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Abstract

more likely to be ageing-related.

Background: The ageing of the worldwide population means there is a growing need for research on the biology
of ageing. DNA damage is likely a key contributor to the ageing process and elucidating the role of different DNA
repair systems in ageing is of great interest. In this paper we propose a data mining approach, based on
classification methods (decision trees and Naive Bayes), for analysing data about human DNA repair genes. The
goal is to build classification models that allow us to discriminate between ageing-related and non-ageing-related
DNA repair genes, in order to better understand their different properties.

Results: The main patterns discovered by the classification methods are as follows: (a) the number of protein-
protein interactions was a predictor of DNA repair proteins being ageing-related; (b) the use of predictor attributes
based on protein-protein interactions considerably increased predictive accuracy of attributes based on Gene
Ontology (GO) annotations; (c) GO terms related to “response to stimulus” seem reasonably good predictors of
ageing-relatedness for DNA repair genes; (d) interaction with the XRCC5 (Ku80) protein is a strong predictor of
ageing-relatedness for DNA repair genes; and (e) DNA repair genes with a high expression in T lymphocytes are

Conclusions: The above patterns are broadly integrated in an analysis discussing relations between Ku, the non-
homologous end joining DNA repair pathway, ageing and lymphocyte development. These patterns and their
analysis support non-homologous end joining double strand break repair as central to the ageing-relatedness of
DNA repair genes. Our work also showcases the use of protein interaction partners to improve accuracy in data
mining methods and our approach could be applied to other ageing-related pathways.

Background

Ageing is a widespread biological process with a grow-
ing impact on medicine and society, but its fundamental
causes are still to a large extent unknown. This is parti-
cularly true about human ageing. Although there has
been a significant progress in identifying a large number
of ageing-related genes [1], [2], research in this area up
to now has focused mainly on simpler model organisms.
A major problem with research on ageing in humans is
that it is much more difficult to do experiments, both
for obvious ethical reasons and the long experimental
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time required, and thus shorter-lived models are usually
preferred. This problem creates both a need and an
opportunity to deploy bioinformatics methods to
research human ageing. There is already a large amount
of data on this topic in publically available gene/protein
databases, but such data is still under-explored. This
work aims at filling this gap, proposing a data mining
approach to the analysis of ageing-related human genes.

We focused our analysis on DNA repair genes, since
this is one of the major types of genes often associated
with ageing [3], [4], [5]. There are more than 150
human DNA repair genes [6], [7], which are crucial for
maintaining genomic integrity. DNA is constantly being
damaged by numerous factors - e.g., at physiological
temperatures and pH, cytosine bases spontaneously dea-
minate to uracil bases 100 to 500 times per day in a
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typical mammalian cell [8]. Although mammalian cells
have a remarkable DNA repair capacity, no repair sys-
tem is perfect, and DNA damage tends to accumulate
with time. This accumulation is believed to be a major
cause of human ageing [4], [9], [10].

There are many DNA repair genes whose defect or
absence has been shown to be associated with ageing in
several species, including mice and humans [5], [11].
However, not all defects in DNA repair genes result in
an accelerated ageing phenotype. For instance, defects in
some of those genes can be so serious that the organism
dies at an embryonic or perinatal stage, whilst defects in
other DNA repair genes can lead to cancer. In any case
there are a number of DNA repair genes that, when
defective or absent in an organism, lead to “accelerated
ageing” in that organism, the so-called “progeroid syn-
dromes”. Arguably the most well-known example of
such progeroid syndromes is Werner’s syndrome, caused
by a mutation in the WRN gene, which encodes a DNA
helicase and exonuclease protein. Patients with Werner’s
syndrome start to show signs of premature ageing much
earlier than usual, when they are young adults, and die
at an average age of 47 [12].

Although many DNA repair genes have been asso-
ciated with mammalian ageing via mutations in patients
or genetic manipulations in mice, to the best of our
knowledge there has been no systematic study of what
are the differences between ageing-related and non-
ageing related DNA repair genes. The goal of this work
is to study these differences in a systematic way, focus-
ing on human DNA repair genes, using classification
methods from the area of data mining or machine learn-
ing [13]. Classification is a type of supervised learning
task where each data instance (also called “an example”
in data mining terminology) in the dataset consists of
two parts, a set of predictor attributes and a special
class attribute. A classification algorithm builds a classi-
fication model that, based on the values of the predictor
attributes for a given data instance, predicts what is the
class value for that instance.

This paper reports the results of applying two types of
classification algorithms - decision tree induction and
Naive Bayes - to a number of different datasets of DNA
repair genes created specifically for this research. The
resulting classification models are then interpreted in
light of biological knowledge. To the best of our knowl-
edge, this research is the first application of data
mining-based classification methods to the problem of
systematically determining gene properties that discrimi-
nate between ageing-related and non-ageing related
DNA repair genes and, considering that the data mining
methodology proposed here is generic, it could have
other applications in ageing research.
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Results

We created datasets where each data instance represents
a DNA repair gene. Each data instance (DNA repair
gene) belongs to a class, either ageing-related or non-
ageing related, and is characterized by a set of predictor
attributes which encompass properties related to its
DNA repair pathway, Gene Ontology (GO) term anno-
tations, protein-protein interaction information, etc - see
Methods. Each dataset is divided into a training dataset
and a testing dataset. Classification algorithms were
used to build, from the training set, classification models
that predict the class of an instance (DNA repair gene)
based on the values of predictor attributes. Each classifi-
cation model is then applied to the test set, consisting
of data instances unseen during training, in order to
measure the predictive accuracy (generalization ability)
of that model.

We report computational results for two types of clas-
sification algorithms, namely J48 and Naive Bayes (see
Methods). Both are implemented in the WEKA data
mining tool [13], which was used in our experiments.
We report results for two types of datasets: (a) 15 data-
sets (variations of each other) that use multiple types of
predictor attributes but not gene expression attributes;
(b) a dataset including only gene expression attributes
(extracted from Genevestigator). The datasets created in
this work have, depending on the criteria used (see
Methods), between 135 and 148 data instances, out of
which 33 represent ageing-related DNA repair genes
and the remaining represent non-ageing-related DNA
repair genes. All the datasets created and used in
this research are available on the web http://genomics.
senescence.info/genes/DNA_repair.html.

Results for datasets with multiple types of attributes but
not gene expression attributes

For each classification algorithm, we report its predic-
tive accuracy when mining different datasets produced
with three different values of the parameter “GO term
occurrence threshold”, which specifies the minimum
number of occurrences in the dataset for a GO term
to be used as an attribute (see Methods), namely 3, 7
and 11. The value 3 is a conservative, low value, which
avoids the use of rare GO terms with very little statis-
tical support and virtually no generalisation power.
Increasing the threshold value has two opposite effects.
On one hand, although the classification algorithms
are given a smaller set of attributes (because fewer GO
terms satisfy the occurrence threshold), this smaller set
has the advantage of including only GO terms with a
larger occurrence in the dataset, for which the prob-
abilities or related statistics computed by the classifica-
tion algorithms are more reliable than statistics
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computed for GO terms with fewer occurrences in the
dataset. On the other hand, if the threshold value is
increased too much, GO terms which are relatively
rare but still have some predictive power would be
lost, which could lead to a decrease in classification
accuracy. Hence, experiments with different values of
this parameter allow us to study the aforementioned
trade-off between statistical reliability and availability
of relevant attributes for prediction.

We also did experiments with five different datasets
produced by varying the set of protein-protein interac-
tion (PPI)-related attributes. More precisely, dataset D1
does not contain any PPI-related attribute. Dataset D2
contains the numerical #partners (number of interaction
partners) attribute, but not the binary attributes indicat-
ing whether or not the current protein interacts with a
given protein - referred to as BPI (Binary Protein Inter-
action) attributes for short. Datasets D3, D4 and D5
contain both the #partners attribute and 10, 20 or 30
(respectively) BPI attributes. All datasets included the
DNA repair pathway and the K,/K; ratio (which mea-
sures molecular evolution rates) attributes, as described
in the Methods.

Table 1 shows the predictive accuracy (measured by
the Area Under the ROC curve (AUC) value - see
Methods) obtained by the J48 decision tree induction
algorithm. The AUC value can vary from 0 to 100%;
where 50% corresponds to random predictions and
100% corresponds to all correct predictions. Several
relevant remarks can be made about this table. First,
overall, using BPI attributes considerably increases pre-
dictive accuracy. For each of the three values of the GO
term occurrence threshold, the AUC value obtained
using BPI attributes is considerably greater than the
AUC value obtained without that type of attribute. This
tendency is particularly clear in the column for the
threshold value of 3, where the AUC value for dataset
D1 (with no BPI attribute) was 63% and the AUC values
for datasets D3-D5 varied from 72.3% to 80%.

Concerning the effect of different values of the GO
term occurrence threshold in the predictive accuracy of
J48, increasing the value of that threshold to 7 or 11
had mixed effects. In particular, those increased thresh-
old values led to higher AUC values in datasets D1 and
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D3, but lower values in datasets D2, D4 and D5, by
comparison with the AUC values associated with the
original threshold value of 3. Overall, taking into
account all datasets, the best results are achieved with
the GO term occurrence threshold set to 3, and the best
two results in the entire table are achieved for datasets
D4 and D5 with the GO term occurrence threshold
value of 3, corresponding to AUC values of 80.0% (bold-
faced in Table 1) and 79.2%, respectively. In any case,
the predictive performance of J48 was more sensitive to
variations in the types of predictor attributes used in the
dataset than to variations in the value of the GO term
occurrence threshold.

The results for Naive Bayes are reported in Table 2. In
general, for all three values of the GO term occurrence
threshold, Naive Bayes’ AUC value increased monotoni-
cally, from the first row (D1) to the last row (D5), with
an increase in the number of PPI-related (#partners and
BPI) attributes. In the case of Naive Bayes, increasing
the value of the GO term occurrence threshold to 7 or
11 led to somewhat lower AUC values in four datasets
(D1-D4), by comparison with the AUC values associated
with the original threshold value of 3. However the
highest AUC value in Table 2 was achieved with that
threshold set to 11, for dataset D5 (AUC = 82.6%). In
summary, varying the value of the GO term occurrence
threshold had little effect on the predictive accuracy of
Naive Bayes, which is more affected by the types of pre-
dictor attributes used in the dataset.

To summarise the distribution of the most relevant
attributes selected by J48, Table 3 shows how many
times each attribute was selected to be at the root node
(the most important node) of the decision tree. In Table
3, the four attributes with binary values (two GO terms,
XRCC5_interaction and WRN_interaction) have their
“yes” value associated with ageing - i.e., if the value of
that attribute is “yes” for a given DNA repair gene, that
gene is predicted to be associated with ageing. In the
case of the numerical #partners attribute, J48 chose the
threshold of 15 as the best value to discriminate among
the two classes, so that in general values of that attri-
bute greater than 15 partners tend to be more asso-
ciated with ageing. This result is consistent with other
investigations showing that ageing-related proteins tend

Table 1 Area under ROC curve (AUC, in %) for J48 algorithm, for different datasets and different values of the GO

term occurrence threshold (t)

Dataset Id PPI-related attributes t =3 (301 GO terms) t =7 (157 GO terms) t=11 (101 GO terms)
D1 none 63.0 68.0 65.3
D2 #partners 66.1 63.3 59.6
D3 #partners + 10 BPI attr's 723 74.2 754
D4 #fpartners + 20 BPI attr's 80.0 735 74.6
D5 #fpartners + 30 BPI attr's 79.2 67.7 77.5
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Table 2 Area under ROC curve (AUC, in %) for Naive Bayes, for different datasets and different values of the GO term

occurrence threshold (t)

Dataset Id PPl-related attributes t =3 (301 GO terms) t =7 (157 GO terms) t=11 (101 GO terms)
D1 none 759 749 719
D2 #partners 76.0 753 74.0
D3 #partners + 10 BPI attr's 783 771 76.6
D4 #partners + 20 BPI attr's 80.5 80.1 794
D5 #partners + 30 BPI attr's 80.7 80.2 82.6

to have a higher number of interaction partners than
non-ageing-related proteins [14], [15], [16].

Results for datasets with gene expression attributes only
We applied the J48 and Naive Bayes classification algo-
rithms to the dataset of DNA repair gene expression
values across human tissues extracted from Genevestiga-
tor (see Methods). The AUC values obtained by these
algorithms in this dataset were 51.1% and 52.1%, respec-
tively. These values are much lower than the AUC
values for the datasets with multiple types of attributes
but not gene expression attributes, and they are just
slightly higher than the AUC value expected from ran-
dom predictions, which is 50%. Hence, the entire classi-
fication models built from this data are not reliable.
However, analysing the decision tree built by J48, we
found a path in the decision tree corresponding to a
classification rule which is a good predictor of ageing-
related DNA repair genes. This rule, which is a modular
component of the classification model that can be inter-
preted independent from the rest of the tree, is as
follows:

IF (T-lymphocyte > 6265.926) AND (tongue_squa-
mous_cell < 11127.391)

THEN class = aging_related_DNA_repair

The actual gene expression values in the IF part of the
rule are not easily interpretable, but the rule can be
broadly interpreted as: IF a DNA repair gene has a high
expression (by comparison with other DNA repair
genes) in T-lymphocytes and does not have a very high
expression in tongue squamous cells, then the gene is
predicted to be ageing-related. The main condition in
this rule - i.e. the condition which is better at predicting

Table 3 Frequency of occurrence as root node in decision
tree built by J48

Attribute Frequency
WRN_interaction 6 (out of 6)
XRCC5_interaction 2 (out of 9)
#partners 2 (out of 12)
GO:0009719 (response to endogenous stimulus) 3 (out of 5)
GO:0042221 (response to chemical stimulus) 2 (out of 15)

the ageing-related class - is a high expression in T-lym-
phocytes; the other condition was added to the rule by
J48 only to make the rule more consistent with respect
to the underlying dataset. There are 5 DNA repair genes
satisfying the IF part of this rule, and all of them have
the class predicted in the THEN part - i.e. this rule has
5 “true positives” and no “false positive”. This pattern is
highly statistically significant (p < 0.001, with the null
hypothesis of binomial distribution with probability of
occurrence of the ageing-related class = 0.22 (relative
frequency of this class in the dataset)). The DNA repair
genes covered by this rule are: APEX1, ERCC5, RPAI,
XRCC5 and XRCCé6.

We therefore used the Ingenuity Pathways Analysis
http://www.ingenuity.com to define crosstalk between
genes/proteins involved in the patterns that were discov-
ered via data mining. The network automatically gener-
ated by Ingenuity is mainly composed of known
protein-protein interactions (PPIs). We also imposed
known (and stored in Ingenuity database) links to phy-
siological processes and diseases on the reconstructed
network, shown in Figure 1. As can be observed in
Figure 1, XRCC5 and XRCC6 (two of the genes whose
expression was observed to be high in T lymphocytes)
have particularly important roles in this network. More
precisely, XRCC6 is directly connected to all 5 afore-
mentioned processes, whilst XRCC5 is directly con-
nected to 4 of those processes (the only exception being
V(D)] recombination).

Discussion
Results for the datasets with multiple types of attributes
but not gene expression attributes
One of the advantages of a classification model in the
form of a decision tree is that it shows the relevant attri-
butes selected by the algorithm (the attributes labelling
the internal nodes of the tree) in a simple and intuitive
hierarchical way, where attributes at the top of the tree
are more relevant than attributes at the bottom. The
attribute at the root node, in particular, is considered
the most relevant attribute for classification.

As can be seen in Table 3, only two GO terms were
chosen to be root nodes of a decision tree. Both terms
refer to response to stimulus, but in both cases the
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Figure 1 Network of genes/proteins and biological processes associated with the ageing-related patterns discovered via data mining.
Pink links connect proteins to the process of double-strand DNA break repair, green links connect proteins to the process of telomere
maintenance, dark blue to T cell development, light blue to V(D)J recombination, and yellow to apoptosis. Figure generated through the use of

Ingenuity Pathways Analysis.

definition of the kind of stimulus in question seems
somewhat broad. A simple IF-THEN classification rule
that can be extracted from the decision trees, using only
the GO term “response to endogenous stimulus” at the
root node to make a class prediction, is the rule:

IF GO:0009719 (response to endogenous stimulus) =
yes

THEN class is aging-related DNA repair gene

There are four DNA repair genes satisfying the IF part
of this rule, and all of them belong to the predicted
class. This rule is statistically significant (p < 0.01, with
the null hypothesis of binomial distribution with prob-
ability of occurrence of the ageing-related class = 0.23
(relative frequency of this class in the dataset)).

Another rule that can be extracted from the decision
trees is:

IF GO:0050896 (response to stimulus) = yes

AND GO:0048518 (positive regulation of biological
process) = yes

AND #partners > 15

THEN class is aging-related DNA repair gene

There are 10 DNA repair genes satisfying the IF part
of this rule, and all of them belong to its predicted class.
This rule is highly statistically significant (p < 0.001,
with the above null hypothesis).

The above two rules indicate that “response to stimu-
lus” is in general a good predictor of ageing-relatedness
for DNA repair genes. It is worth mentioning that the
GO term “response to external stimulus” was one of the
GO terms overrepresented in an ageing-related interac-
tion network of a very different type of gene/protein,
namely extracellular proteins [17]. This suggests that the
relevance of “response to stimulus” for predicting age-
ing-relatedness is not limited to DNA repair genes.

Interestingly, the BPI (binary protein interaction) attri-
butes were chosen to be decision tree root nodes more
often than the GO term attributes, even though there
are much fewer BPI attributes than GO term attributes
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in the datasets. In particular, the WRN_interaction attri-
bute (which takes the value “yes” or “no” depending on
whether or not the current DNA repair protein interacts
with the WRN protein) was chosen as the root attribute
in 6 out of 6 of the experiments where it was input in
the dataset used. The WRN protein is associated with
Werner’s syndrome, considered the progeroid syndrome
that most presents characteristics of accelerated ageing
[10], [12], and the WRN protein is a hub (a node with a
large number of neighbours) in ageing-related protein
interaction networks [18], [19]. It should be noted, how-
ever, that there is a bias in this result, since the WRN
protein and its interaction partners tend to be more stu-
died in the context of ageing than other types of pro-
teins. In fact, in our datasets the WRN protein has 14
DNA repair interaction partners, all of them belonging
to the ageing-related class. Therefore, although this pat-
tern is statistically significant, it is not surprising given
the biases in the datasets. Binary protein interaction
data is susceptible to biases related to certain proteins
being more studied than others, though apart from
WRN we are confident that our results reflect real
enrichments.

A more interesting pattern is that interaction with the
XRCC5 (X-ray repair complementing defective repair in
Chinese hamster cells 5, also called Ku 80) protein is a
strong predictor of the ageing-related class. More pre-
cisely, XRCC5 was selected 2 times as the root node of
a decision tree built by J48; and, out of XRCC5’s 11
DNA repair interaction partners, 10 are ageing-related
DNA repair proteins. This pattern is also highly statisti-
cally significant (again, p < 0.001, with the above null
hypothesis).

XRCC5 is a DNA helicase involved in double-strand-
break repair. Ku is a heterodimer composed of Ku70
and Ku80 subunits. When a double-strand break occurs,
Ku binds to DNA ends and recruits DNA-dependent
protein kinase subunit, which is believed to phosphory-
late and activate downstream targets in the non-homo-
logous end joining (NHE]J) DNA repair pathway [20].
Ku80 ~ mice, which are defective in double-strand
DNA break repair via the NHE] pathway, exhibit multi-
ple symptoms of accelerated ageing [5], [21].

Results for the dataset with gene expression

attributes only

In this type of dataset, the main pattern discovered was
that DNA repair genes having a high expression in T
lymphocytes tend to be ageing-related genes, and among
the genes satistying this pattern are XRCC5 and XRCC6.
In addition, as discussed earlier, interaction with XRCC5
and WRN are strong predictors of ageing-relatedness
for DNA repair genes. Integrating these patterns, it is
interesting to note that WRN, XRCC5, XRCC6, and
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T lymphocytes are all related to Non-Homologous End
Joining (NHE]), an important pathway for the repair of
double-strand DNA breaks [22]. This process is required
for proper telomere maintenance, and NHE] is also
required for joining hairpin-capped double-strand breaks
induced during V(D)] recombination, the process that
generates diversity in B-cell and T-cell receptors in the
vertebrate immune system [23], [24].

Relations of DNA double-strand break frequency with
telomere maintenance and ageing have been reported
[9], [25], and the link between ageing and autoimmunity
is also striking. Increased autoimmunity is observed in
Down syndrome, which is also characterized by acceler-
ated ageing [26], [27]. Autoimmunity was also shown to
be associated with the normal ageing process [28], [29]
and many ageing-related diseases (such as cancer) have
an autoimmune component in their etiology.

Human T lymphocytes represent a well-characterized
example of a cell type which retains the ability to up-
regulate telomerase as part of their response to a prolif-
erative stimulus [30], and can be long-lived. Defects in
NHE] that would affect other somatic cells and increase
their ageing rate will have less effect in the lifespan of
T-lymphocytes, but they could target their autoimmune
properties. Stressing this view we may mention two
facts. First, XRCC6, one of the ageing-related genes in
our dataset with a high expression in T lymphocytes, is
not only a DNA repair protein but also a thyroid 70
kDa autoantigen. Second, APEX1 (another gene in our
dataset with a high expression in T lymphocytes) is an
element in a pathway of response of a target cell to
granzyme A, a protease released by cytotoxic T cells
and natural killer cells. Cleaving the oxidative repair
protein Apel enhances cell death mediated by granzyme
A [30]. It is tempting to speculate that these results sup-
port connections between a faulty DNA repair system
and the immune system as one of the factors influen-
cing ageing.

Conclusions

We have proposed the use of classification algorithms
from the area of data mining (or machine learning) to
analyse data about DNA repair genes associated or not
with ageing. For this we created datasets specifically for
our data mining purposes, integrating data from several
biological databases and websites. In total 16 datasets
were created, involving distinct combinations of differ-
ent types of predictor attributes, namely the type of
DNA repair pathway, a measure of a gene’s rate of evo-
lutionary change, a number of attributes referring to
biological process GO terms (varying from 101 to 301
terms), an attribute for the number of proteins interact-
ing with a gene’s protein product, a number of attri-
butes referring to interaction with specific proteins
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(varying from 0 to 30 protein interactors), and attributes
involving gene expression data. We then built classifica-
tion models that predict whether a given DNA repair
gene is ageing-related or not. Broadly speaking, the
predictor attributes used in this work were better at
predicting the ageing-related class than the non-ageing-
related class. This may be due to the larger diversity of
genes/proteins in the latter class.

In most of the datasets, both J48 and Naive Bayes
built classification models with reasonably good predic-
tive accuracy. The two predictor attributes representing
the type of DNA repair pathway and a measure of a
gene’s rate of evolutionary change had little predictive
power. A set of predictor attributes based on a large
number of GO terms (from about 100 to about 300
attributes depending on the dataset) had some predictive
power. In particular, GO terms related to “response to
stimulus” turned out to be reasonably good predictors
of ageing-relatedness for DNA repair genes. However,
the predictive accuracies achieved by both algorithms
were in general considerably increased when the dataset
contained not only GO term attributes but also a rela-
tively small set of protein-protein interaction (PPI)-
related attributes (from 10 to 30 attributes). An analysis
of the decision trees built by J48 for different datasets
revealed that, in datasets where both GO terms and
PPI-related attributes are used, the latter tended to be
chosen more often to label the root node of the trees,
suggesting their greater relevance for the classification
of DNA repair genes.

One of the patterns discovered using protein-protein
interaction attributes is that, if a DNA repair gene’s
protein product interacts with XRCC5 (Ku80), that gene
is likely to be ageing-related. Another pattern discov-
ered using gene expression data is that DNA repair
genes with a high expression in T lymphocytes tend to
be ageing-related. Among the genes satisfying this latter
pattern are XRCC5 and XRCC6, genes involved in non-
homologous end-joining, an important DNA repair
pathway for double-strand break repair and also
involved in telomere maintenance and the joining of
hairpin-capped double-strand breaks induced during V
(D)J recombination - the process that generates diversity
in B-cell and T-cell receptors in the vertebrate immune
system. These patterns and processes have been further
integrated in our analysis by using the Ingenuity Path-
ways Analysis to define crosstalk between genes/pro-
teins involved in the aforementioned patterns and
processes.

Future research will consist of building classification
models based on other types of predictor attributes, e.g.
involving information about the domains composing the
DNA repair proteins being investigated and information
about gene essentially [31]. In the future it could also be
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interesting to apply this proposed methodology to the
analysis of other types of genes associated with ageing
too, e.g. perhaps to discriminate between ageing-related
and non-ageing-related genes associated with oxidative
stress.

Methods

Creating datasets with multiple types of predictor
attributes

Each data instance represents a DNA repair gene and
consists of two parts, a set of predictor attributes and
a class. The class of a data instance can either be: age-
ing-related DNA repair or non-ageing-related DNA
repair gene. To perform these class assignments, first,
a set of DNA repair gene names was obtained from
http://sciencepark.mdanderson.org/labs/wood/DNA_R-
epair_Genes.html (hereafter called “Wood’s web site”
for simplicity) [6], [7]. The genes in that set were then
divided into two classes. The positive (ageing-related)
class consists of the genes included in the GenAge
database of ageing-related genes http://genomics.senes-
cence.info/genes/ [2]. The negative (non-ageing-related)
class consists of the genes that are not included in
GenAge.

Each data instance (in either class) was then repre-
sented by a set of predictor attributes. Several types of
predictor attributes - representing different types of
properties of the genes in the dataset - have been cre-
ated, as follows.

Creating the predictor attribute type of DNA repair

This attribute represents the main type of DNA repair
process in which a gene is involved, using information
derived from Wood’s web site. This attribute has 12
possible values, namely: base excision repair, mismatch
repair, nucleotide excision repair, homologous recombi-
nation, non-homologous end joining, other types of
DNA repair, DNA polymerases (catalytic subunits), edit-
ing and processing nucleases, Rad6 pathway, disease,
other genes with known or suspect DNA repair func-
tion, other conserved DNA damage response genes. For
a definition of these types of DNA repair, see [6],
(7], [8].

Creating a predictor attribute measuring the rate of
evolutionary change (K,/K; ratio)

This attribute is essentially a measure of the rate of evo-
lutionary change of orthologous ageing-related genes in
human and chimpanzees, called the K,/K; ratio. The
values of this attribute used in our dataset were taken
from [32].

Creating a set of predictor attributes representing GO terms
The Gene Ontology categorizes gene/protein functions
into three separate “namespaces”: biological process,
molecular function and cellular component [33]. We
used as predictor attributes only biological process (BP)
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GO terms, which are more easily interpretable as attri-
butes for predicting whether a DNA repair gene is age-
ing related or not.

It is important to note that, in most gene/protein
databases with GO term annotations, only the most spe-
cific GO terms known for a gene are explicitly included
in the database. Ancestors of those specific terms, repre-
senting more generic functions, are not normally expli-
citly included in the database record for that gene.
However, the semantics of the Gene Ontology specifies
a hierarchical relationship between terms, so that if a
gene has a certain biological process function associated
with it, this means the gene also has all its “ancestor
(more generic) functions (terms)” in the GO hierarchy.
If information about those more generic terms is not
included in the dataset, the algorithm could easily com-
pute wrong probabilities or related statistics in the data.
To avoid this problem the hierarchical relationship
among GO terms was taken into account when creating
the datasets. First, for each DNA repair gene, we
obtained the list of all the most specific GO terms anno-
tated for that gene in the UniProt database http://www.
uniprot.org. Next, for each DNA repair gene, we
extended its list of specific BP GO terms with the set of
all GO terms that are ancestors of those specific terms
according to the “is a” relationship of the GO, using
information from the Gene Ontology web site http://
www.geneontology.org.

Since most classification algorithms assume that each
data instance (gene/protein) has the same number of
attributes, all data instances were represented by a fixed
set of attributes representing a binary value ("yes” or
“no”)” for each GO term. These steps are summarized
in Figure 2.

Many GO terms are associated with just one or two
genes in the dataset, and therefore they correspond to
predictor attributes with no or very low predictive
power. Hence, GO terms whose value “yes” has a fre-
quency of occurrence smaller than a predefined thresh-
old - the “GO term occurrence threshold” - are
removed from the dataset.

Creating a set of attributes representing protein-protein
interaction information

Information about protein-protein interaction (PPI) was
obtained from the HPRD (Human Protein Reference
Database) - http://www.hprd.org/. HPRD was chosen
because it focuses specifically on human proteins and
because the curation of its data is of high quality [34].
PPI-related attributes were created as follows. First, we
downloaded the dataset of PPIs from HPRD (Release 8)
and selected a subset of those interactions satisfying two
conditions: (a) at least one of the two proteins in the
interacting pair is a DNA repair protein in our dataset;
(b) the type(s) of evidence for the interaction includes in
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vitro or in vivo experiments - i.e. interactions for which
the only type of evidence is high-throughput experi-
ments were not selected, since this is considered a
weaker type of evidence.

Two types of predictor attributes derived from those
PPIs were used. The first type of PPI attribute is the
number of interaction partners (#partners) for a given
protein. The second type of PPI-related attribute
involves a set of binary attributes, as follows. For each
data instance (gene) in our dataset, each attribute
takes on the value “yes” or “no” to indicate whether or
not (respectively) that gene’s protein product interacts
with the protein represented by that attribute. The set
of PPIs selected from HPRD involved 656 interacting
proteins, and it was not practical to create one predic-
tor attribute for each of those proteins. Hence, we cre-
ated a set of N binary attributes referring to the N
most frequent proteins in the PPIs selected from
HPRD, where N is a parameter used in the creation of
the dataset.

Removing duplicated data instances

After creating the above-described set of predictor
attributes, it often happens that a few data instances -
representing DNA repair genes which are similar to
each other - contain the same values for all attributes.
Hence, to eliminate data redundancy from a data
mining perspective, as a final step in the creation of
the datasets, we detect and remove duplicate instances
in the data. The actual number of duplicates depends
on the specific attributes included in each created
dataset. More precisely, the datasets described so far
have between 135 and 140 data instances, out of which
33 represent ageing-related DNA repair genes and the
remaining represent non-ageing-related DNA repair
genes.

Creating a dataset with gene expression attributes only
Genevestigator is a system for investigating gene expres-
sion and gene regulation https://www.genevestigator.
com/ [35]. We used the system’s Anatomy tool, which
reports how strongly a gene is expressed in different
anatomical categories, including tissues and cells.

To create attributes representing gene expression
levels reported by the anatomy tool, we used the afore-
mentioned lists of ageing-related and non-ageing-related
DNA repair genes and searched for expression profiles
pre-selected by the annotation adult human tissue in the
Genevestigator’s anatomy array collection. For each
anatomy category, Genevestigator displays the average
expression value calculated from all arrays in the
focused array selection that are annotated as belonging
to this category.

Note that Genevestigator contains expression data
from multiple types of microarrays, e.g., different
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DNA repair

GO terms

GO term

gene ids Uniprot

definitions

erms

ancestor
Geneld | specific BP GO terms GO terms
1 term 1, term 2
2 term 3
A\ 4
Geneld | specific BP GO terms + its ancestors
1 term 1, term 2, anc(term 1), anc(term 2)
2 term 3, anc (term 3)

v

Geneld | term 1 | term 2

term 3 | ancy(term,) | anc,(term,) | -

1 yes yes
2 no no

no yes yes
yes no no

Figure 2 Summary of the procedure for creating a set of predictor attributes involving GO terms. First, a list of gene IDs is used to
download from UniProt the specific GO terms annotated for each gene. Next, information about GO term definitions is used to select only the
biological process (BP) terms for each gene, and then to find the ancestors of those terms in the GO hierarchy. (The notation “anc(term,)”
denotes the set of all ancestors of term; “anc;(term;)" denotes the first ancestor of term 1, etc) After adding those ancestor GO terms to the list
of GO terms per gene, the dataset is transformed into a format having a fixed-length list of binary attributes (representing GO terms) for each
gene, where each attribute value indicates whether or not the gene is annotated with the corresponding GO term.

generations of Affymetrix GeneChips. On these arrays,
individual genes are sometimes represented by different
sets of probes, which are not mixed. To get an average
of all the existing data, we used all probes corresponding
to one gene in our analysis, by computing the arithmetic
average of all gene expression values (one for each
probe) for each gene. Hence, we created a dataset where
each instance corresponds to a DNA repair gene and
each column (attribute) corresponds to an anatomical
category - i.e., each attribute value is the average expres-
sion level of a given gene for all probes in the corre-
sponding anatomical category. After all data preparation
steps, the created dataset has 148 data instances and
108 attributes.

Classification algorithms

We used two types of classification algorithms in our
experiments. The first type is a decision tree induction
algorithm, more precisely the well-known J48 algorithm,
implemented in the data mining tool WEKA [13]. J48
builds a decision tree, where each leaf node is labelled
with one of the classes to be predicted (ageing-related
or non-ageing-related DNA repair gene in our case) and
each internal (non-leaf) node represents a test on the
value of a predictor attribute labelling the node. Note
that a decision tree algorithm selects only the most rele-
vant attributes to be included in the decision tree, and
many attributes may not appear in the tree at all
because they are not necessarily considered relevant for
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class prediction by the algorithm. In addition, for the
attributes which are selected to be included in the deci-
sion tree, in general, the closer to the root the attribute
is, the more relevant for class prediction it is.

The Naive Bayes algorithm assigns to a data instance
the class k that maximises the product: P(A;|Cy) x P(A,|
Cr) x ... P(A,,|Co) x P(Cy), where P(A{|Cy) - i = 1,...m -
is the empirical conditional probability of the value of
attribute A; in the current data instance given that the
instance belongs to class k (i.e., the number of training
data instances having that value of attribute A; and hav-
ing class k divided by the number of training data
instances having class k), m is the number of predictor
attributes, and P(Cy) is the empirical prior probability of
class k (i.e. the relative frequency of class k in the train-
ing set). Naive Bayes makes the simplifying assumption
that the attributes are independent from each other
given the class. Although this simplifying assumption is
not true in many cases, the algorithm still performs
robustly well in practice. Also, more complex types of
Bayesian classifiers, which detect dependences among
attributes, would tend to lead to overfitting [13] in our
small dataset.

J48 and Naive Bayes are both popular data mining
algorithms that have the advantage of producing a clas-
sification model in a format that can be interpreted by
biologists. This is in contrast with “black box” algo-
rithms such as Support Vector Machines (SVMs) [36] -
which tend to obtain somewhat higher predictive
accuracies but have the disadvantage of producing non-
interpretable classification models. In scientific discovery
applications such as in this work it is important to build
classification models that can be interpreted by biolo-
gists, as discussed in [37], [38].

Measuring predictive accuracy

The performance of the classification model is measured
by its predictive accuracy in data that was not used to
build the model, as follows. First, the classification
model is built from a subset of the data called the train-
ing set, where the algorithm knows the values of both
predictor attributes and classes for the data instances.
After the model is built, its predictive accuracy is then
measured in a separate subset of the data, called the test
set, where the algorithm knows only the values of the
predictor attributes (and not classes) for data instances.
So, this measure of predictive accuracy measures the
generalization ability of the classification model.

In this work, predictive accuracy is measured in terms
of the Area Under the ROC curve (AUC) using 10-fold
cross-validation. The AUC measure is a commonly used
measure of predictive accuracy in data mining and
bioinformatics. In order to interpret the AUC values in
the tables of results to be reported below, the main
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point is that the larger the AUC value, the better the
predictive accuracy of the classification model - in parti-
cular, a perfect predictive model would have an AUC
value of 1 (100%), whilst a model that makes predictions
entirely at random would have an AUC value of 0.5
(50%). ROC analysis and the AUC measure are
described in detail e.g. in [39]. 10-fold cross-validation is
a very common procedure for estimating predictive
accuracy. In essence, it works as follows [13]. First, the
dataset is divided into 10 folds of approximately equal
size. Next, the classification algorithm is run 10 times,
each time with a different fold used as the test set and
all the other 9 folds merged into the training set. The
predictive accuracy measure (the AUC value in our
case) is computed as the average value of that measure
in the test set over the 10 experiments. Hence, each
data instance is used exactly once in the test set and 9
times in the training set.

Statistical significance

The statistical significance of specific attribute values
predicting the ageing-related class (as found by the data
mining algorithms) was measured by using a hypothesis
test based on the binomial distribution, as follows. For a
given attribute value or rule predicting the ageing-
related class, the number of successes was the number
of data instances (DNA repair genes) which have that
attribute value or satisfy the IF part of the rule and
belong to the ageing-related class; the number of trials
was the number of data instances that have that attri-
bute value or satisfy the IF part of the rule (regardless
of their class); and the null hypothesis was represented
by a binomial distribution where the probability of
occurrence of the ageing-related class is the relative fre-
quency of that class in the entire dataset.
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