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Background: Although second generation sequencing (2GS) technologies allow re-sequencing of previously gold-
standard-sequenced genomes, whole genome shotgun sequencing and de novo assembly of large and complex
eukaryotic genomes is still difficult. Availability of a genome-wide physical map is therefore still a prerequisite for
whole genome sequencing for genomes like barley. To start such an endeavor, large insert genomic libraries, i.e.
Bacterial Artificial Chromosome (BAC) libraries, which are unbiased and representing deep haploid genome
coverage, need to be ready in place.

Result: Five new BAC libraries were constructed for barley (Hordeum vulgare L) cultivar Morex. These libraries were
constructed in different cloning sites (Hindlll, EcoRl, Mbol and BstXl) of the respective vectors. In order to enhance
unbiased genome representation and to minimize the number of gaps between BAC contigs, which are often due
to uneven distribution of restriction sites, a mechanically sheared library was also generated. The new BAC libraries
were fully characterized in depth by scrutinizing the major quality parameters such as average insert size, degree of
contamination (plate wide, neighboring, and chloroplast), empty wells and off-scale clones (clones with <30 or
>250 fragments). Additionally a set of gene-based probes were hybridized to high density BAC filters and showed

isolation and genome sequencing.

that genome coverage of each library is between 2.4 and 6.6 X.

Conclusion: BAC libraries representing >20 haploid genomes are available as a new resource to the barley
research community. Systematic utilization of these libraries in high-throughput BAC fingerprinting should allow
developing a genome-wide physical map for the barley genome, which will be instrumental for map-based gene

Background

Bacterial artificial chromosome (BAC) libraries are the
large DNA insert libraries of choice and an indispensible
tool for map based cloning, physical mapping, molecular
cytogenetics, comparative genomics and genome sequen-
cing. In contrary to their name, BACs are not artificial
chromosomes per se, but rather are artificial bacterial F
factor derived constructs [1]. Although BACs could carry
inserts approaching 500 Kb in length, insert sizes are
typically between 80 and 200 Kb in plants [2-8]. Cloning
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into BAC vectors rarely leads to chimeric or rearranged
inserts [9-13] due to the presence of F factor genes (parA
and parB) that prevent bacteria from maintaining more
than one BAC simultaneously. An additional advantage
of BAC clones is their easy manipulation and propagation
compared to viral or yeast-vector based systems [14-16].
Consequently BACs have supplanted YACs as the domi-
nant vector for large insert libraries and have been abun-
dantly used in large-scale physical mapping projects
[17-21]. Physical maps are pivotal for whole genome
sequencing strategies of large and complex genomes.
They are also instrumental to the scientific community
for gene isolation [21,22]. A genome-wide physical map
of the maize genome was built as a basis for genome
sequencing [23]. A chromosome-specific BAC library

© 2011 Schulte et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:stein@ipk-gatersleben.de
http://creativecommons.org/licenses/by/2.0

Schulte et al. BMC Genomics 2011, 12:247
http://www.biomedcentral.com/1471-2164/12/247

strategy has been adopted for bread wheat (Triticum aes-
tivum L.) to cope with the presence of three highly
related homoeologous genomes [20,24]. For the diploid
barley (Hordeum vulgare L.) genome, the International
Barley genome Sequencing Consortium (IBSC) [25] set
out to develop a deep coverage well ordered whole gen-
ome physical map [21] as a platform for trait isolation
and genome sequencing.

Large insert genomic libraries which are unbiased and
representing few folds of the haploid genome are a key
factor for successful generation of a physical map [18].
BAC libraries with very large inserts can be readily con-
structed with the partial digestion method; however,
unbiased large-insert BAC libraries may be built only
from mechanically sheared high molecular weight geno-
mic DNA in order to generate random fragments across
the genome [26]. A synergistic approach of combining
libraries created by different methods will help in redu-
cing gaps in the physical map that may result from
uneven distribution of restriction sites of the employed
restriction endonucleases. BAC maps which provided
the basis for genome sequencing [18,23,27,28] benefited
immensely by combining multiple libraries.

Until recently, four BAC libraries of barley have been
published. One was derived from a North American six-
rowed malting variety ‘Morex’ with 313,344 gridded
clones (6.3-fold haploid genome coverage [29]. Two
further libraries have been reported for the cultivars
Haruna Nijo [30] and Cebada Capa [31]. More recently
a fourth library was constructed from a doubled haploid
barley line CS134 derived from a cross between the
Australian malting variety ‘Clipper’ and the Algerian
landrace Sahara 3771 [32]. It is noteworthy that all these
libraries have been extensively used for characterizing
and isolating genomic regions of interest [31-34]. How-
ever, for barley in general and Morex in particular, the
depth of available resources (haploid genome coverage,
diverse restriction enzymes, etc.) was far too shallow to
provide raw material for a genome wide physical map.

Here, we report on the development of five BAC
libraries derived from cultivar ‘Morex’, which has been

Table 1 New BAC libraries available from cultivar Morex
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selected by IBSC as the reference genotype for genome
sequencing. The aim of IBSC was to generate BAC
resources by different complementing approaches in
order to reach sufficient and synergistic genome cover-
age for a representative whole genome physical map-
ping. The new libraries which are publicly available are
described here.

Methods

Plant material

Barley seeds of the progeny “Morex 2003#9” kindly pro-
vided by Professor Patrick Hayes at Oregon State Uni-
versity, USA, was used in the library construction.
About 200-400 seeds were grown under green house
conditions. For the isolation of nuclei for high molecular
weight (HMW) DNA preparation, etiolated leaves were
harvested from 4-6 weeks old plants.

Construction of BAC libraries from partially restricted
DNA
The libraries HVVMRXALLhB, HVVMRXALLKC,
HVVMRXALLmA and HVVMRXALLeA were con-
structed from partially digested and size fractionated
high molecular weight (HMW) DNA following pre-
viously published procedures [32,35,36] (Table 1). In
brief, purified DNA (150 Kb-500 Kb) was ligated to the
linearized and dephosphorylated vector. The ligation
mixture was transformed into competent cells by elec-
troporation. White recombinant colonies were selected
on LB plates containing 12.5 - 20 pg/pl chlorampheni-
col, 90 pg/ul 5-Bromo-4-Chloro-3-Indolyl-Beta-D-
Galacto-Pyranoside (X-Gal), 90 ug/pl Isopropyl-beta-D-
Thiogalactopyranoside (IPTG), and picked robotically.
Recombinant clones were transferred into individual
wells of microtiter plates, grown and then stored at -80°
C. Library HVVMRXALLrA (Table 1) was produced
from mechanically sheared DNA as previously described
[35,37]. Briefly, the HMW DNA (at least 20 pg) plugs
were melted at 75°C, mechanically sheared and size frac-
tionated on a Clamped Homogeneous Electrical Field
(CHEF) gel. The large DNA fragments were then

BAC-library' No. of clones  Average insert size (Kb)  Genome coverage  Cloning strategy Vector E. coli strain
HVWMRXALLhB? 115,200 93 24 Hindlll, partial plndigo BAC5 DH10B
HWMRXALLhC? 153,600 114 34 Hindlll, partial pindigo BAC5 DH10B
HVWMRXALLeA* 147 456 126 3.7 EcoRl, partial plndigo BAC536 DH10B
HVWMRXALLMA® 202,752 143 6 Mbol, partial pTAR BACT.3 DH10B
HVWMRXALLA® 253,440 92 47 Mech. Sheared PSMRT BAC DH10B

'Naming follows an agreed nomenclature for Triticeae BAC libraries: three letters species code (Hordeum vulgare ss. vulgare), three letters cultivar code (Morex),
three letters genome representation (i.e. ALL = whole genome, THS = short arm chromosome H), one letter enzyme_ (i.e. h = Hindlll, e = EcoRl, m = Mbol, r =
Random/Mechanically sheared), one letter library identifier in case of multiple libraries per enzyme; Zall libraries are accessible via http://cnrgv.toulouse.inra.fr/en/
library/barley; libraries were produced at: *Australian Centre of Plant Functional Genomics, “Clemson University Genomics Institute, *Childrens Hospital Oakland,

SLucigen corporation.
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subjected to end-repairing and polished by Lucigen’s
DNA terminator kit. The “polished” blunt-ended DNA
was ligated to a BstXI linker to create 5" protruding,
non-complementary (CACA) ends according to manu-
facturer’s instruction. The linker-ligated large DNA frag-
ments were size-fractionated by pulsed-field gel
electrophoresis, permitting the simultaneous removal of
excess free linker and isolation of the sized genomic
fragments (100~200 Kb). The size-fractionated DNA
retains 5’ extending ends, which can be ligated to the
complementary 5" (TGTG) ends of the BstXI digested
pSMART-BAC cloning vector. Electroporation of the
BAC ligation mixture was performed and BAC clones
were randomly picked for BAC DNA preparation, Notl
digestion and insert size check. The final BAC library
was assembled from transformed ligations that delivered
clones with average insert size of 100 Kb or larger.

DNA isolation of plasmid-DNA

BAC-Plasmid DNA was isolated in a semi-automated
approach utilizing NucleoSpin 96 Flash kit (Macherey&-
Nagel, Germany). Bacterial cultures were inoculated with
a 96 pin replicator directly from glycerol stocks (384-well
storage plates) into deep-well plates (96-well; Macher-
ey&Nagel, Germany) containing 1.3 ml/well of either 2x
YT-medium [38] (HVVMRXALLhA, HVVMRXALLeA,
HVVMRXALLhB, HVVMRXALLKC), or 2x LB-medium
[38] (HVVMRXALLmMA, HVVMRXALLrA), respectively.
In order to introduce positive and negative controls to
each culture plate, two pins were removed from the repli-
cator. After inoculating 94 clones, a positive control
clone (HVVMRXALLhA0318G23) was introduced manu-
ally to the well HO1 whereas well H12 was not inoculated
with any clone thus serving as a negative control to
monitor cross contaminations from the inoculation pro-
cedure. The cultures were grown at 37°C for 16-22 h agi-
tated at 250 rpm on an orbital shaker (Infors AG,
Switzerland). Cells were harvested by centrifugation
(Heraeus Multifuge 35-R, thermo electron cooperation)
of culture plates at 2,500 rpm for 15 min. The BAC DNA
was isolated according to the manufacturer’s instructions
and eventually suspended in 50 pl molecular de-ionized
water.

High information content fingerprinting

High information content fingerprinting (HICF) was
essentially performed according to published procedures
[39]. In brief, 42 pl of BAC DNA was inoculated with 8
ul of a restriction mix consisting of two units of BamHI,
EcoRl, Xbal, Xhol and Haelll (New England Biolabs
NEB, Germany), 1x NEB Buffer 2, 1x BSA, 0.5 pug
DNAase-free RNase A and 0.02% beta-mercaptoethanol
for 3 h at 37°C. Ten ul of restricted product was incu-
bated with the labeling cocktail containing 0.3 pl
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SNaPshot Multiplex Reaction Mix (Applied Biosystems,
Germany), 2 pl NEB-Buffer 2, 2.5 ul 100 mM Tris/HCl
(pH 9.0) and 5.2 pl de-ionized water (1 h at 65°C).

Fragmented and labeled DNA was precipitated by
adding 5 pl 2.5 M sodium-acetate and 100 pl 99% etha-
nol (-20°C) followed by incubation at -80°C for 15 min.
DNA was collected by centrifugation at 4,200 rpm for
30 min. The pellet was washed with 100 pl 70% ethanol,
air dried and re-suspended in 9.8 pl Hi-DiTM Forma-
mide and 0.2 pl GS1200LIZ size standard (Applied
Biosystems, USA). The samples were denatured at 95°C
for 5 min before loading to the capillary sequencer
ABI3730xl (Applied Biosystems). The capillary electro-
phoresis was performed on 50 cm capillary arrays using
ABI’s default run module for 108 min 3730 running-
buffer with EDTA and 3730 POP-7TM polymer
(Applied Biosystems, Germany).

Analysis of fingerprinting data
Peak areas, peak heights and fragment sizes of each
BAC fingerprint profile were collected by ABI’s data col-
lection program. The raw data was assessed for sizing
quality using GeneMapper v4.0 (Applied Biosystems,
Germany). An electronic fingerprint was assigned with
the software FPPipeliner v1.0 and further analyzed for
organelle contamination, neighboring, and plate-wide
contamination with FPMiner (BioinforSoft LLC, USA).
The software was also used for automatic elimination
of vector borne fragments in all fingerprint profiles.
Furthermore FPminer was used to distinguish the
peaks between true fragments and those originating
from background noise or ‘snapshot’ artifacts. The edi-
ted profiles were exported as sizes files in order to per-
form contig assembly with the assembly program FPC
V9.0 [40].

Insert size determination

For insert size determination 10 pl of isolated BAC-plas-
mid-DNA was digested for 4 h at 37°C with 5 Units
Notl (Fermentas, Germany) in 1x Buffer 3 containing
1x BSA. The digested DNA was separated together and
sized with a low range Pulsed Field Gel Electrophoresis
(PFGE) marker (New England Biolabs) by PFGE (CHEF
DRIII, Biorad, Germany) on 1% agarose gels in 0.5 x
TBE; (14°C, 6.0 V/cm, angle = 120, initial switch time 5
sec, final switch time 15 sec, run time = 16 h and ramp-
ing = linear).

Screening of BAC libraries

Screenings of all BAC libraries were performed on high
density colony filters (see additional file 1). Hybridiza-
tions were performed as described previously [38].
Membranes were prehybridized with 6x SSC, 5x Den-
hardt and 1 mg of denatured Salmon-sperm (Stratagene,
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USA) for 3 h at 68°C. Approximately 25 ng of probe was
labeled separately with Megaprime kit (GE Healthcare,
USA) and purified with Centrisep™ Columns (Applied
Biosystems, Germany) according to manufacturer’s
instructions. Prior to hybridizations the probes were
pooled and denatured at 95°C for 5 min followed by
snap cooling on ice for another 5 min. Hybridizations
were performed for at least 16 h at 68°C. Subsequently,
membranes were washed once in buffer 1 (2x SSC, 0.1%
SDS) followed by buffer 2 (1x SSC, 0.1% SDS) each at
68°C for 30 min. The filters were exposed for 4 h on
imaging plates (Fuji film, Germany) and scanned on a
FLA-3000 Phosphoimager (Fuji film, Germany). Positive
BAC coordinates were identified with the software
HDRF (Incogen, USA) and confirmed either by colony
PCR or via colony hybridization [38]. Barley probes
were designed from EST-sequences originating from the
HarvEST Assembly 35 [41] (see additional file 2). Addi-
tionally 17 wheat probes were hybridized to the filter set
of library HVVMRXALLC. Prior to hybridization, qual-
ity and the copy number of the wheat probes was evalu-
ated on Southern blots containing DNA from wheat
nulli-tetrasomic lines as described by Pallotta et al.,
2000 [42].

Ordering of BAC libraries and filters

The library HVVMRXALLhA was published before
[29] and can be obtained from Clemson University
Genomics Institute (CUGI) [43]. The libraries
HVVMRXALLhB, HVVRMXALLeA, HVVMRXALLmMA,
and HVVMRXALLrA are available from the Centre
National de Ressources Génomiques Végétales
(CNRGV) [44]. The high density colony arrays are avail-
able for the respective BAC libraries from the two
resources centers CUGI and CNRGYV (see additional file
1). The HVVRMXALLeA library and its filters can also
be ordered from CUGI [43]. Library HVVMRXALLhC
and filter sets were constructed and screened at Austra-
lian Center of Plant Functional Genomics (ACPFG,
Adelaide, Australia).

Results and Discussion

BAC libraries are the foundation for map-based gene
isolation and physical map construction for un-
sequenced genomes. Such physical maps were instru-
mental for sequencing several important plant genomes
like rice [45] and maize [6,46]. Even for smaller plant
genomes that are principally amenable for whole gen-
ome shotgun sequencing (WGS), the additional support
provided by a physical map greatly facilitated ordering
of the sequence contigs into scaffolds or super-scaffolds
[47-49]. In crop species with genomes larger than 5 Gbp
like barley, access to a physical map was proposed to be
crucial to endeavor whole genome sequencing [21].
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Additionally, a physical map would facilitate tremen-
dously the isolation of genes underlying important traits
in the Triticeae species. The systematic and high-
throughput characterization of libraries is a pre-requisite
for developing physical maps.

Diverse BAC libraries to ensure high genome
representation

Five new BAC-libraries of barley cultivar Morex were
constructed (see Table 1). Of those, four libraries were
constructed from partially digested high-molecular
weight (HMW) DNA. Two of the libraries
(HVVMRXALLhB and HVVMRXALLhC) were derived
by partial digestion with enzyme HindIll, whereas the
remaining was derived from partial digest with EcoRI
(HVVMRXALLeA) or Mbol (HVVMRXALLmA) (Table
1), respectively. The enzymes HindlIl and EcoRI recog-
nize 6 bp palindromes whereas Mbol cleaves at a 4 bp
palindromic site. A fifth library was obtained from clon-
ing mechanically sheared HMW DNA.

The rationale behind constructing independent BAC
libraries by partial digestion with different restriction
endonucleases is that the frequency of occurrence of a
specific palindrome in the DNA sequence is a function
of the bp-composition of a species genome and of the
recognition site [28]. Selecting multiple enzymes with a
different recognition sequence would limit the risk of
under-representation of specific regions of the genome
of interest in the resulting BAC map [50]. The strategy
of combining different BAC libraries was previously fol-
lowed in other physical mapping projects such as soy-
bean, bovine, Brassica rapa and maize [23,50-52]. To
further overcome the bias of under-represented regions
in libraries made of partially digested DNA, one BAC
library was generated from mechanically sheared DNA
(HVVMRXALLrA, Table 1). As described for rice [53],
gaps in physical maps may occur because of non-ran-
dom distribution of cloning sites, unstable DNA struc-
tures in E. coli hosts like Z-DNA, long inverted terminal
repeats and AT-rich sequences [54,55]. Closure of such
gaps is crucial to reach completion of a physical map.
For example random sheared fosmid clones enabled the
filling of gaps in the rice physical map in regions where
there was no restriction site for BAC libraries [53].
Interestingly these clones contained genes of agronomi-
cal importance. Furthermore, its demonstrated that
megabase-size DNA lacking any restriction site can be
mechanically sheared as well as the DNA from other
genomic regions [37] resulting in evenly distributed
BACs across the genome. Therefore such libraries hold
a high potential of gap closure. For example the random
sheared BACs of the Arabidopsis thaliana genome
played a crucial role in centrometric gap closure of the
Arabidopsis physical map [26]. Therefore, generating a
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single random sheared BAC library with sufficient geno-
mic coverage provides an important BAC resource and
a complementing tool for a generic physical map of the
barley genome.

BAC libraries provide 25-fold genome coverage

Genome representation of a given BAC library is impor-
tant as it allows predicting the potential to find any
given gene at least on a single BAC clone. Genome
representation is a function of the overall number of
unique clones and their respective insert sizes. Insert
sizes of the clones were determined by Notl digestion
and Pulsed Field Gel Electrophoresis (PFGE) of about
1330 clones (Table 2, Figure 1) as well as by HICF of
~10,000 BACs for each library (Figure 2).

The HVVMRXALLmA library showed the largest
average insert size of 143 Kb with an equal distribution
around the mean and the highest average number of fin-
gerprint fragments (Table 1 and 2, Figure 3).

Clones from the HVVMRXALLeA library contained
the second largest average insert size of 125 Kb, but
insert sizes showed more variation around the mean
value as determined by HICF (Figure 3). Libraries
HVVMRXALLhA and HVVMRXALLKB contributed
clones with medium insert sizes between 97 Kb and 100
Kb. For these two libraries the variation of insert size
and average number of fragments around the mean
value was more distinct (Table 1, Figure 3). The library
HVVMRXALLrA obtained from randomly sheared DNA
showed the smallest average insert size of 92 Kb. Each
library represented between 2.4 to 6.6-fold the haploid
barley genome (Table 1). Together with the previously
published BAC library of Yu et al. (2000) [29], more
than 25-fold combined haploid genome coverage is
available now in BAC libraries of the six-rowed malting
barley cultivar Morex (Table 1). The probability to
recover any specific sequence of interest is > 99% across
all libraries [56].

Irrespective of the BAC cloning method (restriction
enzyme, DNA-shearing; see above) the average BAC
insert size has a major impact on the contribution to
the physical map.

Page 5 of 11

There is a positive relation between the BAC insert
size and number of fragments depending on the chosen
fingerprinting technique [54,57]. During this study, for
the investigated barley libraries, we observed a positive
correlation between “insert size” and “number of frag-
ments” as mentioned before (see Table 1, Figure 3).
Furthermore, Meyers et al. (2004) [54] investigated the
contribution of overall fragment numbers per clone vs
reliability of clone overlap at a given suslton score, a key
parameter used in FPC (Fingerprint Contig [40]). It was
observed that increasing total fragments per clone in
turn increases the overlapping BACs at a given Sulston
score thus decreasing the occurrence of false-positives.
But there is potential fragment size saturation where an
increased number of bands does produce false overlaps
in a contig assembly [54].

After assembling the BACs into contigs, the Minimal
Tiling Path (MTP) selection will be the basis for BAC-
by-BAC sequencing. There is a preference of selecting
large insert clones [58] which has the advantage that
less BACs must be chosen for the MTP and a maximum
of sequence information could be obtained from each
BAC [59]. But also the risk of a chimeric or contami-
nated BAC should be kept in mind [58].

For the maize physical map large insert sized BACs
were used as “seed” BACs in the maize MTP construc-
tion, which provided the highest information content to
confirm overlaps between adjacent BACs [60]. For some
genome regions large or medium-size clones generated
by different methods and or techniques (e.g. BACs from
a different BAC library, fosmids) were chosen to fill
gaps indicating that depending on the sequence, differ-
ent type of clones were needed to cover the genome
[60]. Therefore the five BAC libraries described in this
study provide an optimal resource for whole genome
physical mapping of the barley genome with minimal

gaps.

Quality parameters of BAC resources

During the cloning procedure of a BAC library there is a
risk of over-representation of organelle DNA which is
mixed in various amounts with isolated nuclei in the

Table 2 Result of insert size determination after Notl-restriction and PFGE analysis

BAC-library No of clones for Notl restriction Average insert size (Kb) No. of clones for HICF Average fragment number (after HICF)*
HWMRXALLhA nd. 106 10,435 879
HWMRXALLhB 175 93 10,346 96.7
HVWMRXALLhC 181 114 10,279 1011
HVWMRXALLeA 304 126 10414 104.1
HVWMRXALLMA 303 143 10,685 1238
HVWMRXALLrA 366 92 10,679 874

In addition the average fragment number after HICF is listed for all BAC libraries based on a random set of investigated clones. * Size standard = GS1200LIZ

(Applied Biosystems); n.d. = not determined
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HVVMRXALLhB

Figure 1 Insert size estimation of barley BAC clones by pulsed field gel electrophoresis (PFGE). A sample set of 8 clones is visualized for
all five new libraries. Each set of eight clones is preceeded by a lane showing low range PFG marker (New England Biolabs).Arrowheads indicate
in each panel the position of the 97, 48.5 and 6.55 kb fragments of the PFG marker.

HVVMRXALLhC

HVVMRXALLeA

HVVMRXALLmA HVVMRXALLrA

process of preparing high molecular weight (HMW)
DNA. A random clone set of each BAC-library (10,279
-10,685 samples) was investigated by HICF (see above).
This also included a BAC clone known to represent the
entire chloroplast of cv. Morex [61]. Including this clone
into HICF provided a reference fingerprint which then
could be compared to all other high-quality BAC finger-
prints. At a threshold of higher than 50% identical frag-
ments to the chloroplast control, BAC clones were
flagged as originating mainly from chloroplast DNA.
The highest percentage of chloroplast-BACs (1.85%) was
found in the library HVVMRXALLKC (see Table 3).
Medium-level chloroplast-contamination was observed
for the libraries HVVMRXALLhB, HVVMRXALLhA
and HVVMRXALLrA with 0.92%, 0.78% and 0.45%,
respectively. The smallest amount of chloroplast-DNA
contamination was observed in HVVMRXALLeA
(0.11%) and HVVMRXALLmA (0.07%). Due to the lack
of sequenced BAC clones that represent the entire mito-
chondria of barley, contamination of BAC libraries by
mitochondrial DNA was not determined.

During the process of clone picking, plate replicating
and re-arraying of clones there is a risk of introducing

contaminations between BAC clones even if lab auto-
mation is used. Such contaminations maybe observed
by fragment pattern identity of neighboring clones
within a multi-well plate. The potential neighboring
and/or plate-wide contaminations were determined by
comparing HICF profiles of the ~10,000 clones finger-
printed for each library. If the overall fragment identity
of two clones at neighboring position within one plate
or at identical position in subsequent plates of the
library is higher than 50%, these clones were flagged.
The highest rate of potential neighbor (2.73%) and
plate-wide (7.28%) contamination was observed in
library HVVMRXALLA. For this library no values for
these two parameters were given by Yu et al., 2000
[29]. During this study we used a copy made several
years ago which in between has been extensively used
for other purposes. Therefore we cannot rule out that
contaminations introduced over time during plate
handling.

Potential neighbor contaminations were found to be in
the range between 1.01% and 2.09% for the other
libraries and plate-wide contaminations were as high as
1.44% to 5.76% (Table 3).
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Figure 2 Example of a BAC clone characterized by High Information Content Fingerprinting (HICF). After restriction digestion, SNaPShot
labeling and separation of labeled fragments (red, blue, green, black) the sample was loaded together with the size standard GS1200LIZ
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Figure 3 From all BAC libraries random subsamples
between10,279-10,685 clones (Table 2) were fingerprinted
(HICF). The total number of fragments per analyzed clone was
plotted in ascending order for each library. The legend shows the
color-coding for the investigated libraries

Contaminated clones may be identified also by overall
fragment number in HICF analysis. If a single glycerol
stock would contain two different BACs of similar size,
HICF analysis would indicate twice the number of frag-
ments as compared to a normal clone of the same
library.

Besides contaminations and clones with too few or too
many fingerprint fragments, empty vector clones or
non-viable clones can compromise the quality of a BAC
library since such “empty” wells in BAC-library plates
increases the preparation costs and increases the need
for larger number of clones to be processed in finger-
printing if used for physical map construction. A very
small fraction of “empty” wells was found for all libraries
(> 0.35%-2.9%, Table 3).

The number of fragments after HICF, is an exclusion
parameter for clones during systematic physical map
construction. In contrast, BAC clones with very small
inserts would provide too little information from HICF
for being valuable for physical mapping. Clones with

Table 3 Quality parameter of BAC libraries determined
with FPMiner 2.0 software.

BAC library Vv PWC NC CcC EW SHC
HWMRXALLhA  83.14%  7.28% 273% 078% 023%  6.53%
HWMRXALLhB  8943% 463% 161% 092% 020%  3.34%
HWMRXALLhC ~ 87.74% 576% 2.09% 1.85% 041%  2.83%
HWMRXALLeA  91.73% 1.44% 1.12% 0.11% 036%  5.24%
HWMRXALLMA  87.46% 422% 1.17% 007% 141%  567%
HWMRXALLrA  8049% 3.14% 101% 045% 033% 14.58%

V = Valuable clones; PWC = plate-wide contamination; NC = neighboring
contamination; CC = chloroplast-contamination; EW = empty wells; SHC =
Clones with <30 or >250 fragments, lower (<30) and upper (> 250) border for
total number of fragments per clone, which will be exported to FPC (see also
material and methods); n.d. = not determined.
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less than 30 fragments would have a very small overlap
to other clones and would therefore most likely stay as
singletons or overlaps would remain uncertain. If a high
number of small inserts were obtained in a library, size
selection of HMW DNA before cloning would probably
be inefficient, because small fragments tend to co-
migrate with larger fragments in highly concentrated
samples [62] and sheared large DNA fragments are far
less efficient to be cloned. Therefore both cases - too
many and too few fragments compared to the average -
would need to be filtered in a systematic physical map-
ping project. In this study the average number of frag-
ments over all libraries was 98.6. The percentage of
clones which fell into the range of <30 and >250 frag-
ments varied among the libraries (Table 3). It cannot be
ruled out that large BAC clones containing large num-
bers of highly conserved tandem repeats, centromeric
and telomeric repetitive sequences could potentially pro-
duce less than 30 fragments by HICF (Cheng-cang Wu,
unpublished data). This may explain partly the highest
percentage (SHC: 14.58% in Figure 3) of clones with
<30 or >250 fragments found in the sheared BAC library
(HVVMRXALLrA) which is expected to cover regions
underrepresented in libraries obtained by partial digest
of HMW DNA. However, further experimentation is
required to test this hypothesis.

Experimental validation of genome representation
Theoretical assumptions about genome coverage of
newly developed BAC libraries based on clone numbers
and average insert sizes of sample clones remains uncer-
tain since such analyses do not reveal potential redun-
dancy in libraries introduced during the cloning
procedure (i.e. overgrowth of transformation assays).
Therefore, high density colony arrays of all libraries
were screened with a set of single- or low-copy gene
probes (see additional file 3 and 4). The library
HVVMRXALLhA was excluded from this screening,
since it was already intensively characterized in previous
studies [29,63,64].

The libraries HVVMRXALLeA, HVVMRXALLmA,
HVVMRXALLrA, and HVVMRXALLhB were hybri-
dized with ten RFLP-markers [65]. These markers were
tested before by Southern analysis to represent single or
low-copy sequences (data not shown) and were known
to be distributed on barley chromosomes 2H, 3H, 5H -
7H (additional file 3). A single colony filter per library
comprising 55,296 clones was probed (additional file 1).
On average, 1 to 7 BAC addresses could be identified
(Figure 4A).

None of these four libraries showed any significant
pattern of library amplification since the number of
positive signals obtained correlated well with the
expected number (Figure 4A, additional file 4). All
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clones identified by screening of high density colony fil-
ters were analyzed by HICF and for six of the ten GBR
probes (GBR0048, GBR0605, GBR1550, GBR1597,
GBR1790, GBR1823) all clones assembled into single
contigs confirming the single-copy character of the

probes. BACs identified by GBR1433, GBR1837,
GBR1710 and GBR1610 assembled in two, three, nine
or even ten contigs, respectively. Given the single copy
nature of the probes in previous Southern analysis, the
finding of two or three independent contigs per single
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copy probe may be explained by too little overlap of
positive BAC clones in the area carrying the respective
genes thus not allowing FPC to build single contigs. In
the cases of larger number of contigs it is likely that
such markers cross-hybridized to more paralogous
genes than could be expected from the previous South-
ern evaluation (data not shown).

One obvious observation was that there are more hits
than average for single-copy probes in the library
HVVMRXALLhOA; but the positive clone numbers are
consistently corresponding to contig numbers (probably
paralogous gene numbers) only in the sheared BAC
library HVVMRXALLrA for all three low-copy probes:
GBR1837, GBR1710, and GBR1610 (Figure 4A). The
un-biasness of the sheared BAC library compared to the
partial digestion BAC libraries may be apparent by
screening more DNA probes including repetitive
sequences.

The entire HVVMRXALLAC library was screened with
a set of seventeen wheat EST-derived probes previously
mapped to wheat chromosome 3D. Because wheat and
barley genomes are closely related, probes from one spe-
cies can easily be used against genomic filter of the
other. These probes were first hybridized on wheat
nulli-tetrasomic lines in order to verify the 3D location
and afterwards on the HVVMRXALLhC-filters to iden-
tify the syntenic barley regions. In total 8 of 17 EST-
Markers (p58, p67, p77, p84, p88, p119, p188, pl195)
gave exactly the expected number of BACs (coverage of
the filter set = 3.4 x for the entire HVVMRXALLhC-
library). The remaining probes revealed at least a single
BAC address. On average the probes revealed 2.8 BAC
addresses (Figure 4B). The copy number of the probes
was calculated in wheat nulli-tetrasomic lines and there-
fore could differ in the barley genome due to sequence
variations.

Conclusion

In this paper we report on the development and charac-
terization of a set of five new publicly available BAC
libraries of barley cultivar Morex - a cultivar selected by
the International Barley Sequencing Consortium as
reference genotype for genome sequencing [21]. Alto-
gether the libraries represent >25-fold the haploid gen-
ome of barley. The libraries were generated from HMW
DNA partially digested with different restriction endo-
nucleases or mechanical shearing in order to reduce the
risk of genome regions being under-represented in the
libraries - an aspect which would interfere with the aim
of developing a physical map of the entire barley gen-
ome. Based on the analyzed quality parameters and the
obtained experimental evidences it can be concluded
that the new libraries (1) represent a comprehensive
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reagent for gene discovery and (11) can be utilized for
developing a generic physical map of barley.

Additional material

<
Additional file 1: Overview of available high density filter resources
for all BAC libraries and used filter set for validation.

Additional file 2: Detailed information of probes

Additional file 3: Detailed hybridization results of EST-derived
probes on BACfilters.

Additional file 4: After hybridizing 10 RFLP probes to the
HVVMRXALLhB, HVYVMRXALLmMA, HVVMRXALLeA and
HVVMRXALLYA library the copy number was recalculated according
to the contig results of an assembly with positives clones.
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