LGs were ordered and named according to their corresponding physical chromosomes [19].
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49 (39 codominant, 10 dominant) and 46 (39 codomi-
nant, 7 dominant) SSRs, respectively. These include a
codominant SSR marker (ssr-w93) previously mapped
in LG9. The mapped SSRs were distributed across all 9
linkage groups (LGs) of the carrot genome, with 2-8
and 2-9 markers/LG in the QAL and B493 maps,
respectively. Only 5 and 3 map intervals with genetic
distance greater than 20 cM (but smaller than 26 cM)
scattered throughout different LGs were observed in
the B493 and QAL maps, respectively, indicating a
relatively evenly distributed map coverage. A compara-
tive summary of both parental maps, by linkage
groups, is presented in Table 5.

Overall, after mapping the SSR loci, the linkage map
of the wild carrot QAL contains 202 molecular mar-
kers (69 codominant and 133 dominant) covering
1,120.8 cM, with an average distance between adjacent
markers of 5.8 cM, whereas the cultivated B493 map
harbors 193 markers (69 codominant and 124 domi-
nant) covering 1273.2 cM, with a 6.9 ¢cM average mar-
ker distance. Thus, although the parental B493 map
includes fewer markers, it has a larger total map length
than the QAL map. A paired t-test revealed a signifi-
cantly higher (P = 0.047) mean recombination fraction
between adjacent markers (6.9 for B493 and 5.8 for
QAL) when comparing the two parental maps.
Although marginally significant, the higher mean
recombination found in B493 may help explain its lar-
ger observed total map length.

Because in a very recent study [19] the linkage groups
(LGs) from this map were integrated with actual chro-
mosomes by means of flourescent in situ hybridization
(FISH) mapping of BAC clones anchored by LG-specific
markers (including some SSRs), the LGs in Figure 4
were named, ordered and oriented north-south accord-
ing to the corresponding chromosomes. By convention,
chromosomes are numbered consecutively from longest
to shortest, and they are oriented with their short and
long arms following north-south directions. Thus, corre-
spondences between our LG designations and those
from previous maps [5,8,9] are as follows: LGs 1, 3, 5, 6,
and 7 correspond to former LGs 1, 8, 2, 3, and 5,
respectively, with conserved orientation, whereas LGs 2,
4, 8, and 9, in this study (Figure 4) correspond to former
LGs 4, 6, 9, and 7, respectively, with inverted north-
south orientations.

The 38 fully informative (i.e., codominant) SSR mar-
kers consistently mapped to homologous LG pairs of
the cultivated (B493) and wild (QAL) carrot genomes (i.
e., all SSRs that mapped on the same LG in one parent
also did so in the other parent). In addition, for these
common markers, complete conservation of locus order
was observed along the individual LGs between the two
maps (Figure 4). This was also true for other -previously
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mapped- codominant markers (e.g., carotenoid genes,
SCARs). Thus, no evidence of rearrangement of chro-
mosomal blocks between the wild and the domesticated
carrot subspecies was found.

Within each LG, SSRs were frequently positionally
associated to genes. More than 40% of the SSR markers
of both maps (19 and 18 SSRs in the QAL and B493
maps, respectively) mapped within 10 ¢cM from pre-
viously mapped genes, whereas 16 of the 22 (~73%) car-
otenoid genes - in both, QAL and B493 maps- had 1 or
more SSRs within a 10 ¢cM distance, suggesting that
these repeats are relatively frequent in genic regions of
the carrot genome.

SSR diversity in Daucus carota accessions

Our diversity analysis including 65 cultivated and wild
carrots revealed valuable information on the degree of
polymorphism of ten selected microsatellite loci. Table 6
presents the number of alleles (NA), allele lengths, and
expected heterozygosity (H,) found for these SSRs in
our D. carota diversity collection. For this germplasm,
190 different alleles, with lengths ranging from 144 to
433 bp, were identified. All the loci examined were
highly diverse. The average number of alleles per SSR
was 19.1 with a range of 10-29, whereas the mean
expected heterozygosity was 0.84, and ranged from 0.77
for gssr9 to 0.91 for gssr4. The most polymorphic loci
were gssrd (NA = 29; H, = 0.91) and gssr6 (NA = 19;
H, = 0.89), and the least polymorphic was gssr65 (NA =
10; H, = 0.79).

Discussion

Frequency and distribution of SSRs in carrot genomic and
EST sequence

Microsatellite density in genomic DNA of carrot was
estimated by analysis of 1.74 Mbp of BAC end sequence
(the GSSRs dataset was excluded from this analysis
because it derived from an SSR-enriched library and,
therefore, its analysis would result in an overestimation
of the SSR density in genomic sequence). Carrot had a
rather low SSR density (134.5 SSRs/Mbp) compared to
other species. SSRs analyses -using the same search
parameters and program as with carrot- in the complete
genome sequences of four model species revealed SSR
densities of 370, 507, 529, and 508 SSRs/Mbp in Arabi-
dopsis thaliana, grapevine, rice, and poplar, respectively.
The lower SSR density in carrot compared to these spe-
cies cannot be attributed to differences in the source of
genomic sequence (BAC ends versus whole genomes)
since analyses of BAC end sequence (BES) datasets from
these and other species were also much more dense in
microsatellites than carrot BES (data not presented).
Similarly, transcript sequences of carrot (214.8 SSRs/
Mbp), although more dense in SSRs than their genomic
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Table 6 General diversity statistics for 10 SSR loci
evaluated in 65 Daucus carota accessions

Locus Number of alleles Allele size range (bp) H.
gssr3 20 285-335 0.86
gssr4 29 253-320 091
gssro 19 283-331 0.89
gssr9 22 281-337 0.77
gssr1i6 16 229-346 0.82
gssr35 21 144-219 0.87
gssros 10 404-433 0.79
gssr85 14 219-294 0.84
gssr111 21 284-390 0.79
gssr134 18 272-334 0.8
total 190 144-433

mean 19.1 0.84
s.d. 52 0.05

counterparts, were also less frequent in these repeats
compared to ESTs of Arabidopsis (358 SSRs/Mbp),
grapevine (247 SSRs/Mbp), poplar (425 SSRs/Mbp), soy-
bean (403 SSRs/Mbp), rice (739 SSRs/Mbp), and sor-
ghum (646 SSRs/Mbp).

Carrot trinucleotides were more frequent in tran-
scripts than in genomic DNA. In addition, within BSSRs
trinucleotide repeats occurred preferentially inside
ORFs, and accounted for ~ 50% of the total SSRs found
in these protein coding regions. The abundance of these
repeats in ESTs and in ORFs is consistent with the
notion that protein-coding sequences tolerate better
frame-shift mutations (InDels) of 3 bp -or multiples of 3
bp- than other InDel lengths. Thus, trinucleotide repeats
within coding sequences may translate fully functional
proteins with a few extra (or fewer) aminoacids, whereas
InDels of other lengths would translate abnormal, often
deleterious, proteins. Consistent with our results, an
overrepresentation of trinucleotides in protein-coding
sequences has been reported previously in numerous
plant species [20-24], as well as in other eukaryotes
including humans, primates, rodents and insects [25,26].
The relative abundance of trinucleotides over other SSR
types has been attributed not only to negative selection
against frame-shift mutations in the coding regions but
also to positive selection for specific single amino-acid
stretches [21].

DNA polymerase slippage is the main mutational
mechanism leading to changes in microsatellite length
[13]. These changes in SSR size are most often gradual
and step-wise since polymerase slippage only generates
gains or losses of one or a few repeat unit(s) [27]. Thus,
the fact that SSRs in carrot transcripts generally had
fewer repeat units than SSRs in genomic sequence, even
for trinucleotide repeats (trinucleotides were twice as
frequent in ESTs compared to genomic data), suggests a
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negative selection pressure against microsatellite size
increase in protein-coding sequences.

The non-random distributions of motif sequences
among dinucleotide and trinucleotide SSRs of carrot
included a higher than expected incidence of (AT),
repeats in genomic DNA (BAC ends), like that of several
plant species including soybean, Arabidopsis and rice
[22], but unlike the (AC), predominant motif among
dinucleotides in humans [25]. In contrast, the (AT),
motif was less often observed in ESTs than expected,
while (AG), and (CT), were more common than
expected. This may suggest different constraints for
repeat motifs across diverse organisms.

Marker development and analyses in F, families

In this study, two different strategies were used for iso-
lating and developing carrot SSR markers. The hybridi-
zation-based approach, as described by Glenn and
Schable [28], yielded microsatellites (GSSRs) that were,
in average, significantly longer (23.1 bp versus 13.9 bp)
and had more repeat units (7.9 versus 4.4) than SSRs
from BAC end sequences (BSSRs). These differences
are, most likely, due to differences in the two strategies
used. DNA library enrichment methods based on hybri-
dization capture [28-31] are generally designed to yield
a higher proportion of SSRs with large number of repeat
units, targeting mainly long perfect repeats. Under this
system, long DNA stretches of perfect repeats are hybri-
dized more efficiently to the microsatellite probes and
they are retained at a higher rate, compared to short
repeats, during the washing steps, thus, increasing the
relative proportion of long microsatellite sequences in
cloned colonies [28]. Conversely, the BSSRs set repre-
sents a random sample -without enrichment for length,
repeat type or sequence motif- from genomic DNA.
Because of this, they provide a more reliable picture of
the microsatellite distribution in the carrot genome.
Longer and more repetitive SSRs have been obtained
through hybridization-based methods compared to
sequence-searches in other plant species, regardless of
the type of DNA examined (i.e., genomic or ESTs),
including Brassica [32,33], cotton [34], wheat and rice
[24].

The differences in repeat number and length between
GSSRs and BSSRs have important implications for
marker potentiality, particularly with regard to poly-
morphism. In general, GSSRs were significantly more
polymorphic than BSSRs, considering both the poly-
morphism index (PI) (23.6% versus 9.8%) and the per-
centage of polymorphic markers (77% versus 52%), and
these differences were associated to a higher repeat
number and length in the GSSRs group (as suggested by
the significant positive correlations obtained between
both variables and PI). Developments of SSR markers
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from other plant species, including cotton [35], barley
[36] and pine [37], have also noted positive relationships
between SSR polymorphism and number of repeat units.
Together, these results are consistent with studies
reporting that both SSR polymorphism and SSR muta-
tion rate have a positive relationship with repeat number
[38-40]. Concordantly, positive and significant relation-
ships have also been found between repeat length and
mutation rate in human [38], fruit fly [41] and yeast
[42] microsatellites. These studies indicate that polymer-
ase slippage, the main mutational mechanism in micro-
satellites [13], increases with higher repeat number and
length, leading to a higher diversity in longer, more
repetitive SSRs, as observed in the present study. How-
ever, contrary to these and our results, studies using
markers developed from other plants, such as Brassica
[32] and pearl millet [43], have reported lack of correla-
tion between size of the SSR, both measured by length
(bp) and repeat number, and detection of polymorphic
loci. As pointed out in the latter two studies, SSR evolu-
tionary age is a key factor for SSR diversity (i.e., recently
evolved microsatellites would have fewer polymorphisms
because of fewer occasions for mutation, even if they
are relatively long) and this may help explain the lack of
association found by them. In addition, most of the
above studies (including ours) cannot rule out the possi-
bility that InDels at regions other than the SSR motifs
may account for some of the polymorphisms, thus influ-
encing the expected relationship between length and
polymorphism.

A major interest for evaluating the SSR markers in the
carrot F, populations was to assess their potential for
mapping. Linkage maps using some of these F,s have
already been constructed (see Table 4) and others are
underway (Simon, personal communication). These
maps include different phenotypic traits of interest
(Table 4) and -before this study- they were mainly con-
structed using anonymous dominant markers, such as
AFLPs and RAPDs, with only very few markers, or
none, in common, thus, making their comparative ana-
lyses and/or integration difficult. The present work iden-
tified 123 SSRs (87 GSSRs and 36 BSSRs) that were
polymorphic in two or more mapping populations, sug-
gesting that these common markers may serve as
anchoring points for merging carrot maps. Besides the
inclusion of 56 SSR markers onto the carrot reference
map (see below), work is underway in our lab to include
these polymorphic SSRs in other maps with different
genetic backgrounds (see Table 4). The integration of
carrot linkage maps would enhance their usefulness for
assisting breeding of this species, by increasing marker
saturation nearby genes of interest and thereby facilitat-
ing applications like positional gene cloning, among
others.
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From our evaluation in seven carrot F, families, 196
SSR markers (65%) were polymorphic in at least one
mapping population. Because the PCR amplicons were
size-separated using high-resolution agarose gel electro-
phoresis, which can only resolve fragments with size dif-
ferences of at least 3 bp, a fraction of the markers
evaluated in some populations, generated ambiguous
band patterns. Although they may have been poly-
morphic, the bands were too close together in the gel to
unambiguously score, and were classified as mono-
morphic (i.e., only unambiguously polymorphic and
scorable markers were classified as “dominant” or “codo-
minant” in Additional File 1 - Table S2). Thus, if other
fragment separation systems, with better resolution, are
used, such as separation of fluorescently-labeled frag-
ments through capillary electrophoresis, the number of
polymorphic markers may be expanded in some popula-
tions, particularly in cases of dinucleotide SSR markers
varying in a single repeat unit.

High PCR amplification efficiencies were found in the
F, families for both sets of markers, GSSRs (83%) and
BSSRs (87%). Comparable amplification efficiencies have
been found in other plant species with SSR markers
developed using hybridizations-based methods (~ 90%
[44]) and sequence-based searches (85% [32]).

Transfer success of carrot SSRs across Apiaceae

The availability of SSR loci for economically important
species has increased interest in primer transferability to
related taxa, especially for species in which molecular
resources are limited. In Apiaceae, only a few publicly
available SSRs have been reported previously, and these
were developed from carrot (9 SSRs [16]) and celery (11
SSRs [17]), the two most economically important crop
species in the family. Results from this study indicate
that a significant fraction of carrot SSRs transfer suc-
cessfully across Apiaceae. Locus amplification success
was detected in 91 to 224 markers across 15 non-carrot
Apiaceae species, including economically important
crops like parsley (131 SSRs), celery (133 SSRs) and
cilantro (91 SSRs). Prospects of a broader utilization of
these markers beyond carrot include their application in
taxonomic, population, and conservation studies as well
as for mapping and assisting breeding in crop species.

It is, however, important to bear in mind that when
using SSR markers across distantly-related species the
amplification of a PCR product does not necessarily
imply locus conservation, since size homoplasy, i.e. con-
vergence in size of non-homologous fragments, may
occur. Considering the possibility of this source of con-
fusion, verification of the PCR product identity by
sequencing has been suggested previously, particularly
when working across genera and if there is uncertainty
regarding the size range of the amplicons obtained [45].
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However, verification through sequencing may not be
necessary if working within the same genus as the spe-
cies from which the SSRs markers were developed [46].
Thus, the use of carrot SSR markers for studies in non-
Daucus Apiaceae should include verification, by sequen-
cing, of the homology to the carrot SSR product
sequence (see Additional File 1 - Table S1).

Transfer of carrot SSRs across Daucus species (carrot
accessions excluded) was, in general, less successful than
SSR transfer rate at the subgenus level reported for
other species, whereas transfer of carrot SSRs across-
genera was relatively higher than found in other plants.
According to a previous review of SSR cross-transfer-
ability in plants [18], the average transferability across
species in the same genus was 76.4%, and across related
genera was 35.2%. We found these values to be 58.3%
across Daucus species and 41% across the Apiaceae.
However, it should be noted that SSR transfer success
varied greatly across the different reports for both
within-same genus (4.7 - 100%) and across different
genera (0 - 71.4%) [18]. The huge variation found across
these studies likely reflects differences in phylogenetic
distance (and thus, also in conservation of sequences at
priming sites) between the source and target taxa within
each family, as well as differences in the number of taxa
and SSR loci analyzed, and in the type of sequences
used for marker development. For example, EST-derived
SSRs are more conserved and thus they transfer across
genera more readily than genomic SSRs [46]), among
other factors.

Our data (Figure 3) suggest generally a higher rate of
success in amplifying carrot SSRs in plants more closely
related to carrot. This should not be surprising since
closer-related taxa have higher overall sequence homol-
ogy which translates to more conserved SSR flanking
regions and, therefore, easier transferability of primer
pairs. Negative relationships between SSR transfer suc-
cess and phylogenetic distance between source and tar-
get taxa have been widely observed in many plant
families [18,46].

The potential usefulness of SSR markers for diversity
and phylogenetic studies in Apiaceae will depend, to a
great extent, on the possibility that markers successfully
amplify across different species and on the ability of the
marker to detect polymorphism among the taxa. To
have a preliminary picture of how suitable the SSR mar-
kers developed in this work may be for these applica-
tions, we investigated interspecific SSR variation among
non-carrot species by analysis of amplicons sizes in the
agarose gel images. Thus, for each SSR, the total num-
ber of different alleles in the non-carrot species dataset
was recorded (Additional File 1: Table S4). Only SSRs
that successfully amplified products in at least 80% of
the non-carrot species (i.e., SSRs that generated
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amplicons in at least 12 of the 15 non-carrot species
used to assess marker transferability) were considered.
Overall, our results revealed 88 SSRs that generated
amplicons in most (> 80%) outside-carrot species. Of
these, 40 SSRs (29%) produced 3-9 different alleles (with
an average of 4.9 alleles/SSR) in the non-carrot group. It
should be noted that our calculation of 4.9 alleles/SSR
in these selected markers is conservative, due to the low
resolution of agarose gels which do not allow discrimi-
nation of different alleles varying in one or a few
repeats. These results suggest that a significant propor-
tion of the SSR markers developed herein may be suita-
ble for addressing taxonomic or phylogenetic questions
within Apiaceae.

Further analysis of the 88 SSRs that produced ampli-
cons in the majority of the non-carrot taxa revealed
interesting differences between the two SSR datasets.
Although more BSSRs than GSSRs (52 and 36 markers,
respectively) amplified successfully in most non-carrot
taxa, GSSRs were much more polymorphic than BSSRs
at the interspecific level. For example, among GSSRs 28
markers produced 3 or more different alleles (with a
range of 3-9 and mean of 5.5), whereas only 12 BSSRs
generated 3 or more alleles/SSR (with a range of 3-6
and mean of 3.6). It is likely that the generally higher
polymorphism of GSSRs compared to BSSRs at the
inter-specific level, which is in agreement with our
results for both sets of markers in the carrot F2s, may
be also due to the higher number of repeat units present
in GSSRs.

SSR linkage mapping

Prior to this work, important advances were made in the
construction of carrot genetic maps with a range of
molecular marker systems. Although some RFLPs [4]
and a few SCAR and gene-specific markers were
mapped [8], the most extensive genetic mapping data in
carrot has been generated mainly with dominant AFLP,
RAPD and Transposon-display (TD) markers [4,5,8-10].
While RFLPs are useful for comparative mapping pur-
poses, high throughput genotyping and probe handling
are difficult. Similarly, the carotenoid genes mapped by
Just et al. [8] are not as easily transferred to other map-
ping backgrounds since their analysis relied in most
cases on SNPs, due to the lack of larger polymorphisms
(e.g., InDels) in these genes that can be scored as easily
as SSRs. On the other hand, AFLP, RAPD and TD mar-
kers, while providing a relatively large number of mar-
kers per assay and good genome coverage, have limited
information content and are not of much use for com-
parative mapping purposes and for validating QTL
across pedigrees [8-10]. The addition of 55 SSR markers
to the carrot reference linkage map together with
detailed characterization of this novel set of 300 SSRs in
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subsets of six other mapping populations should allow
significant advances in carrot comparative mapping and
map-integration. The fact that most of the mapped SSRs
were codominant (38 SSRs) in the B493 x QAL-derived
population, with 2-8 informative markers per linkage
group, together with the identification of putative codo-
minant SSRs in other mapping populations adds extra
value to the data published here for pursuing these
goals. The inclusion of SSRs in linkage maps with addi-
tional pedigrees is currently underway.

The parental B493 map has a slightly larger total map
length than the QAL map. Although the higher mean
recombination found in B493 may help explain its larger
map length, other factors -e.g., related to the type of
markers used- may also cause this effect. Different
recombination frequencies can be obtained just by sam-
pling of the different markers, as well as errors derived
from calculations of genetic distances from dominant
markers data.

In the current map, we have modified linkage group
designations and orientations, in accordance to recent
cytogenetic data concerning the integration of carrot
LGs with actual chromosomes [19]. Following standard
conventions, consecutive numbers were assigned to the
LGs in decreasing order of chromosome length (i.e.,
LG1 corresponds to the longest chromosome), and four
LGs were inverted in their north-south orientations to
agree with the standard short arm/long arm presenta-
tion of their corresponding chromosomes. It must, how-
ever, be noted that although all the LGs could be
unequivocally associated to chromosomes, and thus
their number designations are correct and complete,
unambiguous LG orientations could only be defined for
six of the nine LGs. Thus, chromosomes 4, 6, and 9 in
the current map, which correspond to former LGs 6, 3,
and 7, respectively, could not be unequivocally oriented,
because a single anchored BAC probe was used for LG-
chromosome integrations. Thus, their orientations were
not modified from previous map versions [5,8,9]. How-
ever, the possibility remains that future cytogenetic data
(for example by FISH analysis with several BAC probes
SSR-anchored to these LGs) may reveal different orien-
tations for these LGs. These modifications based on
recent cytogenetic data, and the addition of 55 new SSR
markers, add value to the updated reference carrot link-
age map presented herein. Overall, the current maps
involve 193-202 mapped loci, including 69 highly infor-
mative markers which consist of SSR, carotenoid gene
and SCAR markers, spanning 1,121-1,273 c¢M, making it
the most comprehensive genetic linkage map in the
Apiaceae to date.

The SSR loci mapped across all 9 LGs in both paren-
tal maps, and they were distributed fairly evenly within
most individual LGs, thus recommending their
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usefulness as anchor points for merging carrot maps. In
addition, such dispersed map distribution of the SSR
loci, has allowed us to develop BAC FISH probes carry-
ing SSR sequences mapped to specific LGs. These SSR-
anchored probes were used for integrating some LGs of
carrot with chromosomes by FISH mapping [19].

The positional association observed between SSRs and
previously mapped genes suggests that these tandem
repeats are frequent in genic regions of the genome.
This is in agreement with results of Morgante et al.
[21], demonstrating higher microsatellite frequencies in
the transcribed and non-repetitive fractions of plant
genomes. One SSR (gssr112) and two SSRs (gssr12 and
gssr119) in LG7 and LG5, respectively, were located in
the vicinity of two highly-significant quantitative trait
loci (QTL) for total root carotene accumulation. These
correspond to the Y and Y, loci, respectively, described
by Buishand and Gabelman [47]. Microsatellites gssr12
and gssr119, although not tightly linked to Y,, may be
useful for marker assisted selection, either as a comple-
ment of, or as an alternative to the lack of amplification
of other robust more-closely linked markers, such as
Y2mark [48].

Conclusions

This work reports on the development and characteriza-
tion at various levels of a novel set of 300 carrot SSR
markers. Analysis of the distribution of SSR motifs,
repeat lengths and polymorphism across genomic and
EST sequences, as well as concerning different SSR iso-
lation methods (hybridization-based versus sequence
SSR-mining) may help decide over future strategies for
developing valuable SSR markers in this and other spe-
cies. The genetic mapping of 55 SSR loci onto the refer-
ence carrot linkage map, distributed throughout all 9
linkage groups, together with the characterization of the
entire set of markers in 6 other mapping populations,
should facilitate comparative mapping studies and inte-
gration of carrot maps. Particularly important for these
purposes are the 38 codominant SSRs added to the
map, which resulted in more than doubling the original
number of informative markers in this -or any other-
carrot map reported to date. In addition, SSR evalua-
tions in carrot-related taxa indicates that a significant
fraction of the carrot SSRs transfer successfully across
Apiaceae, with heterologous amplification success rate
decreasing with the target-species evolutionary distance
from carrot. Nonetheless, a fairly large number of
potentially useful SSR markers were identified for non-
carrot Daucus (128-224 SSRs) and non-Daucus Apiaceae
(91-134 SSRs) species, increasing the prospects of their
successful utilization in other Apiaceae. In addition, alle-
lic diversity at selected SSR loci was evaluated using 65
D. carota accessions. In this germplasm, the



Cavagnaro et al. BMC Genomics 2011, 12:386
http://www.biomedcentral.com/1471-2164/12/386

microsatellites proved to be highly polymorphic, with an
average of 19 alleles/locus and 0.84 expected heterozyg-
osity. The marker resources developed in this work
should be a valuable tool for carrot breeding and
genetics.

Methods

SSR identification and marker development

Two different approaches were used to isolate carrot
genomic SSRs: 1) Construction and sequence analysis of
a carrot (inbred line B493) genomic DNA library
enriched for SSR loci (GSSRs) and 2) Bioinformatic
mining for SSR motifs in a 1.7 Mbp BAC-end sequence
(BES) database (BSSRs). GSSRs were developed at the
Savannah River Ecology Laboratory, University of Geor-
gia, using a hybridization capture approach for genomic
library enrichment, as described by Glenn and Schable
[28]. The DNA clones were sequenced from both direc-
tions using standard Sanger cycle-sequencing, and SSRs
were detected using the program MISA [49]. The same
software was used for the identification of BSSRs in
2,696 carrot BES (NCBI acc. # FJ147695-FJ150390)
derived from inbred line B8503 [50]. Only SSRs with
repeat length >12 nt and 3 or more repeat units were
considered. Primer pairs flanking 156 GSSRs and 144
BSSRs were designed with Primer 3 (v.0.4.0).

For comparison purposes only (no markers were
developed) a 3.82 Mbp EST dataset generated from
10-week old carrot (inbred B493) roots, was mined for
microsatellites using the same programs and para-
meters described above. The EST dataset comprised
7,285 unique transcripts, 4,044 contigs and 3,241 sing-
lets, which derived from initial analyses and processing
(i.e., cleaning, trimming and assembly) of 18,044 San-
ger sequence reads. SSRs in the EST dataset with a
repeat length 212 nt and 3 or more repeat units were
included. The resulting data were compared with
microsatellites found in genomic DNA sequence (i.e.,
GSSRs, BSSRs).

For comparisons with carrot, the complete genome
sequence of Arabidopsis thaliana L. (119.2 Mbp; accs.
NC003070-71, NC003074-76), rice (Oryza sativa L.;
370.8 Mbp; accs. NC008394-405), grapevine (Vitis vini-
fera L.; 303.1 Mbp; accs. NC012007-25), and poplar
(Populus trichocarpa L.; 307 Mbp; accs. NC008467-85)
were downloaded from the National Center for Biotech-
nology (NCBI) database (Genomes Section), and mined
for SSRs using the same search parameters and software.
As a source of transcript sequences we used plant gene
indices of The Institute of Genome Research (TIGR),
which are non-redundant (unigenes) EST collections
[51]. Thus, gene indices of Arabidopsis (74.8 Mbp; AGI.
release_13), poplar (67.6 Mbp; PPLGLrelease_4), grape-
vine (81.4 Mbp; VVGL.release_6), Medicago truncatula

Page 16 of 20

(51.9 Mbp; MTGI.release_9), soybean (51.3 Mbp;
GMGLrelease_13), rice (158.2 Mbp; OGLrelease_17) and
sorghum (32.4 Mbp; SBGI.release_9) were downloaded
from the Gene Index databases (http://compbio.dfci.har-
vard.edu/tgi/) and searched for SSRs.

A custom Perl program performed a computational
OREF detection, which was a search in each possible
reading frame for an ATG start codon followed by a
stop codon (TAA, TAG, or TGA) at a distance of 100
nt or greater, with no intervening start or stop codons
in that reading frame. If two ORFs in different reading
frames overlapped, the longer ORF was selected and the
shorter ORF was disregarded. Details on the program
used for finding ORFs are included in Additional File 2.
SSRs, detected by MISA, were categorized as being
either inside or outside ORFs. SSRs bridging an in-
frame to out-of-frame boundary were discarded from
further analysis.

Statistical analyses

The ¢-test statistic was used to compare SSR frequencies
among the datasets using the program STATGRAPHICS
Centurion XV. Evaluation of differences in repeat num-
ber across the GSSR, BSSR, and ESSR datasets included
chi-square goodness of fit tests to compare observed
SSR distributions within each dataset with regard to 1)
distribution across sequence motif, 2) distribution of
repeat motif and 3) distribution of SSR as inside or out-
side identified ORFs, using only those clearly categor-
ized. Posterior probability distributions for GSSRs,
BSSRs, and ESSRs were calculated separately. Sequence
motif distribution posterior probability was calculated
from the overall base composition of each dataset. Pos-
terior probability distributions for SSR placement inside
or outside ORF regions was based on the ORF sequence
distribution within each dataset.

PCR conditions and electrophoresis
PCR reactions were performed in 15 pl volume contain-
ing 7.15 pl water, 1.5 ul 10 x DNA polymerase buffer,
1.2 pl ANTPs (2.5 mM each), 1 ul of each primer at 5
uM, 0.15 pl Taq Polymerase at 10 u/pl (Promega, Madi-
son, Wisconsin, USA) and 3 pl of genomic DNA. Ther-
mocyclers were programmed as follows: initial
denaturation at 94°C for 3 min., followed by 40 cycles of
94°C for 20 sec., appropriate annealing temperature for
1.0 min., and 72°C for 1.0 min., and a final step at 72°C
for 5.0 min. Electrophoresis was carried out for 4-5
hours at 200 V on 4.5% high-resolution agarose (Gene-
Pure Hi-Res Agarose, ISC Bioexpress, Kaysville, UT)
TAE gels supplemented with 4 ul (5.0 mg/ml) of ethi-
dium bromide for each 100 ml of TAE.

Different methods for marker generation and analyses,
including primer labeling, PCR conditions and separa-
tion of amplicons, were used for the genetic diversity
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analyses (described in detail in section “diversity
analysis”).

Marker analyses in carrot F, families

Since all carrot linkage maps reported to date were con-
structed using predominantly anonymous dominant
markers such as AFLPs and this has severely limited
map merging [52] microsatellite markers were developed
to serve as anchor points across carrot maps. All SSR
primer pairs (156 GSSRs, 144 BSSRs) were evaluated in
samples (16 DNAs) from 7 carrot F, mapping popula-
tions, as well as in the parental DNAs (when available).
Information regarding the populations is presented in
Table 4. Markers were evaluated based on their PCR
amplification efficiency (i.e., whether an amplicon of
expected size was generated) and polymorphism. For
the latter, a polymorphism index (PI) was developed
according to the formula: PI = [(2C + D)/(7 - nd) x 2] x
100, where ‘C’ is the number of populations for which
the markers was codominant, ‘D’ is the number of
populations for which the marker was dominant, ‘nd’
populations without information on the performance of
the marker.

Simple regression analyses were performed between PI
and other characteristics of the SSR markers (e.g., num-
ber of repeat units, repeat length, etc.) to investigate
possible microsatellite features associated with poly-
morphism. For this purpose, the program STAT-
GRAPHICS Centurion XV was used.

Marker transferability across Apiaceae

To evaluate the potential utilization of SSRs within Dau-
cus carota as well as in other carrot-related taxa, the
GSSRs and BSSRs were tested in a sample of 23 Apia-
ceae accessions including 8 accessions of carrot (D. car-
ota) (1 inbred line, 1 wild carrot, and 6 commercial
cultivars), 8 accessions of non-carrot Daucus species,
and 7 accessions of non-Daucus Apiaceae species.
Accessions that produced an amplicon of the approxi-
mate length expected for that particular SSR in carrot
were considered as successful PCR amplifications. PCR
products were generated and resolved as described
previously.

Linkage mapping

Plant materials and DNA extraction

A genetic linkage map was constructed using a subset of
103 individuals from a previous F, mapping population
derived from the cross between the white-root wild car-
rot Queen Annes Lace (QAL) and the cultivated
orange-root carrot inbred line B493. Details concerning
the development of the mapping population, plant culti-
vation, DNA extraction, and detection/scoring of pre-
viously mapped AFLP, SCAR, DcMTD (DcMaster
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Transposon Display), and gene specific markers were
described before [5,8,9,52].

Generation and analysis of marker data

PCR reactions were performed in the same way as the
SSR reactions described above.

For purpose of marker genotyping, the F, DNAs were
analyzed in parallel with controls DNAs of QAL and
B493. The genotypes of polymorphic SSRs were
recorded as follows: homozygous maternal (B493) “A”,
homozygous paternal (QAL) “B”, heterozygous “H”, not
A “C7, not B “D”, and missing data “-”. The degree of
segregation distortion associated with newly identified
SSRs was determined by marker data comparison
against the expected ratio of 1:2:1 (A:H:B) for codomi-
nant, and 3:1 (C:A or D:B) for dominant markers for an
F, using chi-square tests, where significant distortion
was declared at P < 0.01 [53]. Separate maps were con-
structed for each parent to avoid problems related to
the use of repulsion phase dominant markers, as
described previously [52]. Dominant markers from a sin-
gle parent linked in coupling were used in conjunction
with all codominant markers. Linkage maps were con-
structed with MapMaker/EXP 3.0 [54], where markers
were associated with the ‘group’ command at LOD =
4.0 and a maximum recombination frequency of 0.30.
Markers within a group were ordered using ‘three point’
analysis followed by the ‘order’ command. Remaining
markers were located using the ‘try’ command, and the
map order was re-tested using the ‘ripple’ command.
Recombination frequencies were converted to centimor-
gans (cM) using the Kosambi function.

SSR genetic diversity in Daucus carota

Plant materials and DNA extraction

A total of 65 Daucus carota accessions were used in this
study, including 50 cultivated carrots (D.c. spp. sativa)
and 15 wild relatives of carrot (12 accs. of D.c. spp. car-
ota, and one accession each of D.c. spp. azoricus, D.c.
spp. hispanicus, D.c. spp. drepanensis) (Additional File 1
- Table S5). The cultivated carrot accessions included 8
inbred lines and 42 open-pollinated cultivars with repre-
sentatives from 14 of the 16 European primary cultivars
[6], and the predominant cultivars from North America
(Imperator’) and Asia ('Kuroda’). For evaluation of mor-
phological traits the carrot accessions were grown in
commercial carrot fields in Wisconsin and California.
For DNA extractions, plants were grown in greenhouses
in Madison, Wisconsin, and genomic DNA was
extracted from single plants as described by Murray and
Thompson [55].

PCR amplification and fragment analysis

Ten unlinked microsatellite loci (gssr3, gssr4, gssr6,
gssr9, gssrl6, gssr35, gssr65, gssrl07, gssr85, and
gssrlll) were used to investigate genetic diversity
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among cultivated and wild Daucus accessions. Each
amplification reaction was performed in a 10 pl final
volume, and included ~ 50 ng of DNA template, 0.65 U
of Tag DNA polymerase (EconoTaq™), 1 x PCR buffer
with 1.5 mM MgCl, (EconoTaq™), 0.15 pM of reverse
primer, 0.15 pM of M13-tailed forward primer (a uni-
versal M13 tail, labelled either with 6-FAM, HEX or
NED fluorochromes, was added to the 5-end of the for-
ward primer to enable fluorescent labelling of the ampli-
cons as described by Shuelke [56]), 100 pM each of the
deoxynucleotidetriphosphates (dNTPs), 0.1 mg/ml
bovine serum albumin (BSA), and 1% (w/v) of polyvinyl-
pyrrolidone (PVP). The amplification conditions were
94°C for 4 min; 40 cycles of 94°C for 20 sec, 55-60°C for
1 min, 72°C for 1 min; and a final extension step of 72°
C for 5 min. Estimation of amplicon lengths and micro-
satellite genotyping was performed at the University of
Wisconsin Biotechnology Center using an ABI 3730x/
capillary sequencer and GeneMarker software version
1.5 (SoftGenetics, State College, Pennsylvania).

Data analysis

General statistics, such as number of alleles (NA), allele
length, and expected heterozygosity (H,), were calcu-
lated for these markers using the software Arlequin ver
3.1 [57].

Additional material

Additional File 1: Table S1 - Characteristics of 300 carrot simple
sequence repeat markers. SSR type, motif, size, sequence, and primers
of 300 GSSRs and BSSRs. Table S2 - Performance of GSSRs and BSSRs
in subsets of 7 carrot F, mapping populations. SSR alleles,
polymorphism index, and PCR success, for seven carrot populations.
Table S3 - Accessions used for evaluating carrot SSR marker
transferability to other Apiaceae. A list of the 23 diverse Daucus and
other Apiaceae evaluated to assess transferability of carrot SSRs to related
species. Table S4 - Potential transferability of SSR markers across
Apiaceae accessions. Amplification success, clarity, and size of PCR
products for 300 carrot SSRs when evaluated for 23 diverse Apiaceae.
Table S5 - Daucus carota accessions used for analysis of SSR
genetic diversity. A list of the 71 diverse Daucus carota evaluated to
assess SSR diversity.

Additional File 2: Program used for finding ORFs in sequences.
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