Santure et al. BMC Genomics 2011, 12:283

http://www.biomedcentral.com/1471-2164/12/283 BMC

Genomics

RESEARCH ARTICLE Open Access

Characterisation of the transcriptome of a wild
great tit Parus major population by next
generation sequencing

Anna W Santure'’, Jake Gratten', Jim A Mossman', Ben C Sheldon? and Jon Slate'

Abstract

Background: The recent development of next generation sequencing technologies has made it possible to
generate very large amounts of sequence data in species with little or no genome information. Combined with
the large phenotypic databases available for wild and non-model species, these data will provide an
unprecedented opportunity to “genomicise” ecological model organisms and establish the genetic basis of
quantitative traits in natural populations.

Results: This paper describes the sequencing, de novo assembly and analysis from the transcriptome of eight
tissues of ten wild great tits. Approximately 4.6 million sequences and 1.4 billion bases of DNA were generated and
assembled into 95,979 contigs, one third of which aligned with known Taeniopygia guttata (zebra finch) and Gallus
gallus (chicken) transcripts. The majority (78%) of the remaining contigs aligned within or very close to regions of
the zebra finch genome containing known genes, suggesting that they represented precursor mRNA rather than
untranscribed genomic DNA. More than 35,000 single nucleotide polymorphisms and 10,000 microsatellite repeats
were identified. Eleven percent of contigs were expressed in every tissue, while twenty one percent of contigs
were expressed in only one tissue. The function of those contigs with strong evidence for tissue specific expression

respectively).

studies in wild populations.

and contigs expressed in every tissue was inferred from the gene ontology (GO) terms associated with these
contigs; heart and pancreas had the highest number of highly tissue specific GO terms (21.4% and 28.5%

Conclusions: In summary, the transcriptomic data generated in this study will contribute towards efforts to
assemble and annotate the great tit genome, as well as providing the markers required to perform gene mapping

Background

The long-term study of wild vertebrate populations,
whereby individuals are studied throughout their life
histories, has provided enormous opportunity to under-
stand a range of evolutionary and ecological questions
[1]. Cavity-dwelling passerine birds have provided an
ideal system for long-term study because they can be
caught and handled easily, can be marked, tracked and
measured from hatching to death, have short generation
times and are sensitive to environmental change. A
wealth of quantitative genetic studies have demonstrated
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a genetic basis for many of the life history traits com-
monly measured for passerines such as body size, timing
of breeding and clutch size [2]. However, identifying the
genomic regions which contribute to variation between
individuals and between populations has, until very
recently, been restricted by the lack of genetic resources
in wild species [3].

The genomics era has provided an unprecedented
explosion in the amount of sequence data available [4].
Recent advances in genomics, in particular next genera-
tion sequencing, mean that generating sequence data for
non-model organisms has become accessible both in
terms of timescale and price [5,6]. The integration of
classical quantitative genetic studies with genomic data
therefore provide an exciting opportunity for molecular
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ecologists to begin to understand the processes govern-
ing the evolution and maintenance of quantitative trait
variation in wild populations.

The great tit (Parus major) is a small (~17 g) cavity
nesting passerine species widespread and abundant in
woodland across Eurasia. As they are highly amenable
to using nest boxes, great tits have become a model
study organism in behavioural ecology and evolutionary
biology, particularly with regard to studying the evolu-
tionary ecology of life history and morphological traits
such as clutch size [7], lifetime fitness [8,9], fledgling
mass and adult body mass [10-13]. More recently, quan-
titative genetic approaches have been extended to exam-
ine phenotypic plasticity in response to climate change
[14-16], the heritability of personality traits [17] and
reproductive senescence [18].

Wytham Woods, near Oxford, United Kingdom, has
been the site of a continuous long-term study of great
tits since the late 1940s, with nest boxes for great tits
first erected in 1947 [19]. The birds have been inten-
sively monitored, with basic morphological characteris-
tics (adult body mass, adult wing length and fledgling
mass), age, sampling origin within the woods and
(social) pedigree relationships recorded for most indivi-
duals since the early 1960s. In addition, there is exten-
sive information regarding life history traits such as
breeding attempts, first egg date, egg mass, clutch size,
hatching date, hatching success, fledging success, fled-
ging size and recruitment success for those birds that
recruit to the breeding population (see, for example,
McCleery et al. [20] and references therein). More
recent phenotyping projects have included measuring
basal metabolic rate, personality [21], malarial infection
and social network data for small subsets of individuals
(Sheldon, unpublished data). Finally, blood has been
sampled and stored for the majority of individuals alive
since 2005, and for a subset of individuals alive between
1997 and 2005. The combination of extensive phenoty-
pic data, pedigree information and blood samples
(DNA) available from the Wytham Woods population
provides tremendous opportunity to integrate the find-
ings of previous ‘classical’ quantitative genetic studies of
traits such as clutch size, body mass and personality in
this species with quantitative trait locus (QTL) mapping
to locate the regions of the genome contributing to var-
iation in these traits [3]. Such mapping requires devel-
opment of a set of markers spaced evenly across the
genome. Next generation sequencing provides an effi-
cient method for large-scale single nucleotide poly-
morphism (SNP) discovery [6,22-25], either by
sequencing whole or partial genome (DNA) sequences
or by sequencing transcript (cDNA) libraries generated
from mRNA. Transcriptome sequencing (otherwise
known as “RNA-seq”) enables, in addition to SNP
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discovery, (i) the assembly and analysis of gene
sequences likely to be contributing to key differences
between individuals, (ii) analysis of tissue-specific gene
expression, (iii) a greater depth of sequence coverage
than would be possible from whole genome sequencing,
(iv) the ability to infer the function of genes through
comparative genomics and annotation, (v) the ability to
find SNPs in known genes, including those that result in
a change of protein, (vi) the ability to examine rates of
molecular evolution in coding sequences, and (vii) the
opportunity to test whether SNPs that explain phenoty-
pic variation are in genes that show evidence of adaptive
evolution between species. However, cDNA sequencing
fails to cover regions of the genome that lacks genes,
and because mRNA sequences are present in highly
variable copy numbers within the cell, analysis is gener-
ally biased towards genes which are highly expressed.
While normalisation of mRNA pools before sequencing
enhances the probability of sequencing rare transcripts,
including alternative splice variants, and gives the
opportunity to infer elements of gene structure such as
exon-intron boundaries, it restricts downstream analyses
of transcript abundance. Transcriptome sequencing
therefore complements whole or partial genome sequen-
cing approaches.

Despite their prevalence in evolutionary and ecological
studies, until recently the great tit had few genetic
resources available, with only twenty two microsatellite
markers cloned from the species and fewer than fifty
full or partial gene sequences deposited in the NCBI
nucleotide database http://www.ncbi.nlm.nih.gov/nuc-
core. However, in 2009 over two billion base pairs of
genomic sequence was generated from ten great tits
sampled from two populations in the Netherlands. The
sequences were assembled into 550,000 contigs that
cover an estimated 2.5% of the great tit genome [22]. In
addition, the same research group has recently com-
pleted a low-coverage whole genome sequence of a sin-
gle individual (van Bers, pers. comm). To complement
this recently derived genomic sequence data, we have
generated high read depth transcriptomic sequence data
from the Wytham Woods population. In this paper, the
sequencing, de novo assembly and analysis of the great
tit transcriptome is described, highlighting the power
and speed at which next generation sequencing enables
the generation of sequence data in a wild species.

Results

Sequencing and Assembly

A total of 4,587,574 sequences with a combined length
of 1.4 billion bases were sequenced. Read lengths aver-
aged 302 bases, with a maximum length of 2,028 bases
(Table 1). Pooling and trimming the sequences left a
total of 4,130,014 reads for de novo assembly into
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Table 1 454 sequencing summary statistics

tissue number total base mean maximum
of pairs sequence sequence
sequences sequenced length length
brain 674719 209,572,185 31 1,796
heart 408547 112,462,495 275 1,863
kidney ~ 655004 198351347 303 1,256
liver 514017 157,069,646 306 1,005
muscle 566,729 178,678,017 315 971
pancreas 532,017 174,131,123 327 1,726
skin 573,505 154,523,708 269 2,028
testes 663,036 199,038,872 300 1,737
all 4,587,574 1,383,827,393 302 2,028
tissues

contigs. The final NGen assembly ("the great tit assem-
bly”) yielded 95,979 contigs with four or more
sequences, utilising 3,038,404 (74%) of the trimmed
sequences. The mean contig length was 871 bases and
the total length of assembled contigs was 83,601,386
bases. Despite normalisation of transcripts before
sequencing, there was a large range (1-2,601) in the
mean coverage depth of contigs (i.e., the mean number
of reads in any given position in the contig), with overall
mean coverage depth (accounting for difference in con-
tig lengths) of 12.2x. The total number of sequences
contributing to contigs was also highly variable, with a
maximum of 9,633, and was relatively weakly correlated
with the contig length (r = 0.45). The mean (standard
error) and median number of sequences per contig was
32 (104) and 8 respectively. The 1,091,610 sequences
not included in contigs ("singletons”) had mean length
230 bases, making them shorter than the sequences
included in contigs (323 bp) (¢ = 550.86, p << 0.0001,
two sample ¢ test with unequal variance).

Most contigs were not expressed in every tissue (Table
2). 20,084 (21%) contigs were only expressed in one tis-
sue (Table 2) and 10,335 (11%) contigs were expressed
in all tissues. The remaining 68% were expressed in
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more than one, but not all tissues. Skin and testes
seemed to have a relatively large number of highly tissue
specific contigs (746 and 606 respectively).

Transcriptome analysis

Blast against zebra finch, chicken and self

Most contig sequences mapped to the zebra finch (97%)
and chicken (67%) genomes but only around 1/3 aligned
with sequences in the zebra finch and chicken transcrip-
tome databases (Table 3). The divergence between
chicken and passerines is thought to have occurred over
100 Mya while between zebra finch and great tit the
divergence is ca. 50 Mya [26]. The great tit genome has
2n = 80 chromosomes [27] and, given the relative stabi-
lity of avian chromosomes [[28], and references therein],
it is expected that the great tit genome is similar in size
(1.2 GB) to the zebra finch [29]. The majority of the
contigs that aligned with zebra finch ¢cDNA also aligned
to chicken ¢cDNA records (Figure 1). Only 1,913 (2%)
contigs did not align with any of the zebra finch or
chicken genome, cDNA or protein sequences; the mean
length of these contigs was 512 bases so they were not
unusually short. Approximately 54% of the sequences in
the zebra finch cDNA database (18,597 sequences) and
49% of the sequences in the chicken cDNA database
(22,314 sequences) matched great tit contigs suggesting
that at least half of the previously known bird tran-
scripts are represented in the assembled great tit con-
tigs. The discordance between the number of contigs
and the number of unique sequences they aligned with
is due to multiple contigs mapping to the same gene.
Given that the zebra finch ¢cDNA database is 26.3 Mbp
and the summed length of the reads contributing to
contigs aligning with zebra finch cDNA sequences is
654.7 Mbp we estimate an overall transcriptome cover-
age of ~25x. This figure is lower than a predicted cover-
age of 41x (based on the amount of sequence generated)
due to the low proportion of contigs aligning with zebra
finch cDNA.

Table 2 The total number of contigs expressed in the single tissue assemblies

tissue total number of assembly contigs expressed tissue specific contigs (humber with t > 0.8)
brain 51411 4,277 (212)
heart 58,988 939 (219)
kidney 44,367 2,223 (90)
liver 60,284 905 (89)
muscle 57,568 1,460 (221)
pancreas 58,098 1,441 (265)
skin 53,977 2,859 (746)
testes 44,463 5,980 (606)
total tissue specific contigs 20,084 (2,448)

Note that relatively few contigs were expressed at very high level in only one tissue (i.e. T = 0.8), the mean number of reads was 6 for contigs with © < 0.8 and

25 for contigs with 7 > 0.8
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Table 3 Summary of blast searches between 95,979 great
tit contigs and other avian sequence databases

zebra finch database

whole cDNA protein
genome
contigs 93,221 (97%) 33,574 29,830
(35%) (31%)
mean% similarity 90 95 90
mean coverage depth of 12 17 17
contigs
unique hits 76,708 10,085 9,732
chicken database
whole cDNA protein
genome
contigs 64,262 (67%) 34,844 30,423
(36%) (32%)
mean% similarity 89 20 85
mean coverage depth of 14 17 17
contigs
unique hits 51,161 10,943 10,480

The number of unique sequences in the zebra finch/chicken database
(genome, cDNA or protein) that matched contigs ("unique hits”) are also
shown. Genomic DNA hits were not classified as unique if they were located
less than 100 bases from any other hit

Of the ten most highly expressed contigs (mean cover-
age depth greater than 1000), six aligned to sequences in
the zebra finch and/or chicken cDNA databases. These
genes were Pleckstrin homology domain-containing
family B member 2 (Golgi organisation and kinesin and
protein binding), THO complex subunit 4 (RNA

VChicken

&zebra finch

Figure 1 Comparison of alignment of the 95,979 great tit
contig sequences with the zebra finch and chicken cDNA
databases. Numbers represent the number of great tit contigs
aligning to each database
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splicing), EF-hand domain-containing protein (calcium
ion binding), Diamine acetyltransferase 1, Breast cancer
anti-estrogen resistance protein 3 (cell adhesion) and
Cadherin-11 Precursor (cell adhesion). Contigs mapping
to zebra finch or chicken ¢cDNA and with mean cover-
age depth greater than 100 are shown in Additional file
1, Table S1.

A small number of contigs aligned across most of
their length to other contigs in the great tit assembly;
blastclust grouped 525 contigs into 228 groups (between
two to seven contigs per group) where there was simi-
larity of 95% across all of the shortest contig. Relaxing
the blastclust conditions slightly to a similarity of 95%
across 95% of the shortest contig clustered 3,432 contigs
into 1,184 groups (two to fifteen contigs per group).
Given that the alignments are continuous across the
shortest contig, there is no evidence to suggest that con-
tigs within a cluster represent splice variants or that one
or more of the contigs are pre-mRNA sequences. There
is also little evidence to suggest that contigs within a
cluster are expressed differentially in different tissues-for
groups of two contigs the average correlation of tissue
expression is 0.56 (182 pairs with 95% similarity across
the shortest contig; for each pair the correlation was cal-
culated from the total number of reads expressed in
each tissue for each contig). Of the 182 pairs, 32
mapped to different genomic locations, suggesting that
these contigs are paralogues. The remainder of contig
pairs appear likely to represent different haplotypes of
the same genomic region.

Contigs were also blasted against themselves to iden-
tify contigs which did not necessarily share sequence
homology across their entire length. A large number
(~200,000) of reciprocal pairs of contigs were identified
which aligned with e-value less than 107, Of these, a
very large number (159,956) were single alignments,
suggesting regions of shared protein domains across dif-
ferent genes. Five percent of single alignments extended
over more than 95% of the shortest contig and, as
expected, the set of single alignments included the 187
pairs identified by the blastclust analysis. Twenty-two
percent (45,886) of reciprocal pairs of contigs had multi-
ple alignments rather than a single alignment. In a sam-
ple of 200 pairs of contigs with multiple alignments, 93
aligned disjointly (Figure 2a), suggesting the two contigs
may represent alternative splice variants, or one may be
a pre-mRNA sequence. There were 25,589 contigs in
one or more reciprocal pairs with multiple alignments,
so a relatively large proportion (~12%) of the overall
contig set may represent alternative mRNA or pre-
mRNA sequences.

The overall contig distribution across zebra finch
chromosomes is reasonably uniform across the genome
(Figure 3), although some regions of very high
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variants cannot align over their whole length, resulting in two different alignments:
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splice splice 2 [T

variants
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gene reads:

Splice 1 —r—=

splice 2

assembly of reads into one contig: assembly of reads into two contigs:

Figure 2 Processes whereby reads from one gene can lead to complex contigs. a) Alignment with pre-mRNA sequences. A gene
sequence, including five and three prime untranslated regions, exons and introns, is initially transcribed completely from DNA into pre
messenger RNA (pre-mRNA). Amplification and sequencing of RNA libraries may therefore generate contigs which represent pre-mRNA variants
(some or all introns are included). In this example, variant 1 contains sequence from the three exons and both introns (solid lines) while variant
2 contains sequence from the three exons but only the first intron (solid line, the second intron is absent, represented by a thin dashed line).
The same gene sequence may therefore be assembled into more than one contig. Alignment of such contigs is likely to occur across the whole
length of one of the contigs, but occur disjointly for the other (in this case, the second intron in variant 1 cannot align to variant 2, so the two
alignments between variant 1 and variant 2 occurs across the whole length of variant 2 but not variant 1) b) Alignment and detection of
splice variants. Reads generated from two different splice variants are shown in the middle of the figure; reads “missing” an exon are
discontinuous across the whole coding sequence. Bottom left: all reads are (incorrectly) assembled into a single contig, with reads from the
second splice variant contributing to ‘strings’ of polymorphism (false SNPs) in the consensus sequence (regions shaded grey). Bottom right: reads
from the two splice variants are assembled into separate contigs, with no regions of poor sequence similarity
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expression are evident (Figure 4). There is a reasonable
correlation between the distribution of contigs and the
distribution of zebra finch genes across the genome (R
= 0.34; see Additional file 2, Figure S1 for the distribu-
tion of zebra finch genes across the genome). There was

no relationship between chromosome length and contig
density (Fy .5 = 1.35, p = 0.26; R*> = 0.04). The mean
contig density across chromosomes (excluding TguUn)
is 83 contigs per Mbp. Despite a higher gene density on
zebra finch microchromosomes [30], there was no
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Figure 4 Distribution of the total read depth of contigs across the zebra finch genome. Counts are plotted within 500,000 base pair bins.
No contigs aligned with Tgu-16, 22, 25, 26 or 27, and one contig containing 17 reads aligned with TguLG5 (not shown)
-

evidence to suggest that the density of contigs mapping 26 or 27, and one contig containing 17 reads aligned
to microchromosomes (Tgu-13-28 and TgulB)-and  with TguLG5 (part of the assembly that remains unas-
macrochromosomes (Tgu-1-5 and TgulA) differed (¢ = signed to a chromosome). Tgu-16, 22, 25, 26, 27 and
0.84, p = 0.41, two sample t-test with unequal variance). ~TguLG5 have a combined length of 1.4% of the genome
No contigs aligned with chromosomes Tgu-16, 22, 25, and contain 4.1% of annotated zebra finch genes; it
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appears likely that by chance these chromosomes have
remained unsampled.

The consensus great tit contig sequences contained
99.9% unambiguous bases (A, G, C or T) and 0.1%
ambiguous bases (B, D, H, K, M, N, R, S, V, W or Y;
these positions may either represent regions of poor
sequence quality or possible single nucleotide poly-
morphisms). The mean GC content of the unambiguous
bases in the great tit assembly is 40.7%. The mean GC
content in the zebra finch and chicken cDNA databases
is 50.4% and 48.6% respectively, while the mean genome
GC content of the zebra finch and chicken genomes is
41.3% and 41.6% respectively. The GC content for
regions of alignment between great tit contigs (45.4%)
and zebra finch ¢cDNA sequences (45.7%) are similar.
However, extending the calculation across the whole
contig and the whole zebra finch gene it aligns to gives
mean GC contents of 42.6% and 48.2% respectively.
These figures suggest that either the great tit has an
unusually low GC content or that, if it is assumed that
the great tit transcriptome has a similar GC content to
zebra finch and chicken, the set of great tit contigs may
contain genomic as well as transcriptomic sequence-i.e.,
that some contigs contain intronic or non-transcribed (i.
e., pre-mRNA) sequences.

Gene Ontologies

The distribution of GO terms from the tissue-specific
contigs into the three domains (biological process, mole-
cular function and cellular component) is shown in
Table 4. Note that in general the total number of GO
terms is greater than the number of unique contigs, as
many of the contigs map to zebra finch genes with
more than one associated GO term. Of the 33,574 con-
tigs aligning with zebra finch ¢cDNA sequences, GO
terms could be extracted for 20,847 (62%) of the contigs.
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There were 5,906 contigs with GO terms expressed in
all tissues and 2,782 tissue-specific contigs with GO
terms (Table 4). Many of the GO terms from tissue-spe-
cific contigs were found in more than one tissue (as
many different genes may be associated with the same
GO term). The tissue-unique GO terms (Table 4) are
listed in Additional file 1, Table S2; a total of 114, 32,
58, 49, 44, 46, 67 and 117 GO terms were uniquely
associated with contigs only expressed in brain, heart,
kidney, liver, muscle, pancreas, skin and testes, respec-
tively, while 1,654 GO terms were uniquely associated
with contigs expressed in all tissues. A total of 84 tis-
sue-unique GO terms were also highly tissue specific (t
> 0.8) (Additional file 1, Table S2). Interestingly, it was
heart and pancreas that had the highest number of
highly tissue specific GO terms (21.4% and 28.5%
respectively), and of the seven terms with t > 0.85, four
were unique to heart (connexon complex, myosin fila-
ment assembly, A band and myosin heavy chain bind-
ing), two to pancreas (glucosamine 6-phosphate N-
acetyltransferase activity and cholecystokinin receptor
activity) and one to skin (proton-dependent oligopeptide
secondary active transmembrane transporter activity).
The tissue specificity of these GO terms generally
appears biologically consistent, although it is interesting
to note, for example, two “ovarian” GO terms associated
with testes-ovarian cumulus expansion and ovulation
cycle, and two “respiratory” GO terms associated with
heart-bronchus morphogenesis and trachea formation
(Additional file 1, Table S2). Such tissue overlap may
reflect (incorrect) alignment of a contig to a protein
which shares a conserved domain but has a different
function.

The three GO domains (biological process;
G0:0008150, molecular function; GO:0003674 and

Table 4 Summary of the assignment of GO domains to contigs

tissue tissue specific contigs assigned with GO terms number of GO terms
number of contigs  mean biological molecular cellular total GO unique to that tissue
(number with © > T process function component terms (number with t >
0.8) 0.8)
brain 517 (32) 0.73 1,020 327 262 1,609 114 (7)
heart 141 (43) 078 295 101 59 455 32 (18)
kidney 337 (18) 072 451 139 119 709 58 (8)
liver 219 (22) 0.75 260 114 56 430 49 (1)
muscle 265 (36) 0.75 307 75 70 452 44 (5)
pancreas 223 (42) 0.75 313 104 48 465 46 (24)
skin 433 (125) 0.77 593 126 114 833 67 (11)
testes 647 (54) 0.73 677 131 133 941 117 (10)
sum 2,782 (372) 0.75 3916 1,117 861 5,894 527 (84)
all 5,906 0.29 4,550 1,189 1,049 6,788 1,654
tissues

Contigs were assigned into the three GO domains (biological process, molecular function and cellular component) through ‘is_a’ pedigree mapping. The number
of unique GO terms is also reported for each tissue
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cellular component; GO:0005575) have 65 immediate
child terms (35 with parent ‘biological process’, 17 with
parent ‘molecular function” and 13 with parent ‘cellular
component’). Of the sixty-five terms, 21 were not repre-
sented in any of the ‘is_a’ mappings, two were associated
with only one tissue (GO:0016247-channel regulator
activity, associated only with brain, and GO:0005198-
structural molecule activity, associated only with mus-
cle), and the remaining 42 were all parents of unique
GO terms expressed in all tissues (Additional file 1,
Table S3). For combined ‘is_a’ and ‘part_of’ relation-
ships, the same two GO terms were uniquely associated
with brain and muscle, but only 14 were not represented
in any of the “is_a” or “part_of” mappings, namely car-
bohydrate, carbon, nitrogen, phosphorus, sugar, and sul-
fur utilization (domain: biological process),
chemoattractant, chemorepellent, electron carrier and
nutrient reservoir activity and protein tag (domain:
molecular function) and symplast, virion and virion part
(domain: cellular component). The remaining 49 terms
were expressed in all tissues (Additional file 1, Table
S3)-i.e., seven GO terms mapped through only ‘part_of
and not ‘is_a’ mappings-cell killing, cell wall organiza-
tion or biogenesis, reproduction and viral reproduction
(domain: biological process) and cell, extracellular region
and extracellular region part (domain: cellular compo-
nent) (Additional file 1, Table S3). These results indicate
that although there is evidence for highly tissue specific
expression of 2,448 contigs (Table 2), the GO annota-
tions find only a few tissue-specific functions for these
contigs (as classified by unique GO terms).

Mapping non-gene contigs

We further investigated the 59,955 contigs that mapped
to the zebra finch genome but did not match anything
in the zebra finch cDNA database. Approximately two
thirds of contigs mapped either up or downstream of a
gene (classes A and B, Table 5a, see Methods and Table
5 for a full description of classes A-F). Of the remainder,
the vast majority (20,647) were class F, whereby the
contig mapped entirely within the boundaries of the
genome location of a known gene, although 49 contigs
extended across the entire gene sequence (class E).
There are similar numbers of contigs in classes A (gene
upstream) and B (gene downstream), and approximately
30% of these contigs align to locations within 2,500
bases of a mapped gene (Table 5a). The distribution of
the distance of class A and B contigs from their nearest
gene differed significantly from the random distribution
generated from 1,000,000 simulated contigs (p <<
0.0001, test statistic = 0.31, Kolmogorov-Smirnov test,
contigs mapping within genes excluded). In other words,
Class A and Class B contigs are closer to genes than
expected from the sequencing of random genomic
DNA, implying that the majority of these “non-gene”
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contigs are either gene sequences or closely associated
with gene sequences (for example involved in gene tran-
scription or regulation) rather than erroneously ampli-
fied genomic sequence.

A small number of Class A and B contigs aligned with
non-coding RNA sequences. Of the 700 non coding
RNA sequences described in the zebra finch genome,
including micro, ribosomal, small nucleolar and small
nuclear RNA, 45 contigs aligned to 27 unique non-cod-
ing RNA sequences. Twenty two of the non-coding
RNA contigs mapped within 2,000 bases of a gene, sug-
gesting that these non-coding RNAs may be involved in
modulating the expression of the nearby gene. Only ten
of the 27 non-coding RNAs have an associated gene
name and description, six of which are small nucleolar
RNAs. However, it is likely that there are many more
than 700 non-coding RNA sequences in the zebra finch
(and, indeed, great tit) genomes; 4,431 have been
described in zebrafish (Damnio rerio) and 8,383 in human
(assembly and gene build genome statistics, http://www.
ensembl.org). Thus, at least a few hundred of the class
A and B contigs may represent non-coding RNA.

The distribution of the distance between all contigs
mapping to the zebra finch genome (including those
mapping within genes) also differed significantly from
the distribution expected at random (p << 0.0001, test
statistic = 0.34, Kolmogorov-Smirnov test, Figure 5).

For most class C contigs, alignments begin in the final
exon of the gene, while for most class D contigs align-
ments end in the first exon (Table 5b). All genes
enclosed by class E contigs contain a single exon and
tend to be small (range 64-202 bases, mean 94 bases,
Table 5c¢). In class F, the vast majority (20,290) of con-
tigs aligned within a single intron (see ‘one gene feature’
in Table 5d). Two hundred and sixty contigs aligned
across more than one gene feature, with 57% of align-
ments beginning in an intron, and 58% of alignments
ending in an intron (see ‘more than one gene feature’ in
Table 5d). Thus, the overwhelming majority of class F
contigs align with intronic regions of a zebra finch gene,
providing very strong support that these contigs repre-
sent pre-mRNA (i.e., the RNA transcript has not been
spliced to form mRNA). The mean number of reads per
contig for the 20,566 class C, D, E and F contigs which
align to intronic regions was 14; this differed signifi-
cantly (¢ = 35.59, p << 0.0001, two sided ¢ test with
unequal variance), from the mean (52 reads) for the
33,574 contigs which aligned with sequences in the
zebra finch ¢cDNA database (Table 3). Therefore pre-
mRNAs are much less abundant than mRNA sequences.
Metagenomics of non-great tit sequences
Of the 1,913 contigs which did not align with any zebra
finch or chicken genome, cDNA or protein sequences,
80 aligned to RefSeq RNA sequences. Of these, 17
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Table 5 Summary of the 59,955 contigs that aligned with regions of the zebra finch genome assembly, but had no

match in the zebra finch cDNA database

a) classes A and B total distance to nearest gene (bp)
< 2,500 < 5,000 < 7,500 < 10,000
o T 19,357 5843 8429 9,778 10,752
e — 19,721 5708 8227 9,621 10,570
b) classes C' and D? total alignment position of contig
start position
¢ T — 84 penultimate intron final intron final exon 3’ UTR
1 7 74 2
end position
D—___ 97 first exon first intron
86 1
¢) class E3 total gene length (bp) length of alignment with
genome sequence (bp)
T 49 64-202 131-1,235
d) class F* total aligns to one gene feature® aligns to more than
one gene feature®
20,387 260
one gene feature®, contig aligns to
5'UTR 3'UTR exons introns
- 20,647 4 89 4 20,290
more than one gene feature®, contig aligns to
contig start contig end
exons introns exons introns 3" UTR
111 149 105 152 3

Contigs are shown in grey while genes are in black

! class C contigs align to genes with a mean of 10.5 exons (range 1-35 exons), 18% of genes have only one exon

2 class D contigs align to genes with a mean of 8.4 exons (range 1-33 exons), 20% of genes have only one exon
3 48 contigs extend from 5’ (upstream) to 3’ (downstream) of the closest mapped gene and one contig extends from the start position (i.e., the start of the

5'UTR) of the closest gene to 3’ of the gene. All genes have only one exon

“ class F contigs align to genes with a mean of 16.4 exons (range 1-149 exons), 87% of genes have more than five exons

° for example, the start and end of the contig are both within the 5" UTR

S for example, the start of the contig aligns within exon 1 and the end of the contig aligns within intron 1

aligned to vertebrate_birds, suggesting they are likely to
represent true great tit sequences. Of the remaining 63
contigs that did not align to vertebrate_birds, 22 aligned
to another vertebrate group (vertebrate_fish, vertebra-
te_amphibians, vertebrate_mammalian or vertebrate_r-
eptiles), suggesting that these contigs represent great tit
genes without an annotated vertebrate_bird homologue
in the RefSeq RNA database. A further 26 contigs
aligned with species from two or more kingdoms, and
alignments were typically short (< 100 bases) or did not
span more than 20% of the contig sequence. Of the
remaining 15 contigs which aligned with species from a
single kingdom, one aligned with bacterial species, and
14 with plant species. The ‘bacterial’ contig aligned with
57 different bacterial genera. The remaining 14 contigs
aligned with Populus trichocarpa (twelve contigs), or
both P. trichocarpa and Sorghum bicolor (two contigs)
sequences, and appear most likely to represent non-

great tit sequences. The two S. bicolor alignments and
two of the P. trichocarpa alignments were shorter than
80 bases and covered less than 12% of the contig, sug-
gesting the alignments are unlikely to represent Populus
or Sorghum but may be plant contamination of some
kind. Note that while P. trichocarpa and S. bicolor are
model species with full genome (and transcriptome)
sequences, sequences from trees common in the ecology
of the great tit (oak, ash, beech, hazel, sycamore) are not
well represented in the RefSeq RNA database. Eleven of
the remaining twelve contigs were assembled from skin
reads, and the other from a combination of skin and
testes reads. The remaining alignments with P. tricho-
carpa were of reasonable length (109-438 bases) and
identity (84-94%), suggesting there may be sequences
from a plant species related to P. trichocarpa in the
great tit assembly (oak, beech and hazel are more closely
related to P. trichocarpa than ash or sycamore).
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Figure 5 Distribution of the predicted minimum distance
between known genes and contigs randomly placed on the
zebra finch genome (estimated from 1,000,000 simulated
contigs), and the observed minimum distance between known
genes and alignments with contigs in the great tit assembly
(85,109 contigs). Note that ~8,000 contigs were excluded as they
map to unassembled regions of the zebra finch genome (for
example, Tgu 1_random)

Alignments with ‘environmental’ sequences (i.e.,
sequences from species important in the ecology of the
great tit, see Methods) provide some evidence to suggest
that the great tit assembly includes sequences from flea
and tick (ectoparasites that commonly inhabit bird
nests). Forty-six contigs aligned with ribosomal RNA
sequences from Ixodes ricinus. Twenty-eight contigs
aligned with ribosomal RNA sequences from Cerato-
Phyllus ciliatus (a grey squirrel flea), with some but not
all of these contigs also aligning with sequences from
the hen flea Ceratophyllus gallinae. However, contigs
aligning to Ceratophyllus ciliatus and to Ixodes ricinus
showed no evidence of tissue specificity; all ten of the
most significant contig alignments with C. ciliatus were
expressed in two or more tissues. Similarly all ten of the
most significant contig alignments with 1. ricinus were
expressed in two or more tissues. Of the 1,091,610 sin-
gletons not assembled into contig sequences, 3,656
aligned with 60 ‘environmental’ sequences. Alignments
with flea (Ceratophyllus spp) and tick (Ixodes ricinus)
sequences were the most prevalent (1,524 and 829 align-
ments), in addition there were 700 alignments with bad-
ger (Meles meles)-hair from which is frequently
incorporated into nests-and 364 with beech (Fagus syl-
vatica). Thus, there is limited evidence that small
amounts of RNA from other species have been included
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in the great tit sequences. There was little evidence to
suggest that the great tit assembly includes sequences
from any common endoparasites, nor from the great
tit's common food source the winter moth (Opheroptera
brumata).

Microsatellite repeat discovery

SPUTNIK detected 10,272 repeats of between two and
five bases with five or more repeat units in 8,514 contigs
(Table 6). The total sequence length of di-, tri-, tetra-
and penta-nucleotide repeats with more than five repeat
units represents approximately 0.2% of the total
assembled contig sequences. Fifty-five of the repeats
matched (with an e-value of 10™'° or less) 46 passerine
microsatellites isolated from 25 different species. All di-,
tri-, tetra-and penta-nucleotides with at least 5 repeat
units, along with up to 200 bases total flanking
sequence, are listed in Additional file 1, Table S4.

SNP discovery

Of an initial 1,038,094 SNPs identified by SeqMan
NGen, 23,831 ‘high’ and 35,579 ‘modest’ quality SNPs
were detected in 13,026 and 16,187 contigs respectively.
The majority of the loss of SNPs was due to exclusion
of SNPs with a minor allele count of less than three
(~930,000 SNPs). Of the filtered SNPs, 22,427 (94%)
high and 33,185 (93%) modest quality SNPs were con-
firmed by re-assembling pooled and trimmed sequences
onto the consensus great tit assembly sequences.
Although 35% of all great tit contigs align with zebra
finch cDNA (Table 3, Figure 1), 46% of contigs contain-
ing high quality SNPs and 49% of contigs containing
modest quality SNPs aligned with zebra finch cDNA.
The reading frame of 4,822 high and 8,194 modest qual-
ity SNPs could be inferred from regions of alignment
between zebra finch genes and the SNP-containing con-
tig. Of these, 1,503 (31%) of high and 3,541 (43%) of
modest quality SNPs caused non-synonymous substitu-
tions while the remainder were not predicted to cause a
change in the amino acid sequence (i.e., are synonymous
substitutions). Both the number of SNPs and the num-
ber of microsatellites mapping to zebra finch chromo-
somes were highly correlated with the total length of

Table 6 The distribution of microsatellite repeat sizes
and lengths

repeat type number of repeat maximum repeat  total
units units
59 10- 15- >
14 19 19
dinucleotide 5505 424 61 35 262 6,025
trinucleotide 2593 114 11 15 131 2,733
tetranucleotide 1065 59 19 23 130 1,166
pentanucleotide 304 20 6 18 66 348
all 9467 617 97 91 10,272
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these chromosomes (r > 0.98), and the overall distribu-
tion of microsatellites and SNPs is reasonably uniform
across the genome (data not shown).

Alternative splicing

Three hundred and thirty-two contigs (0.3%) contained
‘strings’ of at least six SNPs, suggesting these contigs are
likely to include reads from alternative splice variants
(strings of SNPs suggest regions of poor alignment
representative of alternative splicing, see Methods). Of
these, 195 contained only one SNP string. All but 13 of
these contigs aligned with the zebra finch genome, and
187 aligned to a mapped gene. Contigs containing SNP
strings were expressed in more tissues than contigs
without SNP strings (difference of 3.07 tissues, ¢t =
64.14, p << 0.0001, two sided ¢ test with unequal var-
iance) and were also less tissue specific (that is, were
not predominantly expressed in only one tissue) than
contigs without SNP strings (t difference of 0.29, ¢ =
20.62, p << 0.0001). This difference was smaller but still
significant once contig length and the number of reads
mapping to the contig was taken into account (differ-
ence of 0.14 tissues, generalised linear model with Pois-
son distributed errors, z = 13.34, p << 0.0001). Although
two of the alternative splice contigs were expressed in
only one tissue (one each in heart and liver), two hun-
dred and sixty two (79%) of the 332 alternative splice
contigs were expressed in all eight tissues. These results
suggest that it is uncommon (< 1%) for a single tissue
to generate more than one splice variant, and that for
those alternative splice contigs expressed in more than
one tissue, different tissues may be generating different
alternative splice variants.

Discussion

The sequencing of the great tit transcriptome represents
an exciting application of next generation sequencing
technology to the genome of a species which, until
recently [22], had very few genetic resources. Although
the downstream analysis of the great tit assembly was
vastly enhanced by the availability of both zebra finch
(Taeniopygia guttata) [30] and chicken (Gallus gallus)
[31] complete genome sequences, the assembly of 454
reads was possible without a reference genome (i.e., de
novo assembly) due to both the length of sequences
(mean ~300 bases) and the high coverage (25x). The
resultant great tit transcriptome assembly of 95,979 con-
tigs, encompassing 85,997,184 bases, is a valuable tool
for future genomic work in this and other closely related
species, in particular for molecular evolution studies [32]
and to enable the development of a panel of markers for
QTL mapping and genome wide association studies.
This illustrates the power of next generation sequencing
to begin to illuminate the genetic architecture and
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evolution of quantitative traits at a genomic level in
non-model and wild species.

As illustrated by the number of high quality SNPs
detected, transcriptome or genomic sequencing is also a
rapid method for detecting variation in a population. In
addition to SNPs, the microsatellites identified in the
transcriptome are a useful resource, as they provide new
markers for this species. By seeing which of these mar-
kers are also found in the zebra finch assembly, it
should be possible to determine which are the most
conserved microsatellites in passerines. Such conserved
microsatellites provide a good system for studying
microsatellite evolution without any biases due to them
being cloned in one species. Finally, because the micro-
satellites documented here are in or close to genes
(given that the majority of contigs either align with
genes (Figure 2) or map to within 5,000 bp of a gene
(Table 5)), they are ideal markers for candidate gene
studies or other population genetic studies requiring a
modest number of variable markers which are uniformly
distributed across the genome.

Mapping the great tit contigs to the zebra finch and
chicken ¢cDNA databases resulted in around one third of
contigs aligning with known genes, despite almost all
contigs aligning to the zebra finch and chicken genomes
(Table 3). Given that all sequences were sequenced from
complementary DNA, it seems surprising that a larger
proportion of contigs did not match known genes. A
number of possible explanations why some contigs did
not map to known genes include: (i) the contigs are
great tit genes without homologues in zebra finch or
chicken, (ii) they are contigs of great tit genes which are
highly divergent from their zebra finch and chicken
homologues and therefore do not match in a blast
search, (iii) they are non-great tit sequences, (iv) they
are from genes which are unannotated in both zebra
finch and chicken and (v) they are sequences of prepro-
cessed mRNA (pre-mRNA).

It is very possible that a small number of contigs are
either great-tit specific genes (i) or have undergone sub-
stantial sequence evolution since the divergence of zebra
finch and great tit 40-45 million years ago (ii), but this
explanation cannot account for most of the contigs that
did not match the cDNA databases, because these con-
tigs still matched genomic sequences. For the same rea-
son, it appears highly unlikely that a substantial
proportion of the contigs represent non-great tit
sequences (iii). Given the comprehensive annotation of
the chicken genome in particular, it also seems improb-
able that many contigs are as-yet unidentified genes (iv).
The most intriguing explanation is that a high propor-
tion of the non-gene contigs represent pre-mRNA (v).
Of the contigs which did not align with zebra finch
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genes but did align with regions of the genome, many
aligned to regions very close to genes. Further, many of
the ‘non-cDNA’ contigs aligned within intronic regions,
providing strong support that these contigs encode pre-
mRNA rather than mRNA sequences.

Normalisation of the mRNA library prior to cDNA
synthesis and sequencing is likely to have contributed to
the presence of pre-mRNA sequences in the great tit
assembly, due to the amplification of low copy number
transcripts. The read depth of contigs identified as likely
pre-mRNA transcripts is substantially lower than the
read depth for contigs aligning with zebra finch genes
(cDNA), suggesting that without normalisation the dif-
ference would be even larger. Thus, pre-mRNA
sequences are less likely to be sequenced (and
assembled into contigs) in non-normalised studies.
However, the ability to align contigs to an assembled
genome sequence (either the species itself or one closely
related, in this case, zebra finch) and use this informa-
tion to annotate contigs as mRNA, pre-mRNA and
alternatively spliced transcripts provides a valuable tool.
Even in the absence of an assembled genome to align
to, it may be possible to align contigs with each other
and infer elements of gene structure such as exon-intron
boundaries (see Figure 2). Indeed, the presence of con-
tigs covering non-coding regions may actually offer
some advantages for downstream applications. In parti-
cular, it is now possible to type SNPs with different
properties-for example, SNPs which map to intronic, 5’
UTR, 3" UTR, and intergenic regions are valuable “neu-
tral” contrasts to synonymous or non-synonymous SNPs
located within coding regions, which are likely to be
under stronger selection.

The high number of pairs of contigs with multiple
blast alignments, compared to the number of contigs
with SNP strings, suggests that the assembly software
usually splits splice variants into discrete contigs, rather
than combining sequences from multiple splice variants
into one contig (Figure 2b). Our results may underesti-
mate the overall number of alternatively spliced genes in
the transcriptome; recent estimates suggest that at least
half of all mammalian genes with more than one exon
may be alternatively spliced [33,34]. One explanation for
the small proportion of contigs identified as potential
alternatively spliced genes is that contigs do not neces-
sarily cover the total gene sequence, and different con-
tigs may map to different parts of the same gene. Thus,
signals of alternative splicing such as SNP ‘strings’ may
be relatively rare given the overall coverage of the tran-
scriptome. On the other hand, a large number of
sequences (> 1 million) were not assembled; it may also
be possible that some of these sequences represent
minor splice variants which have not been sequenced
with sufficient depth to have been assembled into
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contigs. An exciting area for future research would be
to examine splice variants in more detail; for example,
looking to see if different types of genes (e.g. immune
genes) have evolved to have splice variants more often
than others.

The 454 sequences from each of the eight tissues are
deposited in the Sequence Read Archive (SRA), refer-
ence SRA026719.

Conclusions

By describing and mining the transcriptome of a wild
bird population we have facilitated future evolutionary
genomics studies in this species. Genome-wide associa-
tion studies, using SNPs in known genes, will pave the
way for QTL discovery and insight into microevolution-
ary processes. Similarly, comparison of great tit coding
regions with homologous regions in other sequenced
bird species (e.g. great tit, zebra finch, turkey) will make
it possible to identify genes with elevated rates of mole-
cular evolution. By combining and integrating data from
these two discrete types of analysis, it will be possible to
investigate whether the same genes are relevant to
micro and macro-evolutionary processes. In summary,
next generation sequencing of the great tit transcrip-
tome has paved the way to convert a classical ecological
organism into one with a genetic toolkit.

Methods

Sequencing

Ten unrelated great tit nestlings, at 14 days post hatch-
ing, were sampled from across the Wytham Woods
population and brain, heart, kidney, liver, muscle (pec-
toralis major), pancreas, skin and testes/ovaries dissected
from each individual at between three and 23 minutes
after death. Each chick was sexed at sampling and sex
was later confirmed molecularly with the Z-002A mar-
ker [35]. Tissues were stored in RNALater (Ambion) to
prevent RNA degradation. RNA was extracted using the
TRIzol® (Invitrogen) method. RNA quantity and degra-
dation was tested using a Nanodrop (Agilent) with each
tissue yielding a mean (standard error) of 44.4 (7.5) ug
of RNA with mean (standard error) RNA integrity num-
ber (RIN) of 8.37 (0.21). For each tissue 1 pg of RNA
from each bird was pooled, i.e. to make 8 tissue pools,
each containing 10 pg of RNA. Complementary DNA
(cDNA) was synthesised by Evrogen (Moscow, Russia)
from the eight tissue-specific pools using SMART Kkits
[36]. cDNA was normalised, also by Evrogen. cDNA
sequencing was performed by the Liverpool Advanced
Genomics Facility, with 3 pg of normalised ¢cDNA
sequenced on a 454 FLX Titanium Genome Sequencer.
Each tissue was sequenced on half a plate, i.e. four
plates were sequenced in total, giving an expected 1600
Mbp of sequence (mean read length 400, 1 M reads per
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plate; http://454.com). The zebra finch transcriptome is
26.3 Mbp; assuming that ~68% [37] of the total
sequence meets quality criteria and assembles into con-
tigs, a transcriptome coverage of ~41 is estimated.

Assembly

Our strategy for transcriptome assembly was to first
combine sequences from all tissues to create a de novo
assembly, and then map sequences from each tissue
onto the assembly to examine tissue-specific expression.
Using the program NGen (version 2) (DNASTAR, Inc),
sequences within each tissue pool were combined and
screened to remove poly(A) tails, SMART kit primer
sequences (added during cDNA library construction),
adaptor sequences (added to enable purification, amplifi-
cation and sequencing by the FLX technology) and poor
quality sequences (average sequence quality less than 14
in a 30 base window). The trimmed sequences were
then assembled de novo (i.e., assembled without a refer-
ence) with NGen after first assessing the impact of vary-
ing various assembly parameters. The final parameter
settings of match size 41 (default 19), match percentage
90 (default 85), mismatch penalty 25, gap penalty 25
and minimum average sequence quality 14 were chosen
on the basis that they (i) obtained coverage most similar
to our expectation of 41x, (ii) had strict settings for
match size and minimum match percentage, and should
therefore be conservative and (iii) produced the overall
highest mean contig length and number of sequences
per contig. The choice of assembly was verified by visual
examination of the quality of the alignments within a
random subset of contigs. For all assemblies, contigs
with less than four sequences were excluded from
further analysis.

Tissue-specific assemblies were also made. Following
removal of poly(A) tails, SMART kit primer sequences,
adaptor sequences and poor quality sequences with
NGen, each of the eight tissue pools was separately
mapped onto the all-tissues transcriptome assembly.
Default parameters for a reference-guided assembly
were used, except for a longer match size (41, default
19) and higher match percentage (90, default 85) than
the default settings.

Tissue specificity

Potentially some contigs may be expressed in all eight
tissues, and some in only one tissue. For each tissue
assembly, we assessed how many sequences were
assembled into each contig (i.e. by examining the read
depth of the contig). Contigs which were absent from a
tissue-specific assembly were regarded as not expressed
in that tissue at the time of sampling. Contigs which are
expressed in all tissues (i.e. each tissue contributes at
least one sequence read to the contig) and contigs
which were tissue specific (all reads come from a single
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tissue, with a minimum of four reads from that tissue)
were identified. In addition, more formally for each con-
tig a measure of tissue specificity (t) was calculated.
Values for 1 range from 0 (transcripts equally expressed
in all tissues) to 1 (transcript expression is highly tissue-
specific, i.e. very high expression in one tissue). t
accounts for differences in the total number of reads in
different tissues [38], and was calculated following the
approach of Mank et al. [39] to account for small levels
of undetected expression;

N (1 In(TPM;)
I= Zi=1(1N 1n(1TPme)) (1)

where N is the number of tissues and TPM,,, is the
highest level of expression of a given contig over all i
tissues examined. Expression for each contig is standar-
dised to number of reads per million (TPM), i.e. the
number of reads contributing to the contig, per million
reads expressed in the whole tissue;

TPM = reaflsi x 10° @)
library,

where library; is the total number of reads expressed
in library i. To reduce sampling stochasticity, TPM; is
set to 2 for values of TPM,,,, and reads; close to 0 [39].

Transcriptome analysis

Blast against zebra finch, chicken and self

To estimate transcriptome coverage and to identify
genes which have been sequenced, the great tit contigs
were aligned with Gallus gallus (chicken/red junglefowl)
and Taeniopygia guttata (zebra finch) sequences. The
latest Taeniopygia guttata (version 3.2.4.58) and Gallus
gallus (version 2.58) genome (DNA), predicted gene
(cDNA) and predicted peptide (protein) databases were
downloaded from the Ensembl ftp site http://www.
ensembl.org/info/data/ftp/index.html. The great tit con-
tigs were blasted against each database using stand-
alone BLAST (version 2.2.22 for 64 bit Windows). The
blastn program was used for searching against DNA and
c¢DNA databases and blastx against peptide databases,
with a cut-off expectation value (e-value) of 10 and all
other settings as default. The best alignment was
retained for each contig.

To examine whether the assembly contained contigs
with high sequence similarity (which could be suggestive
of sequences from the same gene being assembled into
more than one contig), contigs were clustered using
blastclust  http://www.ncbi.nlm.nih.gov/staff/tao/
URLAPI/blastall with options-S 95.0-b F-p F-W 30 and
-L 0.95 or 1.0, the latter option specifying alignments
across either 95% or the whole length of the shortest
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contig. Contigs were also blasted against each other,
with a cutoff e-value of 10”°. Contig pairs with a single
alignment which does not extend over the full length of
the shortest contig may represent different genes which
share a conserved protein domain. In contrast, multiple
alignments between two contigs may indicate that the
contigs represent different splice variants of the same
gene, or that one contig is an incompletely processed
form of the mRNA sequence containing introns and
other features not present in the final mRNA molecule
(i.e., pre-mRNA) while the other contig is the final
mRNA (Figure 2a).
Gene Ontologies
Gene Ontology (GO) terms are available for a large
number of zebra finch genes, providing the opportunity
to infer the function of those contigs in the great tit
assembly which align with zebra finch genes. The latest
Ensembl 7. guttata (version 3.2.4.58) gene database was
downloaded from the Ensembl website http://www.
ensembl.org/index.html using the MartView interface of
the BioMart data management system http://www.bio-
mart.org. The Gene Ontology full ontology relationship
file was downloaded from the Gene Ontology website
(OBO version 1.2; http://www.geneontology.org/GO.
downloads.ontology.shtml). Using the full ontology file
and the outputs from blasting the great tit assembly
against the 7. guttata cDNA database, GO terms for
each great tit contig were inferred. Note that 74% of the
18,191 zebra finch unique transcript identification num-
bers downloaded from Ensembl have been assigned GO
terms, so GO terms could not be assigned to all contigs.
For contigs previously identified as tissue-specific or
expressed in all tissues (see “Tissue specificity” above),
tissue-unique GO terms were identified by finding GO
terms associated with tissue-unique contigs which were
not associated with contigs from any other tissue. To
investigate whether individual tissues were associated
with specific GO terms, the ‘pedigree’ of each of these
tissue-unique GO terms was determined from the GO
full ontology file. All GO terms are assigned a domain
('namespace’, or equivalently ‘root term’) of either biolo-
gical process, molecular function or cellular component
[40]. Note that although all GO terms map to one
namespace through subtype ‘is_a’ relationships, it is pos-
sible to map to alternate namespaces through ‘part_of’
relationships. For each GO term, we extracted the full
“pedigree” of the term by finding all possible paths from
the GO term to the root term following (i) ‘is_a’ and
‘part_of relationships, and (ii) by following only ‘is_a’
relationships. An example pedigree is shown in Addi-
tional file 3 Figure S2.
Mapping non-gene contigs
Contigs may align with a region of the zebra finch gen-
ome but not have significant blast alignments with any
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of the genes in the zebra finch cDNA database, either
because some genes are not yet annotated in zebra
finch, or because they are aligning to non-exonic gene
features, i.e. introns, 5" untranslated regions (5 UTR) or
3’ UTR. It is generally assumed that transcriptome
sequencing preferentially sequences mRNA, and that
other RNA species such as pre-mRNA, the precursor
molecule to mRNA, are either not amplified or are pre-
sent in such small quantities in the cell that sequencing
them is unlikely (although see Bakel et al. [41]). To
determine whether non-coding contigs represent pre-
mRNA, the location of the nearest gene was calculated
by finding the shortest distance between the genome
location of known zebra finch genes and the position of
the contig alignment to the zebra finch genome (that is,
the shortest distance to the start of the 5" UTR or the
end of the 3" UTR). The contig was classified into one
of six classes according to its genome location relative
to the closest mapped gene; class A-contig is down-
stream from the nearest gene, class B-contig is upstream
from the gene, class C-contig is downstream but over-
lapping one end of the gene, class D-contig is upstream
but overlapping one end of the gene, class E-the contig
spans the gene, class F-the gene spans the contig (Table
5). Note that “upstream” and “downstream” refer to the
orientation of the zebra finch genome assembly, for
example, position 345 on Tgul is upstream from posi-
tion 350 on Tgul. Contigs in classes C, D, E and F were
further classified to determine whether the 5" and 3’
ends of the contig aligned to the 5" UTR, exons, introns
or 3 UTR of the gene.

In order to determine whether non-coding contigs
were closer to genes than expected by chance, the distri-
bution of contigs relative to genes in the zebra finch
genome was assessed by simulating the random place-
ment of contigs onto the zebra finch genome and calcu-
lating the minimum distance from the start or end of a
contig to the start or end of a gene. Contigs were
selected at random, placed at a randomly chosen posi-
tion in the genome, and the minimum distance to a
gene calculated. One million replicates were performed
to generate a distribution of the distance between ran-
domly placed contigs and the nearest gene, i.e., the dis-
tribution expected if contigs were not cDNA generated
from mRNA (i.e., gene sequences) but were random
fragments of genomic DNA. The observed and simu-
lated distributions were compared with a Kolmogorov-
Smirnov test.

Given that class A and B contigs do not overlap anno-
tated coding regions in the zebra finch genome, these
“non-gene” contig sequences may represent non-coding
RNA, although it is possible that they instead represent
gene sequences which are unannotated in the zebra
finch genome, or that the start or end position of genes
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is imprecise or differs between great tit and zebra finch.
To assess the alignment between class A and B contigs
with non-coding RNA, non-coding RNA sequences
(including miRNA (micro), rRNA (ribosomal), snoRNA
(small nucleolar), snRNA (small nuclear) and misc. RNA
(miscellaneous)) were downloaded from the Ensembl
website http://www.ensembl.org/index.html using the
MartView interface of the BioMart data management
system http://www.biomart.org. The downloaded
sequences were blasted against class A and B contig
sequences (blastn with stand-alone BLAST, e-value 107,
all other settings default). The best alignment was
retained for each contig.

Metagenomics of non-great tit sequences

Some of the assembled contigs may not represent true
great tit sequences, for instance if great tit tissue was
contaminated with parasites, or RNA from other spe-
cies was amplified and sequenced due to lab error.
Contigs which did not align with zebra finch or
chicken genome, cDNA or protein sequences were
compared to sequences of other organisms by blasting
against the latest NCBI Transcript Reference Sequence
RNA database (RefSeq RNA; http://www.ncbi.nlm.nih.
gov/RefSeq/) using an e-value of 10° and a word size
of 20. For each contig, we extracted the genus names
of all alignments ("hits”) and classified genera as
archea, bacteria, algae, protozoa, plant, fungi, inverte-
brate, vertebrate_fish, vertebrate_amphibians, vertebra-
te_mammalian, vertebrate_reptiles, vertebrate_birds,
unknown or no_hits. Contigs with at least one hit to
vertebrate_birds were considered likely to represent
true great tit sequences, while contigs which aligned
with no vertebrate sequences were further investigated
by blasting against sequences from species important
in the ecology of the great tit. All available DNA
sequences from common great tit ectoparasites (genus
Ceratophyllus (flea) and Ixodes ricinus (tick)), endopar-
asites (Plasmodium relictum, Trypanosoma everetti,
Trypanosoma avium and genera Haemoproteus, Hepa-
tozoon and Leucocytozoon), common trees in Wytham
Woods (Quercus robur (oak), Fraxinus excelsior (ash),
Fagus sylvatica (beech), Corylus avellana (hazel) and
Acer pseudoplatanus (sycamore)), a common food-
source (Operophtera brumata (winter moth)), and spe-
cies whose fibre/hair is used in great tit nest-building
(genus Poa (grass), Meles meles (badger) and Ovis
aries (sheep)) were downloaded from NCBI (http://
www.ncbi.nlm.nih.gov/nuccore, microsatellites
excluded) and saved as a file of ‘environmental’
sequences. Environmental sequences were blasted
against contigs with e-value of 107'°. Singleton reads
which were not assembled into contigs were also
blasted against the ‘environmental’ sequences, with e-
value cut-off of 107°.
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Microsatellite repeat discovery

Microsatellite markers remain an informative and cost-
effective tool for small scale population genetic studies.
To detect repeats which may be screened to find poly-
morphic microsatellite markers in the great tit, a modi-
fied version of SPUTNIK (http://wheat.pw.usda.gov/
ITMI/EST-SSR/LaRota) was run to find contigs contain-
ing microsatellites with five or more di-, tri-, tetra-and
penta-nucleotide repeats (program parameters: unit
length = 2-5, points for a mismatch = -6, minimum
score = 6, adjust scores for the first unit cell). Repeats
and their flanking sequences (100 bp) were blasted
against passerine microsatellite sequences (downloaded
from NCBI; http://www.ncbi.nlm.nih.gov/nuccore,
search term ‘passeriformes[orgn] AND microsatellite’) to
determine whether they had already been isolated in
other passerines.

Single Nucleotide Polymorphism (SNP) discovery

One of the objectives of the transcriptome sequencing
was to identify SNPs which could eventually be typed in
a large sample of well-phenotyped individuals as part of
a QTL mapping experiment. SeqMan NGen was used to
produce a summary file of all SNPs and insertion-dele-
tions (indels) in the great tit contig sequences, selecting
only those SNPs with base call quality score greater
than 30 and where the six neighbouring bases had a
quality score more than 20. The summary file was fil-
tered in a hierarchical manner to give a set of SNPs
most likely to be segregating in the Wytham Woods
population. The summary file was first screened to
remove indels, polymorphisms of depth less than eight
reads, and polymorphisms of depth 8-20 with minor
allele frequency of less than 25%. Polymorphisms were
then further screened to produce “high” and “modest”
quality SNP files. For the high quality SNPs, (i) poly-
morphisms of depth greater than 20 with minor allele
count of less than five were removed and (ii) poly-
morphisms located less than 50 bases from another
polymorphism or from the start or end of a contig were
removed. For the modest quality SNPs, (i) polymorph-
isms of depth greater than 20 with minor allele count of
less than three were removed and (ii) polymorphisms
located less than 40 bases from another polymorphism
or from the start or end of a contig were removed. The
majority of the high quality SNPs were reported in the
modest quality file, although some previously detected
high quality SNPs were excluded from the modest qual-
ity file because the inclusion of lower stringency SNPs
meant they now mapped within 40 bases of another
SNP.

The SNP discovery process was then repeated by reas-
sembling the reads onto the great tit assembly using a
higher match percentage (90, default 85) than the
default settings ('remap assembly’). The match size was
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kept at the default value (25) rather than increased to 41
(as previously) to allow some movement of sequences
from the contigs they were initially assembled to. Any
SNPs from the first discovery phase that were not
detected in the remap assembly were excluded from
further analysis, as they are not robust to small changes
in assembly parameters, and hence may not be true
polymorphisms.
Alternative splicing
Alternative splicing produces genetic variation without
the need for additional genes [33,42]. However, genes
which are alternatively spliced are a challenge to the
assembly of transcriptome sequence into contigs, as it is
difficult to predict whether reads extending over alterna-
tive splice sites will be assembled into the same contig, or
split into two or more different contigs (Figure 2b). For
the scenario where reads from alternative splice variants
are assembled into a single contig, some reads will
“jump” one or more exons, resulting in a region of very
poor alignment to the consensus sequence. Across many
aligned reads, these regions of poor sequence similarity
tend to produce a ‘string’ of putative (probably false) sin-
gle nucleotide polymorphisms in close proximity. SNPs
were extracted from the original unfiltered SNP summary
file, and two or more SNPs were defined as being part of
a ‘string’ provided the distance between them was less
than eight bases (for example, a SNP string of five could
at most be spread over 33 bases). Strings of six or more
SNPs were considered likely to represent splice variants.
Unless otherwise stated, all analyses and data manage-
ment (blast summaries, GO mapping, tissue specificity,
alternative splice sites, SNP summaries) were coded in
Visual Basic and all graphs produced in R v2.11.

Additional material

Additional file 1: Table S1. Contigs with high coverage aligning with
zebra finch or chicken genes. an excel table listing great tit contigs with
high sequencing coverage which align with zebra finch and/or chicken
genes. Table S2. Unique GO terms associated with contigs expressed in
only one tissue. an excel table listing the unique GO terms associated
with contigs expressed only in one tissue. Table S3. Classification of
unique GO terms into children of the three namespaces. an excel table
listing the classification of all the GO terms uniquely associated with
contigs expressed in one (or all) tissues into the 65 GO terms which are
‘children’ of the three namespaces (molecular function, biological process
and cellular component). Table S4. Microsatellites detected in the great
tit transcriptome. an excel table listing repeats detected in the great tit
assembly. Repeats are listed along with at least 10 bases of flanking
sequence on each side (up to a maximum of 200 bases of flanking
sequence)

Additional file 2: Figure S1. Distribution of zebra finch genes across the
zebra finch genome. Counts are plotted within 500,000 base pair bins.
No genes map to Tgu16 and one gene maps to TguLG5 (not shown).
Note that Tgu-22, 25, 26 and 27 are presented out of numeric sequence
at the bottom of the plot, to make visual comparison with Figures 3 and
4 easier. an encapsulated postscript (eps) file showing the distribution of
zebra finch genes across the zebra finch genome
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Additional file 3: Figure S2. Example ‘is_a" and ‘part_of" pedigree
mapping of the GO term GO0:0022857 (name: transmembrane transporter
activity). The ‘is_a-only mapping is shown light grey; GO:0022857 is a
subtype of GO:0005215 (transporter activity), which is a subtype of the
root term GO:0003674 (molecular function), while GO:0022857 can also
be mapped to the root term GO:0008150 (biological process) through
‘part_of" relationships. a powerpoint (ppt) file with an example pedigree
mapping of the GO term GO0:0022857 to its ‘parent’ terms through “is_a"
and “part_of” relationships
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