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Abstract

Background: Chloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP) bacterium, and
can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions.
According to 16S rRNA analysis, Chloroflexi species are the earliest branching bacteria capable of photosynthesis,
and Cfl. aurantiacus has been long regarded as a key organism to resolve the obscurity of the origin and early
evolution of photosynthesis. Cfl. aurantiacus contains a chimeric photosystem that comprises some characters of
green sulfur bacteria and purple photosynthetic bacteria, and also has some unique electron transport proteins
compared to other photosynthetic bacteria.

Methods: The complete genomic sequence of Cfl. aurantiacus has been determined, analyzed and compared to
the genomes of other photosynthetic bacteria.

Results: Abundant genomic evidence suggests that there have been numerous gene adaptations/replacements in
Cfl. aurantiacus to facilitate life under both anaerobic and aerobic conditions, including duplicate genes and gene
clusters for the alternative complex IIl (ACIII), auracyanin and NADH:quinone oxidoreductase; and several aerobic/
anaerobic enzyme pairs in central carbon metabolism and tetrapyrroles and nucleic acids biosynthesis. Overall,
genomic information is consistent with a high tolerance for oxygen that has been reported in the growth of Cfl.
aurantiacus. Genes for the chimeric photosystem, photosynthetic electron transport chain, the 3-hydroxypropionate
autotrophic carbon fixation cycle, CO,-anaplerotic pathways, glyoxylate cycle, and sulfur reduction pathway are
present. The central carbon metabolism and sulfur assimilation pathways in Cfl. aurantiacus are discussed. Some
features of the Cfl. aurantiacus genome are compared with those of the Roseiflexus castenholzii genome. Roseiflexus
castenholzii is a recently characterized FAP bacterium and phylogenetically closely related to Cfl. aurantiacus.
According to previous reports and the genomic information, perspectives of Cfl. aurantiacus in the evolution of
photosynthesis are also discussed.

Conclusions: The genomic analyses presented in this report, along with previous physiological, ecological and
biochemical studies, indicate that the anoxygenic phototroph Cfl. aurantiacus has many interesting and certain
unique features in its metabolic pathways. The complete genome may also shed light on possible evolutionary
connections of photosynthesis.
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Background

The thermophilic bacterium Chloroflexus aurantiacus
was the first filamentous anoxygenic phototrophic (FAP)
bacterium (also known as the green non-sulfur bacter-
ium or green gliding bacterium) to be discovered [1].
The type strain Cfl. aurantiacus J-10-fl was found in a
microbial mat together with cyanobacteria when isolated
from a hot spring near Sokokura, Hakone district, Japan.
Cfl. aurantiacus can grow phototrophically under anae-
robic conditions or chemotrophically under aerobic and
dark conditions.

The photosystem of Cfl. aurantiacus includes the per-
ipheral antenna complex known as a chlorosome, the
B808-866 light-harvesting core complex, and a quinone-
type (or type-II) reaction center [2,3]. While Cfl. auran-
tiacus primarily consumes organic carbon sources (i.e.
acetate, lactate, propionate, and butyrate) that are
released by the associated cyanobacteria in the Chloro-
flexus/cyanobacterial mats of its natural habitat, it can
also assimilate CO, with the 3-hydroxypropionate
(3HOP) autotrophic carbon fixation cycle [4,5]. Further,
studies have reported carbon, nitrogen and sulfur meta-
bolisms of Cfl. aurantiacus [1].

According to 16S rRNA analysis, Chloroflexi species
are the earliest branching bacteria capable of photo-
synthesis [6-8] (Figure 1) and have long been considered
to be critical to understanding the evolution of photo-
synthesis [9-16]. However, there are also indications that
there has been widespread horizontal gene transfer of
photosynthesis genes, so the evolutionary history of
photosynthesis is still poorly understood [17].

During the transition from an anaerobic to an aerobic
world, organisms needed to adapt to the aerobic envir-
onment and to become more oxygen-tolerant. Most of
the gene products can function with or without oxygen,
whereas several proteins and enzymes are known to be
exclusively functional in either aerobic or anaerobic
environments. Thus, gene replacements have been
found in the evolution of many metabolic processes
[18-20]. Some aspects of the genome annotation of
Chloroflexi species have been discussed by Bryant, Ward
and coworkers [5,21].

Several genes encoding aerobic and anaerobic enzyme
pairs, as well as a number of duplicated gene clusters,
have been identified in the Cfl. aurantiacus genome. In
this report, we use genomic annotation, together with
previous physiological and biochemical studies, to illus-
trate how Cfl. aurantiacus may be a good model system
for understanding the evolution of metabolism during
the transition from anaerobic to aerobic conditions.
Some of the genomic information is compared with that
of the genome of Roseiflexus castenholzii, a recently char-
acterized FAP bacterium that lacks chlorosomes [22].
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Results and Discussion

Genome properties

The genome size of Cfl. aurantiacus J-10-fl (5.3-Mb)
(Table 1 and Figure 2) is comparable to that of other
phototrophic Chloroflexi species: Chloroflexus sp. Y-400-
fl (5.3-Mb), Chloroflexus aggregans (4.7-Mb), Roseiflexus
sp- RS-1 (5.8-Mb), and Roseiflexus castenholzii DSM
13941 (5.7-Mb). Here, we summarize several unique fea-
tures in the Cfl. aurantiacus genome, and compare
some of the features with other Chloroflexi species and
various photosynthetic and non-photosynthetic microor-
ganisms. The complete genome has been deposited in
GenBank with accession number CP000909 (RefSeq
entry NC_010175). Further information is available at
the Integrated Microbial Genome database (http://img.
jgi.doe.gov/cgi-bin/pub/main.cgi?section=TaxonDetail&-
page=taxonDetail&taxon_oid=641228485). The oriC ori-
gin is at twelve o’clock of the circular genome map
(Figure 2). Like in many prokaryotes, AT-rich repeated
sequence can be found in the origin of replication.

No special replication patterns can be found in the
genome, and genes responsible for DNA replication and
repair do not form a cluster (e.g., dnaA (Caur_0001),
dnaB (Caur_0951), genes encoding DNA polymerase III
(Caur_0523, Caur_0987, Caur_1016, Caur_1621,
Caur_1930, Caur_2419, Caur_2639, Caur_2725 and
Caur_3069), polA (Caur_0341), genes encoding other
DNA polymerases (Caur_1575, Caur_1899, Caur_2099,
Caur_2101, Caur_2868, Caur_3077, Caur_3225,
Caur_3495, Caur_3509 and Caur_3510), recD
(Caur_0824), recF (Caur_3876), recG (Caur_0261), recQ
(Caur_2049), rho (Caur_0274), gyrA (Caur_1241), gyrB
(Caur_3009), uvrD (Caur_0724) and others).

A. Photosynthetic antenna and reaction center genes

Cfl. aurantiacus has chimeric photosynthetic compo-
nents, which contain characteristics of green sulfur bac-
teria (e.g., the chlorosomes) and purple photosynthetic
bacteria (e.g., the integral-membrane antenna core com-
plex surrounding a type II (quinone-type) reaction cen-
ter), As the first FAP bacterium to be discovered, the
excitation energy transfer and electron transfer pro-
cesses in Cfl. aurantiacus have been investigated exten-
sively [3]. During phototrophic growth of Cfl.
aurantiacus, the light energy is first absorbed by its per-
ipheral light-harvesting antenna, the chlorosome, which
is a self-assembled bacteriochlorophyll complex (the
major bacteriochlorophyll in chlorosomes is bacterio-
chlorophyll ¢ (BChl ¢)) and encapsulated by a lipid
monolayer. Energy is then transferred to the B808-866
light-harvesting core antenna complex, which is a pro-
tein-pigment complex associated with two spectral types
of bacteriochlorophyll a (BChl ) (B808 and B866),
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Figure 1 Phylogenetic tree of photosynthetic bacteria. The tree was constructed using the phylogenetic software MEGA4.1 with un-rooted
neighbor joining 16S rRNA dendrogram from five phyla of photosynthetic microbes, including cyanobacteria, heliobacteria, purple bacteria,
green sulfur bacteria and filamentous anoxygenic phototrophs (FAPs) (each phylum of bacteria highlighted in different color). Bacterial names
and accession numbers of 16S rRNA genes are listed as follows: (1) purple bacteria: Roseobacter denitrificans OCh114 (CP000362), Roseobacter
litoralis (X78312), Rhodobacter capsulatus (D16428), Rhodobacter sphaeroides 2.4.1 (X53853), Rhodopseudomonas faecalis strain gc (AF123085),
Rhodopseudomonas palustris (D25312), Rhodopseudomonas acidophila (FR733696), Rhodopseudomonas viridis DSM 133 (AF084495), Rubrivivax
gelatinosus (D16213); (2) heliobacteria: Heliobacterium gestii (AB100837), Heliobacterium modesticaldum (CP0O00930); (3) cyanobacteria: Oscillatoria
amphigranulata strain 19-2 (AF317504), Oscillatoria amphigranulata strain 11-3 (AF317503), Oscillatoria amphigranulata strain 23-3 (AF317505),
Microcystis aeruginosa NIES-843 (AP009552), Nostoc azollae 0708 (NC_014248); (4) green sulfur bacteria: Chlorobaculum thiosulfatiphilum DSM 249
(Y08102), Pelodictyon luteolum DSM 273 (CP0O00096), Chlorobium limicola DSM 245 (CP001097), Chlorobaculum tepidum TLS (M58468), Chlorobium
vibrioforme DSM 260 (M62791); and (5) FAPs: Chloroflexus aurantiacus J-10-fl (M34116), Chloroflexus aggregans (D32255), Oscillochloris trichoides

(AF093427), Roseiflexus castenholzii DSM 13941 (AB041226). Archaea (Archaeoglobus profundus DSM 5631 (NC_013741) and Methanocaldococcus
Jannaschii DSM 2661 (NC_000909)) were used as an out-group.
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Table 1 Organism information and genome statistics of Chloroflexus aurantiacus J-10-fl

Organism Information

Organism name

Chloroflexus aurantiacus J-10-fl

External links

NCBI/RefSeq:NC_010175

Lineage

Bacteria; Chloroflexi; Chloroflexi; Chloroflexales; Chloroflexaceae; Chloroflexus; aurantiacus

Sequencing status

Finished

Sequencing center

DOE Joint Genome Institute

Oxygen requirement

Anaerobes

Isolation Hakone hot spring area in Japan
Habitat Fresh water, hot spring
Motility Mobile

Temperature range (temperature optimum)

Thermophile (52-60°C)

Cell shape

Filament-shaped

Cell arrangement

filaments

Gram staining

Gram-negative

Phenotype

Green non-sulfur

Energy source

Light (phototrophic growth) and organic carbon sources (chemotrophic growth)

carbon assimilation

Photoautotrophy, photoheterotrophy, and chemoheterotrophy

Genome Statistics

Number Percentage of total genes or base pairs

DNA, total number of bases 5258541 100.00%
DNA G + C number of bases 2981443 56.70%
Total number of genes 3914 100.00%
Protein coding genes 3853 98.44%
- with function prediction 2845 72.69%
- without function prediction with similarity 1004 25.65%
- without function prediction without similarity 4 0.10%
Genes coding enzymes 934 23.86%
Genes coding fusion proteins 331 8.46%
Genes coding signal peptides 653 16.68%
Genes coding transmembrane proteins 789 20.16%
Pseudo genes 0 0.00%
RNA genes 61 1.56%
rRNA genes 9 0.23%
tRNA genes 49 1.25%

through the baseplate of chlorosomes. The baseplate is a
CsmA chlorosome protein-bacteriochlorophyll a (BChl
a)-carotenoid complex (i.e. a protein-pigment complex)
[23]. Finally, the excitons are transferred to the reaction
center (RC), in which photochemical events occur.
While both purple photosynthetic proteobacteria and
Cfl. aurantiacus have a type II RC [24], the Cfl. auran-
tiacus RC is simpler than the purple bacterial RC [2]
and contains only the L- and M-subunits (PufL and
PufM), and not the H-subunit [25,26].

All of the genes encoding the B808-866 core complex
(o-subunit (Caur_2090) and f-subunit (Caur_2091)) and
RC (pufM (Caur_1051) and pufL (Caur_1052)) are pre-
sent in the Cfl. aurantiacus genome. The pufL and

pufM genes are fused in the Roseiflexus castenholzii gen-
ome. The arrangement of genes for the core structural
proteins of the photosynthetic complexes is significantly
different from that found in purple bacteria, where the
puf (photosynthetic unit fixed) operon invariably con-
tains the LH complex genes, the RC genes encoding for
the L and M subunits and the tetraheme cytochrome
associated with the reaction center (if present) [27].
Although proteins are not required for BChl ¢ self-
assemblies in chlorosomes, various proteins have been
identified to be associated with the lipid monolayer of
the Cfl. aurantiacus chlorosomes [3]. In addition to
the baseplate protein CsmA, the chlorosome proteins
CsmM and CsmN have been characterized [3], and
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Figure 2 Circular genome map of the 5.2-Mb Cfl. aurantiacus chromosome. From outside to the center: Genes on forward strand (color by
COG categories); Genes on reverse strand (color by COG categories); RNA genes (tRNAs, green; rRNAs, red; other RNAs, black); GC content; GC
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used to be considered as the only two proteins asso-
ciated with the chlorosome mono-lipid layer. Other
chlorosome proteins have also been reported, either
through biochemical characterization (CsmP (unpub-
lished results in Blankenship lab from in-solution tryp-
sin digestion of the Cfl. aurantiacus chlorosomes) and
AcsF [28]) or genomic analysis by analogy to green
sulfur bacteria (CsmO, CsmP, CsmY) [29]. Among
these proteins, AcsF, a protein responsible for chloro-
phyll biosynthesis under aerobic and semi-aerobic
growth conditions, was unexpectedly identified
from chlorosome fractions during anaerobic and

photoheterotrophic growth of Cfl. aurantiacus [28].
There has been some discussions as to whether AcsF
is obligated to be associated with the chlorosomes
[21,30], and the role of AcsF under anaerobic growth
condition remains to be addressed, because it is an
oxygen-dependent enzyme in other systems [31,32].
Although more chlorosome proteins have been identi-
fied recently, it is clear that CsmA, CsmM and CsmN
are the most abundant proteins of the Cfl. aurantiacus
chlorosomes. Genes encoding the experimentally iden-
tified and proposed chlorosome proteins are csmA
(Caur_0126), csmM (Caur_0139), csmN (Caur_0140),
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csmP (Caur_0142), ¢smO (Caur_1311), and csmY
(Caur_0356).

B. Electron transport complex genes

Figure 3A shows the proposed pathway of photosyn-
thetic electron transport in Cfl. aurantiacus and purple
photosynthetic proteobacteria. Similar to the purple
photosynthetic proteobacteria, a cyclic electron trans-
port pathway in Cfl. aurantiacus is also proposed.
Nevertheless, some protein complexes in the electron
transport chain of Cfl. aurantiacus are recognized to be
substantially different from those of purple bacteria. Cfl.
aurantiacus uses menaquinone as liposoluble electron
and proton carrier [33-36], and purple proteobacteria
use either ubiquinone [37,38] or menaquinone [39] as
the mobile carrier in light-induced cyclic electron trans-
port chain. The genetic information, analyses, and possi-
ble roles in photosynthesis and respiration for the
complexes are described below.

(I) Alternative complex Il (ACIII)

Integral membrane oxidoreductase complexes are essen-
tial for energy metabolism in all bacteria. In photo-
trophic bacteria, these almost invariably include the
photoreaction center and a variant of respiratory Com-
plex III, either the cytochrome bc; complex (anoxygenic)
or cytochrome bgf complex (oxygenic). No homolog of
the Complex III has been identified biochemically in Cfl.
aurantiacus, and no genes with significant homology to
Complex III are found in the Cfl. aurantiacus genome.
Previous experimental evidence indicated that alterna-
tive complex III (ACIII) complexes, identified in Cfl.
aurantiacus and some non-phototrophic bacteria, func-
tion in electron transport [34,40-44]. Genes encoding an
ACIII have also been identified in the genome of Candi-
datus Chloracidobacterium thermophilum [21], an aero-
bic phototrophic Acidobacterium [45]. In the Cfl.
aurantiacus genome, two ACIII operons have been
identified: one encodes the C, (subscript p stands for
photosynthesis) ACIII complex for anaerobic photo-
synthesis, and the other encodes the C, (subscript r
stands for respiration) ACIII complex for aerobic
respiration (Table 2). The C, operon is similar to a
seven-gene nrf operon in E. coli strain K-12. Hussain et
al. suggested that the nrf operon in E. coli is essential
for reducing nitrate to ammonia [46]. The Cfl. aurantia-
cus C, operon (Caur_0621 to Caur_0627) contains
genes encoding two types of cytochrome c¢; a multi-
heme cytochrome ¢ (component A, actA, Caur_0621),
which has recently been identified experimentally to be
a penta-heme component [44], and a mono-heme cyto-
chrome ¢ (component E, actE, Caur_0625), which forms
a homodimer in the ACIII complex [44], a putative FeS-
cluster-hydrogenase component-like protein (component
B, actB, Caur_0622), a polysulfide reductase (component
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C, actC, Caur_0623), similar to NrfD and likely involved
in the transfer of electrons from the quinone pool to
cytochrome ¢, an integral membrane protein (compo-
nent F, actF, Caur_0626) and two uncharacterized pro-
teins (component D (actD, Caur_0624) and component
G (actG, Caur_0627)) (Figure 3B).

The proposed C, ACIII operon contains 12 genes
(Caur_2133 to 2144) encoding a putative FAD-depen-
dent oxidase (component K, actK, Caur_2133), D-lactate
dehydrogenase (component L, actL, Caur_2134), a Cys-
rich protein with Fe-S binding motifs (component M,
actM, Caur_2135), components B (actB, Caur_2136), E
(actE, Caur_2137), A (actA, Caur_2138), and G (actG,
Caur_2139) in the C, ACIII operon, an electron trans-
port protein SCO1/SenC (Caur_2140), and four subunits
of cytochrome ¢ oxidase (component J, Caur_2141 -
2144). The cytochrome ¢ oxidase (COX, or complex IV,
EC 1.9.3.1) genes in the C, operon are part of complex
IV, so the C, ACIII operon clustered with complex IV
genes could create a respiratory superoperon (Figure
3B). Additionally, a gene cluster encoding a putative
SCO1/SenC electron transport protein (Caur_2423) and
two COX subunits (Caur_2425 (subunit II) and
Caur_2426 (subunit I)) is 300 genes away from the puta-
tive C, ACIII operon. Note that genes encoding compo-
nents C (actC), D (actD) and F (actF) in the C, ACIII
operon are absent in the C. ACIII operon. Whether
these three components are required for the formation
of the ACIII complex under aerobic respiratory growth
will be addressed with biochemical studies.

() Auracyanin

Two type I blue copper proteins have been isolated and
proposed to function as the mobile electron carriers in
photosynthetic electron transport of photosynthetic
organisms: one is plastocyanin in cyanobacteria, photo-
synthetic algae and higher plants and the other is aura-
cyanin in Chloroflexus and Roseiflexus. The type I blue
copper protein auracyanin, which has a single copper
atom coordinated by two histidine, one cysteine and one
methionine residues at the active site, is proposed to
participate in the electron transfer from ACIII to the
reaction center in Cfl. aurantiacus [35,47-49], and it has
also been recently characterized in Roseiflexus castenhol-
zii [50]. Additionally, an auracyanin gene (trd_0373) has
been identified in the genome of the non-photosynthetic
bacterium Thermomicrobium roseurn DSM 5159, which
is evolutionally related to Cfl. aurantiacus [51]. Two
ACIII operons are proposed in Cfl. aurantiacus, and the
two auracyanin proteins of Cfl. aurantiacus, AuraA and
AuraB, which share 38% sequence identity, have been
suggested to function with the two variant ACIII com-
plexes [35]. AuraA, a water-soluble protein, can only be
detected during phototrophic growth, whereas AuraB, a
membrane-tethered protein, is synthesized during both
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Figure 3 Schematic representation of the proposed photosynthetic electron transport and the proposed ACIIl operons. The proposed
photosynthetic electron transport in Cfl. aurantiacus (left) and in purple photosynthetic proteobacteria (right) (A), and the proposed ACIII
operons in anaerobic photosynthesis (Cy) and aerobic respiration (C,) in Cfl. aurantiacus, as well as the ACIII operon in Roseiflexus (Rof)
castenholzii (B). The characterized and putative proteins in the ACIII operon are listed as follows: A, multi-heme cytochrome ¢; B, MoCo Subunit
(left) and FeS subunit (right); C, Integral membrane protein (polysulfide reductase, NrfD); D, uncharacterized protein; E, mono-heme cytochrome
¢, F, integral membrane protein; G, uncharacterized protein; H, electron transport SC01/SenG; J, cytochrome ¢ oxidase subunits I-IV; K, FAD-linked
oxidase; L, D-lactate dehydrogenase; and M, Cys and FeS rich domains. Abbreviation: BChl a, bacteriochlorophyll a; Qa, Qg Qp, quinone-type
molecules.
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Table 2 Duplicate gene clusters of alternative complex Il (ACIll) and NADH:quinone oxidoreductase (complex I)

identified in the Cfl. aurantiacus genome

Gene products Gene cluster 1

Gene cluster 2

Alternative complex Il
(ACIII)

actABCDEFG (Caur_0621 to Caur_0627) encoding  Caur_2133 to Caur_2144 (12 genes) encoding C; (subscript r stands
Cp (subscript p stands for photosynthesis) ACIII

for respiration) ACIII

NADH:quinone oxido-
reductase (complex |, EC
1.6.5.3)

nuoA to nuoN (Caur_2896 to Caur_2909)

nuoA (Caur_1987), nuoB (Caur_1986), muoC (Caur_1985), nuoDE
(Caur_1984), nuof (Caur_1185), nuoH (Caur_1982), nuol (Caur_1983),
nuoJ (Caur_1981), nuoK (Caur_1980), nuoL (Caur_1979), nuoM
(Caur_1977 and Caur_1978) and nuoN (Caur_1976)

phototrophic and dark growth [35]. It has been hypothe-
sized that AuraA transports electron from the C, ACIII
during photosynthesis and AuraB from the C, ACIII
during respiration. The auraA (Caur_3248) and auraB
(Caur_1950) genes are distant from the C, operon
(Caur_0621 to Caur_0627) and C, operon (Caur_2132
to Caur_2144). In addition to auraA and auraB, two
more genes encoding auracyanin-like proteins (or type I
blue-copper proteins) (Caur_2212 and Caur_2581) have
also been found in the Cfl. aurantiacus genome. In con-
trast, Roseiflexus castenholzii has only one copy of the
ACIII operon (a six-gene cluster, Rcas_1462 to
Rcas_1467), in which the gene encoding the component
G of the Cfl. aurantiacus C, ACIII complex is missing)
(Figure 3B), and one auraA-like gene (Rcas_3112).

(lll) NADH:quinone oxidoreductase

Two operons encoding the enzymes for NADH:quinone
oxidoreductase (Complex I, EC 1.6.5.3) are present in
the genome. Complex I catalyzes electron transport in
the oxidative phosphorylation pathway. Many bacteria
have 14 genes (nuoA to nuoN) encoding Complex I, and
some photosynthetic bacteria, such as the purple photo-
synthetic proteobacteria Rhodobacter sphaeroides and
Rhodopseudomonas palustris, contain two Complex I
gene clusters. In Cfl. aurantiacus, two putative Complex
I gene clusters have been identified, one with all of the
14 gene subunits arranging in order (nuoA to nuoN,
Caur_2896 - 2909), and the other has genes loosely
arranged (with nuoE and nuoF 800 genes apart), dupli-
cated nuoM genes, and the lack of nuoG (Table 2). It is
possible that either nu0G is shared with the two putative
Complex I gene clusters or an alternative gene with less
sequence similarity functions as nuoG. For example, two
gene loci (Caur_0184 and Caur_2214) encoding gene
products that have ~24% sequence identity with NuoG,
which is a molybdopterin oxidoreductase. To date, there
have been no biochemical studies on the Complex I
from Cfl. aurantiacus or any FAP bacteria.

(IV) Other electron transport proteins

In addition to the electron transport proteins described
above, the sequence has been determined of cytochrome
C554, which is also a subunit of the reaction center of
Cfl. aurantiacus [52-54]. The sequence of the cyto-
chrome ¢ subunit in the Roseiflexus castenholzii RC has

also been reported [55]. The gene encoding cytochrome
554 (pufC, Caur_2089) is in an operon flanked with two
genes encoding the bacteriochlorophyll biosynthesis
enzymes, bchP (Caur_2087) and bchG (Caur_2088) at
the 5’-end, and two genes encoding the B808-866 com-
plex (Caur_2090 (a-subunit) and Caur_2091 (3-subu-
nit)) at the 3’-end (Figure 4C).

C. Aerobic/anaerobic enzyme pairs

(I) Tetrapyrroles

In the biosynthesis of heme and chlorophyll (Chl), three
aerobic/anaerobic enzyme pairs participate: copropor-
phyrinogen III decarboxylase (aerobic, HemF (EC
1.3.3.3); anaerobic, HemN (EC 1.3.99.22)) and protopor-
phyrinogen IX oxidase (anaerobic and aerobic) in heme
biosynthesis, and Mg-protoporphyrin IX monomethyl
ester cyclase (aerobic, AcsF; anaerobic, BchE) in chloro-
phyll (Chl) biosynthesis. Both aerobic and anaerobic
gene pairs can be found in Cfl. aurantiacus, for exam-
ple, acsF (Caur_2590) and bchE (Caur_3676) [28] as
well as hemF (Caur_2599) and hemN (Caur_0209 and/or
Caur_0644) gene pairs. The acsF and hemF genes can-
not be found in the green sulfur bacterium Chlorobacu-
lum tepidum [56] and other strictly anaerobic bacteria.
The genes involved in the biosynthesis of tetrapyrroles,
as well as proposed gene replacements, are further ela-
borated below.

(a) Cobalamin

The gene replacements during the anaerobic to aerobic
transitions are best known in the biosynthesis of cobala-
min, in which the genes in the anaerobic pathway up to
cobalt insertion into the corrin ring are completely
replaced in the aerobic pathway [57]. Different strategies
are used to generate cobyrinate diamide, the end pro-
duct of both anaerobic and aerobic pathways, in which
cobalt is introduced into the corrin ring at the dihydroi-
sobacteriochlorin stage (early stage) of the anaerobic
pathway and at the late stage of the aerobic pathway.
The genomic information of Cfl. aurantiacus reveals a
large cobalamin biosynthesis and cobalt transporter
operon (Caur_2560 - 2580), containing genes in both
aerobic and anaerobic biosynthesis pathways, suggesting
that Cfl. aurantiacus can synthesize cobalamin under
various growth conditions. Genes encoding anaerobic
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Figure 4 Schematic representation of photosynthetic genes in photosynthetic bacteria. Photosynthetic genes in Cfl. aurantiacus, Cba.
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cobalt chelatase (EC 4.99.1.3) (¢biK, Caur_2572) and
aerobic cobalt chelatase (EC 6.6.1.2) (cobNST, cobN
(Caur_2579), cobS (Caur_1198) and cobT (Caur_2578))
have been identified (Tables 3 and 4). The aerobic
cobalt chelatase (EC 6.6.1.2), containing three subunits
(CobN, CobS and CobT), is a close analog to Mg-chela-
tase (also containing three subunits, BchH, Bchl and
BchD) that catalyzes the Mg-insertion in the chlorin
ring in chlorophyll biosynthesis. It is known that aerobic
cobalt chelatase subunits CobN and CobS are homolo-
gous to Mg-chelatase subunits BchH and Bchl, respec-
tively, and that CobT has also been found to be
remotely related to the third subunit of Mg-chelatase,
BchD. Compared to other strictly aerobic and anaerobic
photosynthetic bacteria, the aerobic anoxygenic photo-
trophic proteobacterium Roseobacter denitrificans only
carries the cobNST genes [27], and the strictly anaerobic
bacterium Heliobacterium modesticaldum has only the
cbiK gene [58]. The presence of cobNST and cbiK gene
pairs in the Cfl. aurantiacus genome suggests a gene
replacement in cobalamin biosynthesis by Cfl. aurantia-
cus under different growth conditions.
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(b) Heme

The heme operon (Caur_2593 to Caur_2599: hemA,
hemC, hemD, hemB, hemE, hemL and hemF) is down-
stream of the cobalamin operon (Caur_2560 to
Caur_2580). Except for hemF, other genes in the heme
operon are utilized for synthesizing heme under both
aerobic and anaerobic conditions. Furthermore,
Caur_0209 and Caur_0644, encoding the putative O,-
independent coproporphyrinogen III decarboxylase/oxi-
dase (HemN, EC 1.3.99.22), and Caur_0645, encoding
O,-dependent protoporphyrinogen oxidase (HemG/
HemY, EC 1.3.3.4), are ~ 2000 genes away from the
heme gene cluster. It is interesting to note that two
hemN genes have been identified in the Cfl. aurantiacus
genome, while no gene encoding the O,-independent
protoporphyrinogen oxidase in Cfl. aurantiacus has
been characterized. Because heme can be synthesized by
Cfl. aurantiacus in both aerobic and anaerobic environ-
ments, it is possible that one of the hemN genes in Cfl.
aurantiacus may encode an O,-independent protopor-
phyrinogen oxidase. Finally, in addition to protoheme
(heme b), the genome predicts that heme o and heme a

Table 3 Aerobic and anaerobic gene pairs identified in the Cfl. aurantiacus genome

(Putative) gene product and the EC Reaction catalyzed
number for aerobic and anaerobic

gene product

Gene symbol and locus for aerobic genes Gene symbol and
locus for the

anaerobic genes

Tetrapyrrole (heme, cobalamin and chlorophyll) biosynthesis

coproporphyrinogen Il decarboxylase/
oxidase - aerobic (EC 1.3.3.3) - anaerobic

(EC 1.3.99.22) heme biosynthesis

convert coproporphyrinogen |l
to protoporphyrinogen IX in

hemF (Caur_2599) hemN (Caur_0209,

Caur_0644)

Mg-protoporphyrin IX monomethyl ester

oxidative cyclase (EC 1.14.13.81) chlorophyll biosynthesis

the isocyclic ring formation in

acsF (Caur_2590) bchE (Caur_3676)

cobalt chelatase - aerobic (EC 6.6.1.2) -
anaerobic (EC 4.99.1.3)

cobalt insertion on the corrin
ring in cobalamin biosynthesis

cobT (Caur_2578), cobN (Caur_2579) cobS
(Caur_1198)

cbiK (Caur_2572)

Central carbon metabolism

a-ketoglutarate dehydrogenase E1 (EC convert a-ketoglutarate to
1.24.2), E2 (EC 23.1.61), and E3 (EC

1.8.1.4)

succinyl-CoA in the TCA cycle

E1 (sucA, Caur_3727) E2 (olst, Caur_1691,
Caur_3726) E3 (dld, Caur_0170, Caur_2840)

o-ketoglutarate:ferredoxin convert succinyl-CoA to a-
oxidoreductase (or a.-ketoglutarate

synthase) (EC 1.2.7.3)

keto-glutarate in the TCA cycle

korA (Caur_0249,

Caur_0952) korB
(Caur_0250,
Caur_0953)

pyruvate dehydrogenase E1 (EC 1.24.1),

E2 (EC 2.3.1.12), and E3 (EC 1.8.14) in pyruvate metabolism

convert pyruvate to acetyl-CoA

E1 (Caur_1334, 1335, 1972, 1973, 2805, 3121,
3671, and 3672), E2 (Caur_1333, Caur_1974), E3
(dld, Caur_0170, Caur_2840)

Central carbon metabolism

pyruvate:ferredoxin oxidoreductase (or

pyruvate synthase) (EC 1.2.7.1) in pyruvate metabolism

convert acetyl-CoA to pyruvate

porA (Caur_0249,
Caur_0952, Caur_2080)

Nucleic acid biosynthesis

ribonucleoside-diphosphate reductase convert ribonucleotide into
aerobic (EC 1.17.4.1) anaerobic (EC

1.174.2) acids biosynthesis

deoxyribonucleotide in nucleic

nrdB (Caur_3331, B-subunit) nrd) (Caur_1750)

dihydroorotate oxidase (EC 1.3.3.1,
aerobic), and dihydroorotate
dehydrogenase (EC 1.3.99.11, anaerobic),

to orotate in pyrimidine
biosynthesis

conversion of dihydroorotoate

Caur_2081 and Caur_3923 Caur_2338
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Table 4 Selected genes and gene clusters in metabolic pathways of Cfl. aurantiacus

Selected metabolic pathways and/or gene
products

Gene symbol, gene loci, and/or gene products

CO oxidation

coxSML and coxG (Caur_3467 - 3470)

CO,-anaplerotic pathways

tme (Caur_1614), pckA (Caur_2331), ppc (Caur_3161, Caur_3888)

3-hydroxypropionate cycle

accC (Caur_1378, Caur_3421), accA (Caur_1647), accD (Caur_1648), accB (Caur_3739), mcr

(Caur_2614), pcs (Caur_ 0613), pccB (Caur_2034, Caur_3435), mcee (Caur_3037), mut (Caur_1844,
Caur_2508, Caur_2509), smtA (Caur_0179), smtB (Caur_0178), sdhBAC (Caur_1880 to Caur_1882), th
(Caur_1443), mcl (Caur_0174), mch (Caur_0173), mct (Caur_0174), meh (Caur_0180)

Glycolate assimilation and glyoxylate cycle glcDEF (Caur_1144 -

1145, Caur_2133, Caur_2135), glyr (Caur_0825), icl (Caur_3889) and mas

(Caur_2969)

Cobalamin biosynthesis

cobS (Caur_1198), cobQ/cbiP (Caur_2560), N-transferase (Caur_2561), cobP/cobU (Caur_2562), cobB/

cbiA (Caur_2563), cobA (Caur_2564, Caur_0687), cobJ (Caur_2565), cobM/cbif (Caur_2566), cobl/cbil.
(Caur_2567), cobl/cbiET (Caur_2568), cbiD (Caur_2569), cobH/cbiCH (Caur_2570), cbiK (Caur_2572),
cobD/cbiB (Caur_2573), cbiMNQO (Caur_2574 to Caur_2577), cobU/cobT (Caur_2578), cobN
(Caur_2579), cobO (Caur_2580), cysG (Caur_0688) and cbiMNQ (Caur_3680 to Caur_3682) (Genes
shared with aerobic and anaerobic pathways shown as aerobic/anaerobic)

Heme biosynthesis

hemA, hemC, hemD, hemB, hemE, hemL, hemf (Caur_2593 - 2599), hemN (Caur_0209 and Caur_0644),

hemG/Y (Caur_0645), protoheme IX farnesyltransferase (Caur_0029)

Chlorophyll biosynthesis

behl (Caur_0117, Caur_0419, Caur_1255), bchU (Caur_0137), bchK (Caur_0138), bchf (Caur_0415),

bchC (Caur_0416), bchX (Caur_0417), bchD (Caur_0420), bchP (Caur_2087), bchG (Caur_2088), bchBNL
(Caur_2554 to Caur_2557), bchM (Caur_2588), acsF (Caur_2590), bchH (Caur_2591, Caur_3151,
Caur_3371), bchE (Caur_3676), bchJ (Caur_3677), and bchYZ (Caur_3805, Caur_3806)

Nitrogen metabolism and amino acid
biosynthesis

hal (Caur_0974), tpl (Caur_0573), aspg (Caur_3511), glud1 (Caur_1698, Caur_2070), glul (Caur_0844,
Caur_1448, Caur_3395), ilvA (Caur_2585, Caur_3892), isoleucine/leucine/valine biosynthesis

(Caur_0041, Caur_0163 - 0169, Caur_0329 - 0331, Caur_0488, Caur_1435, and Caur_2851)

Sulfur metabolism

Sulfur reduction operon (Caur_0686 - 0692), a sulfate adenylyl-transferase/adenylylsulfate kinase

(Caur_2113), cysK (Caur_1341), cysM (Caur_3489), sqr (Caur_3894, type Il SQR), sulfotransferase

(Caur_2114).

BB08-866 light-harvesting complex

Caur_2090 (a-subunit) and Caur_2091 (B-subunit)

Reaction center

pufM (Caur_1051) and pufL (Caur_1052)

Chlorosome proteins

csmA (Caur_0126), csmM (Caur_0139), csmN (Caur_0140), csmP (Caur_0142), csmO (Caur_1311) and

csmY (Caur_0356).

Auracyanins (type | blue-copper proteins)

auraA (Caur_3248), auraB (Caur_1950), Caur_2212 and Caur_2581

Cytochrome css, complex

pufC (Caur_2089)

Succinate dehydrogenase/fumarate reductase
(complex Il, EC 1.3.99.1)

sdhBAC (Caur_1880 - 1882)

Cytochrome bc; or bg/f complex

Not annotated

Cytochrome ¢ oxidase (complex IV, EC 1.9.3.1)

COX | - IV (Caur_2141 - 2144), COX | (Caur_2426) and COX Il (Caur_2425 and Caur_2582)

can be synthesized respectively by the gene products of
Caur_0029 (encoding protoheme IX farnesyltransferase)
and Caur_1010 (encoding a cytochrome aa3 biosynth-
esis protein), consistent with the spectral evidence pro-
vided by Pierson that protoheme and heme derivatives
can be identified [59].

(c) (Bacterio)chlorophylls

The anaerobic to aerobic transitions are particularly
intriguing in chlorophyll (Chl) biosynthesis and photo-
synthesis, in which molecular oxygen is lethal for photo-
synthetic anaerobes but is required for the life of
aerobic phototrophs. Contrary to the cobalamin and
heme biosynthesis, no gene cluster for (B)Chl biosynth-
esis is recognized in the Cfl. aurantiacus genome,
whereas photosynthesis gene clusters are present in pur-
ple photosynthetic proteobacteria [27,60,61] (Figure 4B)

and heliobacteria [58]. The photosynthetic genes of Cfl.
aurantiacus are rather spread out in the chromosome,
similar to the distribution of photosynthetic genes in
Cha. tepidum (Figure 4A and Additional file 1:
Table S1). Both aerobic and anaerobic genes, acsF
(Caur_2590) and bchE (Caur_3676), have been identified
in the Cfl. aurantiacus genome (Table 3), as well as in
the genome of other phototrophic Chloroflexi species,
including Roseiflexus castenholzii [28]. AcsF and BchE
catalyze the isocyclic ring (or the E-ring) formation of
Chl under aerobic and anaerobic growth conditions,
respectively. AcsF (aerobic cyclase) catalyzes the forma-
tion of the isocyclic ring and reduces O, into H,O.
BchE requires cobalamin for catalytic activity, and has
putative cobalamin and [4Fe-4S] cluster/S-adenosyl-L-
methionine binding motifs [28,31,32,62-64].
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Other anaerobic to aerobic transitions may also be
found in the biosynthesis of BChls in Cfl. aurantiacus.
For example, Mg-insertion to the porphyrin ring is the
first committed step of BChl biosynthesis, and three
bchH (Caur_2591, Caur_3151, and Caur_3371), three
bchl (Caur_0117, Caur_0419 and Caur_1255) and one
bchD (Caur_0420) have been annotated for the Mg-che-
latase (BchHID) of Cfl. aurantiacus, whereas one each
for Hbt. modesticaldum [58], Rsb. denitrificans [27] and
several strictly anaerobic and aerobic bacteria. On the
other hand, three bchH, and one copy of bchD and bchl,
have been identified in the green sulfur bacterium Cba.
tepidum (Additional file 1: Table S1), and Eisen et al.
proposed [56] that different BchH gene products may
contribute to synthesize different isoforms of BChl
(BChl a, BChl ¢, and Chl a can be synthesized in Cba.
tepidum). In comparison, two types of BChls, BChl a
and BChl ¢ can be synthesized by Cfl. aurantiacus. 1t is
also possible that different bchH and behl genes catalyze
Mg-chelation to the BChl in various growth conditions
of Cfl. aurantiacus.

Two bchG-like genes (bchG and bchK) encoding
chlorophyll synthases that attach the tail into (bacterio)
chlorophylls are present in the genome, as shown in
Additional file 1: Table S1. Because the tails of BChl a
(mostly phytyl- or geranylgeranyl-substituted) and BChl
¢ (mainly stearyl-substituted) are rather distinct, it was
suggested that one bchG-like gene encodes the enzyme
synthesizing BChl a and the other homolog synthesizes
BChl ¢ [65]. The bchG gene sequence reported by Lopez
et al. [65] was proposed to be BChl a synthase, since
the encoding protein sequence is analogous to the
sequence of chlorophyll synthase from Rhodobacter cap-
sulatus. The proposed gene function was later verified
[66]. The bchK gene encoding BChl ¢ synthase was later
confirmed with the bchK-knockout Cha. tepidum
mutant [67]. Thus, bchG (Caur_2088) and bchK
(Caur_0138) encode enzymes synthesizing BChl 4 and
BChl ¢, respectively, in Cfl. aurantiacus. Although genes
responsible for chlorophyll biosynthesis are rather
spread out in the Cfl. aurantiacus genome, two genes
responsible for BChl ¢ biosynthesis, bchl, encoding C-
20 methyltransferase [68], and bchK, are clustered with
the genes encoding chlorosome proteins, and two BChl
a biosynthesis genes, bchP, encoding geranylgeranyl
hydrogenase [69], and bchG, are in the operon contain-
ing genes encoding cytochrome cs54 (pufC) and the
B808-866 light-harvesting complex (Figure 4C).

(1) Nucleic acids

The level of oxygen tolerance in Cfl. aurantiacus may be
suggested from the presence of genes encoding ribonu-
cleotide reductase (RNR), which is essential for DNA
synthesis. Three classes of RNR have been reported, in
which the class I is a diiron oxygen-dependent (NrdB,
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EC 1.17.4.1), class II is coenzyme B;,-dependent (Nrd],
EC 1.17.4.2), and class III is S-adenosyl-L-methionine/
[4Fe-4S] cluster-dependent (NrdG, EC 1.17.7.1). It has
been suggested that biosynthesis of ANTP is catalyzed
by NrdB, NrdJ], and NrdG in aerobic, aerobic and anae-
robic, and strictly anaerobic environments, respectively.
The activity of Nrd] in Cfl. aurantiacus has been
reported [70]. Genes encoding NrdB and Nrd]J, but not
NrdG, have been found in the Cfl. aurantiacus genome,
suggesting that NrdG and Nrd] produce dNTP for Cfl.
aurantiacus in response to the oxygen level (Table 3).
Moreover, in the fourth step of the biosynthesis of pyri-
midine, the conversion of dihydroorotoate to orotate,
dihydroorotate oxidase (EC 1.3.3.1, aerobic) versus dihy-
droorotate dehydrogenase (EC 1.3.99.11, anaerobic) are
expressed in aerobic versus anaerobic conditions and
genes encoding these enzymes have been identified
(Table 3). Together, different classes of RNR and dihy-
droorotate oxidoreductase in the nucleic acid biosynth-
esis also suggest adaptation or evolution from anaerobic
to aerobic conditions.

(lll) Central carbon metabolism

Genes encoding several aerobic/anaerobic enzyme pairs
in the central carbon metabolism, such as genes encod-
ing pyruvate dehydrogenase (PDH, EC 1.2.4.1) and a-
ketoglutarate dehydrogenase (KDH, EC 1.2.4.2), as well
as pyruvate:ferredoxin oxidoreductase (or pyruvate
synthase) (PFOR, EC 1.2.7.1) and a-ketoglutarate:ferre-
doxin oxidoreductase (or a-ketoglutarate synthase)
(KFOR, EC 1.2.7.3) are present in the genome (Table 3).
PFOR and KFOR, which are essential for pyruvate meta-
bolism and energy metabolism through the TCA cycle,
are commonly found in anaerobic organisms, whereas
PDH and KDH are more widely spread and have been
found in all aerobic organisms.

D. CO, assimilation and carbohydrate, nitrogen and sulfur
metabolisms

(I) Carbon fixation and metabolism

Genes encoding carbon monoxide dehydrogenase (coxG
and coxSML) have been found in the genome, suggest-
ing that Cfl. aurantiacus can use CO as an electron
source during aerobic or semi-aerobic growth. A similar
mechanism has been suggested in the aerobic anoxy-
genic phototrophic proteobacterium Rsb. denitrificans
[27]. CO, generated from CO oxidation can be assimi-
lated by Cfl. aurantiacus via the autotrophic carbon
fixation cycle and/or the CO5-anaplerotic pathways.
Under autotrophic growth conditions Cfl. aurantiacus is
known to use a unique carbon fixation pathway: the 3-
hydroxypropionate (3HOP) autotrophic cycle
[4,5,71-74]. Three inorganic carbon molecules are
assimilated into the 3HOP cycle to produce one mole-
cule of pyruvate (Figure 5). A similar carbon fixation
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pathway called 3-hydroxypropionate/4-hydroxybutyrate
(3HOP/4HOB) cycle was reported recently in archaea
(Crenarchaeota) [75-78]. Several enzymes responsible
for the 3HOP and 3HOP/4HOB cycles, including CO,-
fixing enzymes (e.g., acetyl-CoA carboxylase and propio-
nyl-CoA carboxylase), are common to the two pathways.

When the genome was first available, some genes
required for the 3HOP cycle could not be found [5],
whereas some of the missing genes/enzymes for the
3HOP cycle were later characterized experimentally [4]:
(1) acetyl-CoA carboxylase (accC (Caur_1378 and
Caur_3421, biotin carboxylase), accA (Caur_1647,
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a-subunit), accD (Caur_1648, B-subunit) and accB
(Caur_3739) [79], (2) malonyl-CoA reductase (mcr,
Caur_2614) [80], (3) propionyl-CoA synthase (pcs,
Caur_0613) [81], (4) propionyl-CoA carboxylase (pccB,
Caur_2034, Caur_3435), (5) methylmalonyl-CoA epimer-
ase (mcee, Caur_3037), (6) L-methylmalonyl-CoA
mutase (MCM) (mut, Caur_1844, Caur_2508,
Caur_2509), (7) succinyl-CoA:(S)-malyl-CoA transferase
(smtA (Caur_0179), smtB (Caur_0178)), (8) succinate
dehydrogenase (sdhBAC, Caur_1880 to Caur_1882), (9)
fumarate hydratase (f1, Caur_1443), (10) (S)-malyl-CoA/
B-methylmalyl-CoA/(S)-citramalyl-CoA (MMC) lyase
(mcl, Caur_0174), (11) B-methylmalyl-CoA dehydratase
(mch, Caur_0173), (12) mesaconyl-C1-CoA-C4-CoA
transferase (mct, Caur_0174) and (13) mesaconyl-C4-
CoA hydratase (meh, Caur_0180) (Figure 5). The
enzymes responsible for the 4™ step to the 6™ step of
the 3HOP cycle are involved in fatty acid oxidation and
amino acid metabolism. Finally, no genes encoding ribu-
lose 1,5-bisphosphate carboxylase (RuBisCO) (the Cal-
vin-Benson cycle), ATP citrate lyase (the reductive TCA
cycle) and acetyl-CoA synthase (the Wood-Ljungdahl
pathway) are present, strongly suggesting that these
autotrophic carbon fixation pathways are not present in
Cfl. aurantiacus.

Additionally, genes encoding malic enzyme (tme),
phosphoenolpyruvate (PEP) carboxykinase (pckA) and
PEP carboxylase (ppc) have been identified, suggesting
that Cfl. aurantiacus can assimilate some CO, and
replenish the metabolites in the TCA cycle through the
CO,-anaplerotic pathways. The active CO,-anaplerotic
pathways have been identified experimentally in other
anoxygenic phototrophs during autotrophic, mixotrophic
and heterotrophic growth [82-87], and the activities of
PEP carboxylase and malic enzyme have also been
detected in cell extracts during photoheterotrophic
growth of Cfl. aurantiacus (Tang and Blankenship,
unpublished results). Moreover, all of the genes in the
TCA cycle are present in the Cfl. aurantiacus genome.

In central carbon metabolism, all of the genes in the
TCA cycle as well as the glyoxylate cycle have been
identified. The glyoxylate cycle is one of the anaplerotic
pathways for assimilating acetyl-CoA, thus lipids can be
converted to carbohydrates. Glyoxylate is synthesized
and also assimilated in the 3HOP cycle (Figure 5), and
is also produced by isocitrate lyase (EC 4.1.3.1) (icl,
Caur_3889) and consumed by malate synthase (EC
2.3.3.9) (mas, Caur_2969) in the glyoxylate cycle. With
acetate as the sole organic carbon source to support the
photoheterotrophic growth of Cfl. aurantiacus, higher
activities of isocitrate lyase and malate synthase have
been reported [88]. Further, some FAP bacteria have
been shown to assimilate glycolate from their habitat
[89]. As glycolate can be converted to glyoxylate by
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glycolate oxidase (g/lcDEF, EC 1.1.3.15) and glyoxylate
reductase (glyr, EC 1.1.1.26), the glyoxylate shunt and
the 3HOP cycle can be employed by Cfl. aurantiacus
for assimilating glycolate. Together, genes encoding cen-
tral carbon metabolism, 3HOP cycle, glycolate assimila-
tion, the glyoxylate shunt and CO oxidation are listed in
Table 4.

() Carbohydrate metabolism

Three carbohydrate metabolism pathways are utilized by
various bacteria: the Embden-Meyerhof-Parnas (EMP)
pathway (glycolysis), the Entner-Doudoroff (ED) path-
way, and the pentose phosphate (PP) pathway. Cfl. aur-
antiacus does not have genes in the ED pathway, but
has genes in the oxidative PP pathway, in agreement
with the activities reported for the essential enzymes
(glucose-6-phosphate dehydrogenase and 6-phosphoglu-
conate dehydrogenase) in the oxidative PP pathway [90].
Genes in the non-oxidative pathway have also been
found. The gene encoding fructose-1,6-bisphosphate
(FBP) aldolase (EC 4.1.2.13), catalyzing the reaction of
D-fructose-1,6-bisphosphate (FBP) < glyceraldehyde-3-
phosphate (GAP) + dihydroxyacetone phosphate
(DHAP) in the EMP/gluconeogenic pathway, is missing
in the genomes of Chloroflexi species (e.g., Cfl. aurantia-
cus, Chloroflexus sp. Y-400-fl and Chloroflexus aggre-
gans). If Cfl. aurantiacus were unable to synthesize FBA,
an active pentose phosphate pathway would be required
for the interconversion of D-glucose-6-phosphate and
GAP, so glucose and other sugars can be converted to
pyruvate and other energy-rich species, and vice versa.
However, Cfl. aurantiacus has been reported to grow
well in glucose and a number of sugars during aerobic
respiration [91], and uses the EMP pathway for carbohy-
drate catabolism [90]. Also, higher activities of phospho-
fructokinase and FBP aldolase have been found in the
cells grown with glucose than with acetate [1,92,93].
Note that Roseiflexi species (e.g., Roseiflexus sp. RS-1
and Roseiflexus castenholzii DSM 13941), which are clo-
sely related to Chloroflexi species, have a putative
bifunctional FBP aldolase/phosphatase gene identified
[94], and genes encoding various types of aldolase have
been found in the Cfl. aurantiacus genome. Taken
together, Cfl. aurantiacus and other Chloroflexi species
may employ either a novel FBP aldolase or more than
one carbohydrate metabolic pathway. Further efforts will
be needed to clarify this picture.

() Nitrogen metabolism and amino acid biosynthesis

Cfl. aurantiacus is known to use ammonia as the sole
nitrogen source, and several amino acids (nitrogenous
compounds), but not nitrate, can enhance the growth.
Neither nitrogenase nor nitrogen fixation has been
reported in Cfl. aurantiacus [95]. Consistent with the
physiological studies, genes encoding enzymes in ammo-
nia production, such as histidine ammonia lyase (hal),
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tyrosine phenol-lyase (tpl), asparaginase (aspg), gluta-
mate dehydrogenase (gludI), and glutamate ammonia-
lyase (glul), but not nitrogen metabolism (nifDHK) and
nitrate reduction, are present in the genome. Note that
Cfl. aurantiacus has genes encoding a copper-containing
nitrite reductase (EC 1.7.2.1) (Caur_1570) and the a.-
subunit (nzarG, Caur_3201), but not other subunits (nar-
HIJ) and the catalytic subunit (nasA), of nitrate reduc-
tase. Two threonine/serine dehydratases (EC 4.3.1.19),
one of which is inhibited by isoleucine may be related
to the isoleucine biosynthesis, and other key enzymes in
isoleucine biosynthesis have been reported [96]. Consis-
tent with the biochemical studies, two ilvA genes
(Caur_2585 and Caur_3892) encoding threonine dehy-
dratases, and genes in the isoleucine/leucine/valine bio-
synthesis pathway have been identified (Table 4). The
biosynthesis of isoleucine has recently been discovered
through the citramalate pathway in several microbes
[97,98], while no gene encoded citramalate synthase
(CimA, EC 2.3.1.182), required for the citramalate path-
way, has been found in the Cfl. aurantiacus genome.

(IV) Sulfur assimilation and sulfate reduction

Cfl. aurantiacus can use a variety of compounds as sul-
fur sources, including cysteine, glutathione, methionine,
sulfide and sulfate, during photoheterotrophic or photo-
autotrophic growth [99,100]. When Cfl. aurantiacus
uses sulfate as the sulfur source, high activity of ATP
sulfurylase has been reported [99]. Sulfate is reduced to
sulfide during photoautotrophic and photoheterotrophic
growth for synthesizing cysteine and cofactors. Consis-
tent with the experimental data, a complete sulfur
reduction pathway with a sulfur reduction operon
(Caur_0686 - 0692) has been identified (Table 4). Genes
encoding two ATP sulfurylases (ATP + sulfate — ade-
nosine 5’-phosphosulfate (APS) + PPi) can be identified:
sulfate adenylyltransferase (EC 2.7.7.4, Caur_0690) and a
bifunctional sulfate adenylyltransferase/adenylylsulfate
kinase (Caur_2113). Pyrophosphate (PPi) produced in
the reaction of ATP sulfurylase is hydrolyzed to inor-
ganic phosphate (Pi) via inorganic diphosphatase (EC
3.6.1.1) (Caur_3321). The bifunctional enzyme or/and
adenylylsulfate kinase (EC 2.7.1.25, Caur_0692) converts
APS to 3’-phosphoadenosine 5’-phosphosulfate (PAPS),
which is reduced to sulfite and PAP (adenosine 3’,5’-
diphosphate) by PAPS reductase (EC 1.8.4.8, cysH,
Caur_0691). While many organisms reduce APS instead
of PAPS to sulfite, it is unknown if Cfl. aurantiacus car-
ries out this reaction as genes encoding APS reductase
(EC 1.8.99.2) have not been identified in the genome. In
addition to the proposed pathway, sulfotransferase
(Caur_2114) can also transfer the sulfate group from
PAPS, which serves as a sulfur donor, to an alcohol or
amine acceptor for generating various cellular sulfate
compounds. PAP is generated as a by-product in the
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reactions catalyzed by PAPS reductase and sulfotransfer-
ase, and has no known functions in metabolism and is
likely hydrolyzed to AMP and Pi via PAP phosphatase
(unidentified yet). Sulfite reductase (EC 1.8.1.2,
Caur_0686) reduces sulfite to sulfide, which is incorpo-
rated into cysteine by cysteine synthase A (cysK,
Caur_1341) or cysteine synthase B (c¢ysM, Caur_3489).
The overall proposed sulfur reduction and assimilation
pathways are illustrated in Figure 6.

Other than using sulfide as the sulfur source during
photoheterophic growth, Cfl. aurantiacus grows photo-
autotrophically in the presence of sufficient sulfide
[100-102]. Under these circumstances, sulfide likely
functions as electron donor by replacing organic carbon
sources contributed from cyanobacteria. In agreement
with these physiological and ecological studies, the gene
encoding a type II sulfide:quinone oxidoreductase (SQR)
(sqr, Caur_3894), has been found in the genome. SQRs
belong to the members of the disulfide oxidoreductase
flavoprotein superfamily. Other than type II SQRs, type
I and type III SQRs with distinct sequences and struc-
tures and cofactor requirements have also been reported
[103]. Although all of the characterized SQRs catalyze
oxidization of sulfide to elemental sulfur (E(ox) + H,S
— Epo(red) + S°), different types of SQR have been
identified in various classes of photosynthetic bacteria
[103]: type I, purple non-sulfur anoxygenic photosyn-
thetic proteobacteria (such as Rhodobacter capsulatus )
[104]; type 11, Cfl. aurantiacus and cyanobacteria (such
as Synechocystis PCC 6803) [103]; and type III, green
sulfur bacteria [105]. In addition to being characterized
in phototrophic microbes, type II SQRs have also been
identified in various non-photosynthetic bacteria as well
as in the mitochondria of animals, and are suggested to
be involved in sulfide detoxification, heavy metal toler-
ance, sulfide signaling, and other essential cellular pro-
cesses [103].

E. Evolution perspectives

Our paper reports numerous aerobic/anaerobic gene
pairs and oxygenic/anoxygenic metabolic pathways in
the Cfl. aurantiacus genome. As suggested by phyloge-
netic analyses [6-8] and comparisons to the genome and
reports of other photosynthetic bacteria, one can pro-
pose lateral or horizontal gene transfers between Cfl.
aurantiacus and other photosynthetic bacteria. Some
proposed lateral gene transfers are listed below and also
illustrated in Figure 7. Note that horizontal/lateral gene
transfers suggested below are important in the evolution
of photosynthesis. It is important to remember that it
has not yet been generally accepted which organisms
were donors and which were acceptors during gene
transfers. The proposed gene transfers below remain to
be verified with more sequenced genomes and biochem-
ical studies in photosynthetic organisms.
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(I) Photosynthetic components

Chlorosomes were transferred between Cfl. aurantiacus
and the green sulfur bacteria (GSBs). The GSBs have
larger chlorosomes and more genes encoding chloro-
some proteins [21,29]. The integral membrane core
antenna complex and a type II (quinone-type) reaction
center were transferred either to or from the purple
photosynthetic bacteria.

() (Bacterio)chlorophyll biosynthesis

AcsF and BchE are proposed to be responsible for bio-
synthesis of the isocyclic ring of (bacterio)chlorophylls
under aerobic and anaerobic growth conditions, respec-
tively [28,31,32,62-64]. The acsF gene was transferred
either to or from purple bacteria and cyanobacteria, and
the bchE gene either to or from heliobacteria, purple
bacteria and GSBs.

(lll) Electron transfer complexes

Two gene clusters of the complex I genes were transferred
to (some) purple bacteria. Genes encoding auracyanin may
have been transferred either to or from cyanobacteria
where the type I blue copper protein plastocyanin is
found. Alternative complex III (ACIII) may have evolved
from or to the cytochrome bc; or bg/f complex.

(IV) Central carbon metabolism

Genes encoding pyruvate dehydrogenase and o-keto-
glutarate dehydrogenase were transferred either to or
from purple bacteria and cyanobacteria, and genes
encoding PFOR (or pyruvate synthase) and KFOR (or o-
ketoglutarate synthase) to or from heliobacteria and
GSBs. GSBs may have acquired the ATP citrate lyase
gene to complete the reductive TCA (RTCA) cycle for
CO, fixation, and heliobacteria obtained the gene
encoding (Re)-citrate synthase for synthesizing citrate
and operating the partial oxidative TCA (OTCA) cycle
[84]. Since Cfl. aurantiacus operates the OTCA cycle,
the RTCA cycle in GSBs may have evolved from the
OTCA cycle [106].

Conclusions

The filamentous anoxygenic phototrophic (FAP) bacteria
(or the green non-sulfur bacteria) have been suggested
to be a critical group in the evolution of photosynthesis.
As the first characterized FAP bacterium, the thermo-
philic bacterium Chloroflexus aurantiacus is an amazing
organism. It has a chimerical photosystem that com-
prises characteristic types of green sulfur bacteria and
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Figure 7 Proposed lateral/horizontal gene transfers between Cfl. aurantiacus and other phototrophic bacteria. Proposed gene transfers
are shown in double-headed arrows. Genes in Cfl. aurantiacus may have been transferred either to or from other phototrophic bacteria. Genes
encoding core antenna complex, type Il reaction center (RC), pyruvate/ai-ketoglutarate dehydrogenase, Complex |, AcsF and BchE may have
been transferred from or to purple bacteria; pyruvate/a-ketoglutarate dehydrogenase, auracyanin and AcsF may have been transferred from or
to cyanobacteria. Auracyanin may have been evolved from or to plastocyanin; chlorosomes, pyruvate/a-ketoglutarate synthase, BchE may have

heliobacteria.

been transferred from or to green sulfur bacteria; and pyruvate/a-ketoglutarate synthase and BchE may have been transferred from or to

purple photosynthetic bacteria. It is metabolically versa-
tile, and can grow photoautotrophically and photoheter-
otrophically under anaerobic growth conditions, and
chemotrophically under aerobic growth conditions. Con-
sistent with these physiological and ecological studies,
the Cfl. aurantiacus genome has duplicated genes and
aerobic/anaerobic enzyme pairs in (photosynthetic) elec-
tron transport chain, central carbon metabolism, and
biosynthesis of tetrapyrroles and nucleic acids. In parti-
cular, duplicate genes and gene clusters for two unique
proteins and protein complexes in Cfl. aurantiacus and
several FAP bacteria, the alternative complex III (ACIII)
and type I blue copper protein auracyanin, have been
identified in Cfl. aurantiacus genome. The genomic
information and previous biochemical studies also

suggest that Cfl. aurantiacus operates diverse carbon
assimilation pathways. In contrast to the purple photo-
synthetic bacteria, the photosynthetic genes are rather
spread out in the Cfl. aurantiacus chromosome. Overall,
the genomic analyses presented in this report, along
with previous physiological, ecological and biochemical
studies, indicate that Cfl. aurantiacus has many interest-
ing and certain unique features in its metabolic
pathways.

Methods

Gene sequencing

The genome of Chloroflexus aurantiacus J-10-fl was
sequenced at the Joint Genome Institute (JGI) using a
combination of 8-kb and 14-kb DNA libraries. All general
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aspects of library construction and sequencing performed
at the JGI can be found at http://www.jgi.doe.gov/. Draft
assemblies were based on 58246 total reads. Both libraries
provided 10x coverage of the genome. The Phred/Phrap/
Consed software package (http://www.phrap.com) was
used for sequence assembly and quality assessment
[107-109]. After the shotgun stage, reads were assembled
with parallel phrap (High Performance Software, LLC).
Possible mis-assemblies were corrected with Dupfinisher
[110] or transposon bombing of bridging clones (Epicentre
Biotechnologies, Madison, WI). Gaps between contigs
were closed by editing in Consed, custom primer walk or
PCR amplification (Roche Applied Science, Indianapolis,
IN). A total of 1893 additional reactions were necessary to
close gaps and to raise the quality of the finished sequence.
The completed Cfl. aurantiacus genome sequence con-
tains 61248 reads, achieving an average of 11-fold
sequence coverage per base with an error rate less than 1
in 100,000.

Annotation

The genome of Chloroflexus aurantiacus J-10-fl has
been annotated by the default JGI annotation pipeline.
Genes were identified using two gene modeling pro-
grams, Glimmer [111] and Critica [112] as part of the
Oak Ridge National Laboratory genome annotation
pipeline. The two sets of gene calls were combined
using Critica as the preferred start call for genes with
the same stop codon. Briefly, structural RNAs were pre-
dicted using BLASTn and tRNAscan-SE [113] with
default prokaryotic settings. Protein-coding genes were
identified using gene modeling program Prodigal [114].
Genes with less than 80 amino acids which were pre-
dicted by only one of the gene callers and had no Blast
hit in the KEGG database at 1e-05 were deleted. Pre-
dicted gene models were analyzed using GenePRIMP
pipeline [115], and erroneous gene models were manu-
ally curated. The revised gene-protein set was searched
by BLASTp against the KEGG GENES database [116]
and GenBank NR using e-value of 1.0e-05, a minimum
of 50% identity and alignment length of at least 80% of
both the query and subject protein. These BLASTp hits
were used to perform the initial automated functional
assignments. In addition, protein sequences were
searched against Pfam [117] and TIGRFAM [118] data-
bases using HMMER2 package and trusted cutoffs for
each model. Protein sequences were also searched
against COG database [119] using RPS-BLAST search
with e-value of 1.0e-05 and retaining the best hit. These
data sources were combined to assert a product descrip-
tion for each predicted protein. Non-coding genes and
miscellaneous features were predicted using tRNAscan-
SE [113], TMHMM [120], and signalP [121]. The anno-
tated genome sequence was submitted to GenBank and
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loaded into the Integrated Microbial Genomes (IMG)
database [122].

Phylogenetic analyses

The 16S rRNA gene sequences of various photosyn-
thetic bacteria were obtained from NCBI. The sequences
of 16S rRNA genes were aligned using the program
Bioedit [123], and the phylogenetic tree was constructed
using the program MEGA 4.1 [124]. The tree is an
unrooted neighbor joining tree.

Abbreviations of phototrophic bacteria

Three-letter abbreviation for the generic name of photo-
trophic bacteria follows the information listed on LPSN
(List of Prokaryotic names with Standing in Nomencla-
ture), an on-line database curated by professor Jean P.
Euzéby (http://www.bacterio.cict.fr/index.html).

Additional material

Additional file 1: Table S1. Annotation of photosynthetic genes in Cfl.
aurantiacus and Cba. tepidum.
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