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Abstract

ECs in toxicology research.

chemical components.

Background: microRNAs (miRNAs) represent a class of small (typically 22 nucleotides in length) non-coding RNAs
that can degrade their target mRNAs or block their translation. Recent disease research showed the exposure to
some environmental chemicals (ECs) can regulate the expression patterns of miRNAs, which raises the intriguing
question of how miRNAs and their targets cope with the exposure to ECs throughout the genome.

Results: In this study, we comprehensively analyzed the properties of genes regulated by ECs (EC-genes) and
found miRNA targets were significantly enriched among the EC-genes. Compared with the non-miRNA-targets,
miRNA targets were roughly twice as likely to be EC-genes. By investigating the collection methods and other
properties of the EC-genes, we demonstrated that the enrichment of miRNA targets was not attributed to either
the potential collection bias of EC-genes, the presence of paralogs, longer 3'UTRs or more conserved 3'UTRs.
Finally, we identified 1,842 significant concurrent interactions between 407 miRNAs and 497 ECs. This association
network of miRNAs-ECs was highly modular and could be separated into 14 interconnected modules. In each
module, miRNAs and ECs were closely connected, providing a good method to design accurate miRNA markers for

Conclusions: Our analyses indicated that miRNAs and their targets played important roles in cellular responses to
ECs. Association analyses of miRNAs and ECs will help to broaden the understanding of the pathogenesis of such

Background

miRNAs are a class of small non-coding RNAs, which
act through binding in a sequence-specific manner to
the 3’'UTR of target genes [1]. With a very short recog-
nition sequence (~8bp), each miRNA can potentially
regulate hundreds of transcripts. At least one-third of
human genes are estimated to be miRNA targets, so the
regulation mediated by miRNA at the post-transcrip-
tional level is pervasive in animals [2]. Transcriptomic
studies suggest that miRNAs can regulate the expression
and stability of targets [3-6]. miRNAs also provide a
genetic buffer to constrain the variation of their targets’
expression, playing an important role in regulating
embryo development and maintaining the identity of
mature tissues [7]. In many situations, miRNAs and
their targets are co-expressed at intermediate levels;
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miRNAs serve to buffer the fluctuation of the targets’
expression through feed-forward loop architecture [8],
such as the relationship between miR-9a and E(spl) in
Drosophila [9,10] and miR-17 and E2FI in human [11].
Cells change physiologically in response to signals
from their external environments. To achieve this, they
must activate or repress various genes and tune their
products to a proper level under different situations.
Many toxicological researchers, adopting RT-PCR,
Northern-blotting or microarray technologies to investi-
gate the expression of protein-coding genes, have
demonstrated that exposure to ECs often has a negative
effect on the normal growth of cells [12,13]. The Com-
parative Toxicogenomics Database (CTD, http://ctd.
mdibl.org/) is a manually curated database, which stores
high-quality chemical-gene regulatory data [14]. Its cur-
rent dataset includes a large number of associations
among chemicals and proteins in Homo sapiens, Mus
musculus, Rattus norvegicus, Drosophila melanogaster,
Caenorhabditis elegans and other species; therefore, it
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can be used to determine whether a chemical binds to
or regulates the expression of a protein-coding gene.

A two-tiered review system was implemented in the
CTD to identify the high-quality chemicals-genes regula-
tory data [14,15]. First, the curators used text mining to
select literature where interactions between chemicals
and genes were identifiable, so that data were supported
by their source references. The senior curators then
proofread the entries from other curators, ensuring that
the correct chemical names and gene symbols were cho-
sen. Second, a group of prominent senior immunologists
evaluated the curation guidelines and contacted the
authors of papers to clarify details of the experimental
procedures, to assure that the data were exactly pre-
sented as in the reference. Recently, the datasets of the
CTD has been used by several independent groups and
demonstrated great utility for meta-analyses of ECs
[13,16,17].

miRNAs are essential for regulating many cellular pro-
cesses, such as apoptosis, proliferation and metastasis
[18,19]. How miRNAs function in regulating human
responses to environmental chemical (EC) stimuli is an
unexplored field of compound risk evaluation. In this
study, we retrieved the dataset of EC-genes from the
CTD and explored their propensities to be miRNA tar-
gets. By evaluating the factors that may potentially result
in the enrichment, we found that miRNA targets were
preferentially regulated by ECs. Through simulations
and statistical analyses, we identified significantly occur-
ring miRNA-EC pairs and reconstructed the association
network. The identified miRNAs specific to EC-expo-
sure could be used as biomarkers for determining the
genotoxicity and carcinogenicity of chemicals [20,21]
The following module analysis provides us with an in-
depth view of miRNA function in toxicological research.

Results

miRNA targets are preferentially regulated by
environmental chemicals

We first collected the genes regulated by ECs (EC-
genes). According to the expression regulatory informa-
tion from the CTD [14], such as “chemical x results in
increased expression of protein y”, “compound x results
in decreased expression of protein y” or “compound x
affects the expression of protein y”, we compiled the
dataset of proteins regulated by ECs (see Methods), and
then transformed the gene symbols to their Ensembl
gene IDs using the BioMart program (http://biomart.
org). Based on the reports of 4,162 literatures, we
retrieved 42,770 regulatory relationships among com-
pounds and human protein-coding genes (Additional
file 1). Specifically, the expression profiles of 9,692 pro-
tein-encoding genes were regulated by at least one of
the 1,938 ECs, including polycyclic compounds, organic
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chemicals, heterocyclic compounds, inorganic chemicals,
hormones and so on.

We next evaluated the probability of these EC-genes
being targeted by miRNAs using TargetScan5.1 [22] and
PicTar (four-way) [23], which predict miRNA targets
based on sequence complementarities, sequence context
information, binding energy, and were regarded by pre-
vious surveys having high confidence [24]. As the reli-
ance of TargetScan and PicTar upon cross-species
conservation might introduce potential bias, we also
included a third set of predicted human miRNA targets
derived from PITA [25], which only considered the
sequence complementarities and site accessibility; there-
fore, many more genes were annotated as miRNA tar-
gets with the advantage of detecting human-specific
miRNA targets.

Using each dataset of miRNA targets (Additional file
2), we observed that miRNA targets were significantly
enriched among EC-genes. As shown in Figure 1A,
miRNA targets comprise 43% of the EC-genes (4,195
out of 9,692), but only make up 20% of the non-EC-
genes (2,473 out of 12,202) as predicted by PicTar.
Using the targets detected by TargetScan (Figure 1B),
both programs of PicTar and TargetScan (Figure 1C),
and PITA (Figure 1D), we obtained similar results.
Therefore, miRNA targets were roughly twice as likely
to be EC-genes as comparable to the other genes (Chi-
square test, p-values < 1.7E-289 for the four datasets).
Because the methods of TargetScan and PicTar depend
upon alignments of human-mouse orthologs, we only
included the human genes with mouse orthologs and
repeated the comparative analyses. In Figure 1A-C, the
horizontal lines above the histogram bars represent the
proportion of miRNA targets using the genes with
mouse orthologs as background. Significant enrichment
of miRNA targets among EC-genes were observed in
this dataset.

In Mus musculus and Rattus norvegicus, we retrieved
9,552 and 5,064 genes respectively, which were regulated
by ECs and found miRNA targets were over-represented
among them as compared to the other genes (Additional
file 3), indicating that the enrichment of miRNA targets
in EC-genes seems to be common in mammal systems.
In the following analysis, we only focused on the human
genes because similar conclusions were drawn from the
analysis results of Mus musculus and Rattus norvegicus.

Enrichment of miRNA targets is not dependent on the
collection bias of EC-genes

To evaluate whether the above-observed enrichment of
miRNA targets among EC-genes was caused by some
sample collection bias, we performed the following ana-
lysis. First, if the experiments in the literatures from
which the EC-genes were extracted, were designed to
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bars represent the proportion of miRNA targets using genes with mouse orthologs as background.

.

deal with miRNA-related scientific questions, the
enrichment would be intuitively expected but with ser-
ious bias. We downloaded all of the abstracts of the
4,261 papers from the NCBI via the PubMed IDs
(http://www.ncbi.nlm.nih.gov/sites/batchentrez) and
searched keywords such as “miR”, “miRNA”, “micro-
RNA” or “let-7”. As a result, only 5 papers were directly
related to the study of miRNAs and about 30 genes
appearing in the datasets were included by them (Addi-
tional file 4); therefore, there should be no bias in the
literature collection results.

Second, some EC-genes may belong to a certain class
of genes that are preferentially regulated by miRNAs;
therefore, the enrichment may be only contributed by
that class of genes. As cancer-related genes were exten-
sively studied [26] and often found to be miRNAs targets
[18,19], it is possible that the exposure of the cancer-
related genes to ECs were more likely to be investigated
and eventually made the miRNA targets over-represented
among the EC-genes. To test this, we retrieved a separate
set of genes over-expressed in cancer tissues [27]. Specifi-
cally, 2,362 proteins corresponding to 2,062 Ensembl

genes were at least over-expressed 4-fold in brain (astro-
cytoma and glioblastoma), breast, colon, endometrial,
kidney, liver, lung, ovary, prostate, skin, and thyroid can-
cers as compared to healthy tissues of the same type. Sig-
nificant enrichment of miRNA targets among EC-genes
were still observed even after filtering out these cancer-
related genes from the datasets (Additional file 5).

Third, for the 12,202 genes not observed to be regu-
lated by ECs (non-EC-genes), some of them may in fact
be regulated by ECs but not analyzed or reported thus
far. If this is indeed the case, the potential false-nega-
tives from the non-EC-genes may seriously challenge
the enrichment conclusion. Because 45% of human
genes (calculated by 9,692/(9,692 + 12,202)) were con-
firmed to be regulated by ECs genome-widely, we arbi-
trarily sampled genes with the probability of 0.45 from
the non-EC-genes and assumed them to be non-anno-
tated EC-genes. To investigate the impact of the poten-
tial false-negatives of non-EC-genes, we performed the
following procedures: (a) randomly sampled genes from
non-EC-genes with the probability of 0.45, S = 0.45;
(b) constructing the dataset of pseudo-EC-genes with


http://www.ncbi.nlm.nih.gov/sites/batchentrez

Wu and Song BMC Genomics 2011, 12:244
http://www.biomedcentral.com/1471-2164/12/244

n = 9,692 + 12,202*S and a dataset of pseudo-non-EC-
genes with n = 12,202-12,202*S; (c) comparing the pro-
portion of miRNA targets between the pseudo-EC-genes
and pseudo-non-EC-genes. We repeated this simulation
several times and always obtained significant differences
of miRNA targets between pseudo-EC-genes and
pseudo-non-EC-genes (see Additional file 6 for the
results of eight simulations). Thus, the potential false-
negatives of non-EC-genes would not affect the enrich-
ment tendencies of miRNA targets.

Fourth, it is interesting and important to know
whether the enrichment of miRNA targets could still be
observed in a single experiment. In Perl scripts, the key-
words such as “microarray”, “array”, “affymetrix” and
“chip” were used to search the abstracts of 4,162 papers.
Many reports did not provide the raw datasets (.cel
files), but rather only displayed the differentially
expressed genes in tables in the main texts or supple-
mental materials. We read the full-text of >50 papers
and investigated whether the raw datasets (.ce/ files)
were available from GEO (NCBI Gene Expression
Omnibus, http://www.ncbi.nlm.nih.gov/geo/) or
ArrayExpress (EBI Gene Expression Atlas, http://www.
ebi.ac.uk/gxa/). Finally, we manually selected six
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affymetrix raw datasets and used a uniform pipeline to
identify the differentially expressed genes in seven cell
lines treated with chemicals (see Methods). The enrich-
ment of miRNA targets among differentially expressed
genes was observed in each dataset, respectively (Addi-
tional file 7), implying the pervasive roles of miRNAs in
responding to the various chemicals in different cells.

Enrichment of miRNA targets is not caused by other
properties of EC-genes

Previous studies have reported significant differences
between miRNA-targets and non-miRNA-targets. These
differences may be potential sources of bias and contri-
bute to the enrichment of miRNA targets in EC-genes.
We adopted a sampling method to control these biases
and then examined whether the enrichment of miRNA
targets in EC-genes was still observable.

The first potential bias stems from the observation
showing that genes with paralogs (gene duplication
mechanisms) have a high probability of being targeted
by miRNAs [28]. In Figure 2A, the EC-genes have a
higher tendency of having paralogs compared with non-
EC-genes (61% vs. 53%, p = 2.45E-36, Chi-square test,
two tailed). We sampled genes with a probability of 0.71
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(S = 0.71, calculated by [3,729%(6,472/5,730)]/5,963)
from the 5,963 EC-genes with paralogs. In this way, the
dataset of sampled EC-genes were constructed with n =
3,729 + 5,963*S and had the same proportion of genes
with paralogs as that of the non-EC-genes. By eliminat-
ing potential bias from the higher propensity for gene
duplication, we observed similar enrichment of miRNA
targets among EC-genes (Figure 3A).

A second potential bias comes from the observation
that genes with more TF-binding sites in the 5’
upstream regions have a higher probability to become
targets of miRNAs [29]; thus, an increased number of
transcription factor binding sites may result in an over-
representation of miRNA targets among EC-genes. We
tested this hypothesis by using cis-elements that were
exclusively predicted from conserved motif sequences
among a set of vertebrate genome sequences (cisSRED
database, http://www.cisred.org/) [30]. A total of 94,321
and 100,112 predicted cis-elements were found to be in
the proximity of 7,630 non-EC-genes and 8,182 EC-
genes, respectively. Thus, EC-genes and non-EC-genes
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have a similar average number of cis-elements (p = 0.65,
Manny-Whitney U, two-tail test) (Figure 2B), suggesting
that the enrichment of miRNA targets among EC-genes
was not likely related to the over-presence of TF-bind-
ing sites in 5’-upstream regions.

A third potential bias results from the observation
showing that genes with longer 3'UTRs are more likely
to be regulated by distinct types of miRNA [31].As
shown in Figure 2C, the EC-genes tended to have longer
3UTRs than non-EC-genes (p = 1.76E-37, Manny-Whit-
ney U, two-tailed test), indicating that the enrichment
may be attributed to the higher probability of EC-genes
of being detected as miRNA targets. To test this, we
sampled 4,643 EC-genes whose 3'UTR length falls into
the 1% to 3™ quartiles of the 3'UTR lengths among the
9,223 non-EC-genes with available 3’'UTR annotation.
By eliminating potential bias caused by longer 3'UTRs,
we further observed that miRNA targets were signifi-
cantly enriched among EC-genes (Figure 3B).

Fourth, we inspected whether the 3'UTRs of the EC-
genes and non-EC-genes were under the same level of

A) 09
0.81 P=0
0.7t f
06 i P=1.5E-251 P=2.5E-306 P=8.9E-243
05 I /ﬁ—
04l /@ — s
0.3L =
0'2 - I H [0
0.1] |_|
0 []
PicTar  TargetScan Intersections  PITA
n1=12,202, n2=7,931
B) 0.9- P=1.8E-225
0.8
0.7¢ P=4E-107 P=6.6E-100 P=8.0E-97 /—
0.6 e B
0.5¢ /‘_ /.
041 - ~_
03L — f
0.2} —_
0.1} |_|
0
PicTar  TargetScan Intersections  PITA
nl1=9,223, n2=4,643
orthologs as background.

C) 0.9- p=5.1E-95
0.8}
ol 1
0.6l PEH P=1.1E-4] P=2.2E-51
0.5 [
0.4k /1
0.3L /—
0.2¢
0.1} ﬂ
0
PicTar  TargetScan  Intersections  PITA

Figure 3 miRNA targets are enriched among human EC-genes after filtering out the bias caused by three properties. The EC-genes
were sampled to have similar (A) proportion of genes with paralogs, (B) lengths of 3'UTRs and (C) evolutionary constraints on the 3'UTRs as
compared to non-EC-genes. The horizontal lines above the histogram bars represent the proportion of miRNA targets using genes with mouse

[ Proportion of miRNA targets among
genes notregulated by ECs

B Proportion of miRNA targets among
genes regulated by ECs

nl, Number of genes notregulated by ECs

n2, Number of genes regulated by ECs

nl=6,484, n2=3,854



http://www.cisred.org/

Wu and Song BMC Genomics 2011, 12:244
http://www.biomedcentral.com/1471-2164/12/244

selective pressure. The substitution rates of the 3’'UTR
(K3u) of each gene were normalized against the synon-
ymous substitutions per synonymous site (Ks) in the
coding region of the same gene (see Methods). Using
the ratio of K3u/Ks to estimate the evolutionary con-
straints on the 3’'UTRs, we found the 3'UTR of the EC-
genes tended to evolve more conservatively than non-
EC-genes (p = 4.97E-17, Manny-Whitney U, two-tailed
test) (Figure 2D). To explore the possibility that the ele-
vated level of overall sequence conservation led to an
over-representation of miRNA targets among EC-genes,
we sampled 3,854 EC-genes whose K3u/Ks ratios fall
into 1% to 3" quartiles of the K3u/Ks ratios calculated
from the 6,484 non-EC-genes. After getting rid of the
potential bias caused by the more conserved 3'UTR, the
enrichment of miRNA targets was again observable
among sampled EC-genes (Figure 3C).

Collectively, these results demonstrate that the enrich-
ment of miRNA targets is not a simple by-product of
ancillary features of the analyzed gene set, but is a
reflection of the propensity of being targeted by
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miRNAs increasing the genes’ probabilities of being
regulated by ECs.

Target preference of miRNAs on genes regulated by
different environmental chemicals

Based on the above statistical analyses, we have con-
firmed that genome-widely miRNA targets were prefer-
entially regulated by ECs; but, whether miRNAs have
different targeting preference for genes regulated by dif-
ferent ECs is still an open question, and vice versa. If
the preference exists, we would expect a large number
of concurrent miRNA-EC pairs, which tend to co-regu-
late the same genes.

We devised a randomization method to identify signif-
icant concurrent miRNA-ECs pairs (see a detailed
description in Methods). As an example to illustrate the
identifying pipelines: In Figure 4A, miRNA-g has 7 tar-
get genes, 5 of which are regulated by EC-f; therefore,
the |Targets(miR-a)| is assigned to 7, | Targets(EC-)| to
8 and |Targets(miR-a) N Targets(EC-P)|,eqs to 5. In each
simulated run, the 7 targets for miRNA-a were
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randomly replaced by the targets of other miRNAs by
an edge-swapping procedure [32] (the algorithm of
edge-swapping can sufficiently randomize the content of
targets, while keeping the number of targets for each
miRNA), then |Targets(miR-c) N Targets(EC-B)|,andom
was recorded. Repeating this simulation 500 times, the |
Targets(miR-o) N Targets(EC-B)|,andom followed a nor-
mal distribution as N(2, 0.5) (Figure 4B). The Z-score
was adopted to assess the statistical significance of
whether the miRNAs and ECs tend to regulate the same
genes. Here, the Z-score was calculated by (5-2)/0.5 = 6
and transformed to a p-value as 9.87E-10; thus, the tar-
gets of miRNA-a were considered to be preferentially
regulated by the component-f.

Using two lists, EC-Genes (Additional file 1) and
miRNA-Target by TargetScan5.1, a miRNA-EC pair was
considered to be significantly concurrent if the FDR-cor-
rected p-value (the g-value) was less than 0.01. Finally,
we identified 1,842 concurrent interactions among 407
miRNAs and 497 ECs (Additional file 8), which tend to
synergistically regulate the same gene sets. Therefore,
distinct miRNAs tend to be “adopted” to regulate genes
in response to different ECs.

Association network of miRNAs and ECs

Graph theory provides paradigms to study biological
networks [33]. Here, miRNAs and ECs can be repre-
sented respectively by different colored nodes, the con-
current relationship by links. We constructed the
association network of miRNAs and ECs to provide a
global view of how miRNAs function in concert with
ECs. As shown in Figure 4C, the number of the concur-
rent ECs for each miRNA followed a power-law distri-
bution, where a small proportion of miRNAs connect to
many ECs; whereas, a large number of miRNAs only
connected to one or two ECs. In this way, it is possible
to select a single miRNA or a combination of miRNAs
as biological markers in functional studies of their con-
current ECs.

Besides a scale-free structure, the network also
demonstrated a modular structure (Figure 4D); that is, a
set of miRNAs and ECs were found to be densely con-
current in community-like modules, suggesting that
miRNAs in some functional pathway may be co-opera-
tively “adopted” to respond to ECs [34]. We used the
algorithm of Guimera and Amaral [35] to measure the
modularity (see Methods), because it performed well in
making links within modules much denser than those
across modules [36] and has been validated in our pre-
vious network analysis [37]. With a final value of modu-
larity being 0.65, 14 topological modules could be
separated. In each module, the miRNAs and ECs were
closely connected (see Figure 5 for topological structures
and Additional file 9 for description of the 14 modules).
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We used available disease information of miRNAs to
explore the potential function of each module. Three
databases have been recently developed, HMDD [38],
miR2Disease [39] and PhenomiR [40], which contain a
large number of miRNA-disease associations from the
literatures (i.e., the abnormal regulations of miRNAs
correlated with or leading to diseases). Therefore, the
correlation of chemicals associated with human diseases
could be interpreted by integrating the available disease
information on miRNAs with the network modules. As
shown in Figure 5, eight out of 19 miRNAs of module
XII involved in “Head and Neck neoplasm”, indicated
that the concurrent ECs of this module had a high prob-
ability to be risk factors for head and neck neoplasms.
For 16 out of 40 miRNAs of module V involved
in"Heart Failure”, the information on the concurrent
ECs of this module could aid greater understanding of
the regulatory mechanisms of heart disease.

Discussion

In this study, we showed that miRNA targets were pre-
ferentially regulated by ECs in Homo sapiens, Mus mus-
culus and Rattus norvegicus. The enrichment of miRNA
targets in genes associated with ECs was also confirmed
by the STITCH database (http://stitch.embl.de/), another
well-known free resource of associations between che-
micals and proteins [41] (see Additional file 10 for the
results of comparative analyses). Therefore, miRNA
mediated post-transcriptional regulation may be a perva-
sive strategy for mammals to cope with irritation caused
by ECs. The concurrent analysis revealed that distinct
miRNAs regulated genes in response to different ECs.
Based on these findings, we proposed that abnormal
regulation of miRNAs and protein-coding genes by ECs
may eventually disrupt normal signal transduction path-
ways or destroy the dosage balance of protein com-
plexes. Hence, miRNAs and their targets should be
given more attention in studies on environmental
health.

It is known that the miRNAs identified to date are
incomplete. More and more miRNAs have been recently
discovered using next-generation sequencing platforms.
One may suspect that the enrichment of miRNA targets
may be only established using the current version of
miRNAs and these tendencies might disappear with the
identification of more miRNAs. However, considering
the principles of miRNA-Target recognition, we specu-
late that findings of more miRNAs will not weaken but
rather consolidate this enrichment. First, if a new
miRNA belongs to a known family, its targets should
have been predicted by their homologous miRNAs
because of similar mature seed sequences [42]. Second,
different miRNAs tend to synergistically target the same
genes [43]. Although a new miRNA cannot be classified
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Figure 5 The topological structure of the 14 separated modules and the miRNA-associated diseases in each module. The blue nodes
represent ECs, the red nodes represent the miRNAs. The number in parentheses indicates the number of miRNAs involved in the corresponding
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into a known family, it may not dramatically increase
the number of new targets. This expectation has been
further confirmed by the following simulation. Of 659
miRNAs contained in TargetScan 5.1, we successively
sampled one miRNA into a new miRNA dataset, and
then used these miRNAs to compare the proportion of
their targets between EC-genes and non-EC-genes. As
more miRNAs were placed into the new miRNA dataset
(n =1, 2.....658, 659), the difference in proportion of
miRNA targets between EC-genes and non-EC-genes
became more and more pronounced (Figure 6A and
6B). Surprisingly, in the very early stage, when accumu-
latively transferring =5 miRNAs, we observed the
enrichment of miRNA targets among EC-genes (see Fig-
ure 6C for the plot of Chi-square statistics from ten
simulations). Therefore, miRNA-target propensity

increases the preference of being regulated by ECs and
discovering new miRNAs will consolidate the tendency
for enrichment.

Using statistical analysis, we found miRNAs had dif-
ferent preferences for targeting genes in response to dif-
ferent ECs, (i.e., a set of miRNAs were often concurrent
with a specific EC). From a biological view, three para-
digms could be used to explain the strong concurrence
between ECs and miRNAs, where some have been veri-
fied by recent toxicological studies.

In the first paradigm, the ECs directly down- or up-
regulate the miRNAs [44] and subsequently their targets
are up- or down-regulated accordingly (Figure 6D). In
brain tissue, hexahydro-1,3,5-trinitro-1,3,5-triazine
(RDX), a common environmental contaminant, induced
the over-expression of miR-206, miR-30 and miR-195,
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which then inhibited the expression of the target BDNF
gene and contributed to neuro-toxicity and CNS disor-
ders. Exposure to RDX also induced aberrant expres-
sions of other onco-miRNAs and tumor-suppressing
miRNAs, such as let-7, miR-10b, miR-15, miR-16, miR-
26 and miR-181, which regulated tumor pathogenesis or
genes related to the cell cycle (e.g., TNKS) [45]. In
human airway epithelial cells, diesel exhaust particles
(DEP), the largest source of emitted airborne particulate
matter (PM), induced miR-513b, miR-513c, miR-923,
miR-494 and miR-338, and repressed miR-31% miR-26b,
miR-96, miR-27a, miR-135 and miR-374a. The subse-
quent target genes such as IL-8, IL-6, tumor necrosis fac-
tor-a, B7-HI and PRMTS, were found to be strongly
associated with inflammatory-response pathways and
tumorigenic disease signatures [46].

The second paradigm is that ECs do not regulate miR-
NAs but rather their targets directly (Figure 6E). In the
expression-buffering motifs, where a miRNA and its tar-
get mutually buffer each other’s expression from pertur-
bation in a negative feedback loop [47], miRNAs may be
induced to be inversely regulated to buffer the expres-
sion fluctuation of their targets when exposed to ECs
[9,10]. It is difficult to distinguish the second paradigm

from the first, but the biological significance is clear.
The proposal for drug design follows that, if the drug is
directly designed to a miRNA target (e.g., down-regulat-
ing an onco-gene), whose expression level is maintained
by miRNA, the down-regulation of targets may promote
the corresponding miRNA to be down-regulated, leading
to the unexpected up-regulation of other targets and
even deleterious phenotypes.

The third paradigm is that exposure to ECs alters the
methylation level of global DNA, histone acetylation [48],
methylation [49], and phosphorylation. In this way, epige-
netic changes will lead to expression variation of both the
miRNAs and their targets (Figure 6F). For example, the
association between the chemical black-carbon and blood
pressure was mediated by the modification of nucleotide
polymorphisms in miRNA processing genes, such as
DICER, GEMIN4, DGCR8,GEMIN3 and GEMIN4 [50].

No matter which particular paradigm is, the interac-
tions between miRNAs and ECs add to the potential
roles of miRNAs in chemical modulation of gene
expression throughout the entire genome. The regula-
tory mechanisms of miRNAs will help us to design
more accurate biological markers of ECs or drugs in
toxicology research.
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Conclusions

To the best of our knowledge, this is the first genome-
wide association analysis among human miRNAs, their
targets and ECs. Our analysis will pave the way for
future studies for the functional characterization of miR-
NAs. This network study reveals more clear roles of
miRNAs involvement in toxicology and is also valuable
for studying the impact of ECs on human health.

Methods

The compilation of EC-genes

The protein-coding genes regulated by various ECs were
retrieved from the publicly-available Comparative Tox-
ico-genomics Database (CTD, http://ctd.mdibl.org/
downloads/) [14]. Gene expression data are presented in
the CTD such as “chemical x can increase, decrease,
affect or not affect the expression of protein y”. Perl
scripts were used to remove associations with negation
such as “chemical x does not affect the expression of
protein y”.

The compilation of miRNA targets

The miRNAs and their predicted targets were taken
from two previously published studies: TargetScan
(http://www.targetscan.org version 5.1, updated April,
2009) [22] and PicTar (USSC genome browser database,
http://genome.ucsc.edu four-way) [23]. Targets predicted
by TargetScan 5.1 with a total context score of -0.3 or
lower were ignored, where the score could quantitatively
measure the overall target efficacy [51]. Targets with at
least one conserved 7-mer or 8-mer were selected as
reliable miRNA targets. The intersection dataset was
constructed by the targets predicted both by the Tar-
getScan5.1 and PicTar (four-way). The PITA targets
were downloaded from the Weizman Institute website
(http://genie.weizmann.ac.il/pubs/mir07/mir07_data.
html, updated August, 2008) [25], where a score less
than -10 was used as the cutoff to select reliable miRNA
targets.

Analysis of microarray datasets

The Affymetrix raw datasets were downloaded from
ftp://ftp.ncbi.nih.gov/pub/geo/data/geo/raw_data/series/
and http://www.ebi.ac.uk/arrayexpress/ GSE6013, the
lung adenocarcinoma cells (A549) and SV40-trans-
formed bronchial epithelial cells (Beas-2B) were treated
with asbestos; GSE5679, normal dendritic cells were
treated with RARa-specific agonists (AM580) and the
synthetic PPARg ligand rosiglitazone (RSG), respectively;
GSE6907, the HepG2 cells were treated with N-nitroso-
dimethylamine (NMN) and phenol, respectively; E-
MEXP-1327, normal epithelia prostatic cells were trea-
ted with selenium and vitamin E, respectively, and the
stromal cells were treated with selenium; E-MEXP-390,
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colorectal carcinoma cells (HCT116) were treated with
fluorouracil; E-MEXP-1171, HCT116 cells were treated
with 7-ethyl-10-hydroxy-20(S)-camptothecin (SN38).

In each test, the raw datasets were normalized using
the Affymetrix detection algorithms in the MAS5 library
and the background levels and PM/MM ratios were cor-
rected according to the Affymetrix Statistical Algo-
rithms. Based on the estimated expression values of
probes (Affy library), the expression values of corre-
sponding Ensembl genes were obtained by BioMart.
Finally, each test consisted of one control (no treatment)
and a series of treatments (a chemical). Afterwards, the
t-test (two-tailed) was used to determine if a gene’s
expression intensity after treatment (Ga) was signifi-
cantly different from that before treatment (Gb).

The null hypothesis was HO = Ga-Gb = 0.

A gene was considered to be differentially expressed if
HO was rejected (p-value < 0.01) after treatment.

The compilation of human genes

The human protein-coding genes annotated as ‘known
genes’, human paralogs, human-mouse orthologs, the
sequences of proteins, coding regions and 3’'UTRs were
downloaded from Ensembl using BioMart software
(http://www.biomart.org/ ) [52]. For genes with multiple
splice isoforms, the transcripts with the longest
sequences were used for analysis.

Measurement of the evolutionary constraints on the
3'UTRs of human genes

The Clustalw software [53] was used to globally align
the protein sequences of human-mouse orthologs, and
the corresponding coding sequences were realigned with
the gaps in the alignment trimmed. The Ks was esti-
mated from the codon-based nucleotide sequence align-
ment by using the Yang-Nielsen maximum-likelihood
method implemented in the y#00 program of the PAML
package [54]. The Clustalw software was used to glob-
ally align the 3’'UTRs of orthologs, the substitution rate
per site K3u with the Kimura two-parameter model was
calculated by distmat program of the EMBOSS package
[55]. Finally, the ratios of K3u/Ks were used to estimate
the evolutionary constraints on the 3’'UTRs for indivi-
dual genes.

Identification of significant concurrence between miRNAs

and ECs

This model tests whether a given pair of miRNA-EC co-
regulates the same genes at a higher rate, while consid-
ering the distribution of the number of different miR-
NAs regulating each target as a background. Two steps
were followed: (a) the assignment matrix of miRNAs to
targets were subjected to 100,000 iterations of the edge-
swapping procedure, while keeping the number of
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targets for each miRNA and keeping the number of reg-
ulator miRNA for each target [32], (b) for a pair of
miRNA, o, and EC, B, with their set of targets, Targets
(miR-a) and Targets(EC-B), respectively, the number of
| Targets(miR-cr) N Targets(EC-B)|,andom Was recorded if
it was larger than 0. The steps from (a) to (b) were
repeated 500 times to obtain the distribution of |Targets
(miR-a) N Targets(EC-PB)|random-

Z-scores and p-values were employed to determine
whether the value of |Targets(miR-a) N Targets(EC-B)|
reat Significantly deviated from the distribution of |Tar-
gets(miR-a) N Targets(EC-B)|,andom generated from 500
random simulations.

Nieal — M( Nrandom )
o ( Niandom )

Where N,.,; was the number of |Targets(miR-a) n
Targets(EC-B)|,eatr Nyandom Was the number of | Targets
(miR-a) n Targets(EC-B)|,andom # and o denoted the
mean and the standard deviation of the | Targets(miR-c)
N Targets(EC-B)|,andom> respectively.

The Z-score was then transformed to the p-value

2
¢ 2 (Calculated by the NORMDIST func-

i 1
P NoZ
tion in Microsoft Excel)

Because the above statistical significance analyses
involve the simultaneous testing of thousands of hypoth-
eses, multiple hypotheses testing is important to control
the overall Type I error rate. The p-values in EC-
miRNA concurrent analysis were FDR corrected using
the Q-value program from R package [56].

Finally, the obtained g-values were used to assess the
statistical significance of the concurrence between a
miRNA and an EC.

The network and modules analysis

The association network of miRNAs and ECs was dis-
played by the Cytoscape software http://www.cytoscape.
org/[57]. The least-squares method was used to estimate
power-law exponent of p(K)«K* for log-transformed
data (¢, power exponent; K, degree). Since the estimated
power-law exponent was 2.0, the method for study of
scale-free structure was applied in analysis of miRNA-EC
network. The algorithm of Guimera and Amaral [35],
with parameter settings as iteration factor = 1.0, cooling
factor = 0.95 and number of randomization = 100, was
used to measure the extent of modularity of network and
separate the network into topological modules.

The disease information of miRNAs
The disease categories associated with miRNAs were
integrated based on the following three published
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studies: http://202.38.126.151/hmdd/mirna/md/[38],
http://www.mir2disease.org/[39] and http://mips.helm-
holtz-muenchen.de/phenomir/[40].

Statistical analysis and computational methods
Comparison of proportions from miRNA-targets
between EC-genes and non-EC-genes were performed
using the Chi-square two-tailed test.

1 c 2
(05 — Ey)

i=1 j=1

Where O;; was the observed number in row i of col-
umn j, E;; was the expected number in row i of column
j. For the condition of df = 1, the value of x> > 3.84 cor-
responded to p < 0.05, indicating a significant difference.

The comparison of the number of cis-elements, K3u/
Ks and the lengths of 3’'UTRs between EC-genes and
non-EC-genes were performed using the Manny-Whit-
ney U with two-tailed test.

A preliminary analysis of datasets and computations
were performed on a Linux cluster with 16 nodes (Intel
5130, 2.0 GHz CPU, 4G memory, Research Center for
Systematic and Evolutionary Botany, Institute of Botany,
CAS). The updating of datasets was performed on the
Linux clusters provided by the Institute of Genomic
Medicine (Wenzhou Medical College) and Dalian Insti-
tute of Chemical Physics (CAS), respectively. Perl
(http://perl.org) and R (http://www.r-project.org/) scripts
were used for analyses, and can be obtained on request.

Additional material

Additional file 1: Table S1: The 42,770 regulatory relationships
among 1938 chemicals and 9,692 human protein-coding genes.

Additional file 2: Table S2: The list of miRNA targets predicted by
PicTar, TargetScan5.1, both programs of PicTar and TargetScan5.1
(intersections), and by PITA.

Additional file 3: Figure S1: miRNA targets are enriched among EC-
genes in Mus musculus and Rattus norvegicus. This figure shows the
proportion of MiRNA targets predicted (A) by Mus musculus
TargetScan5.1, (B) by Mus musculus PITA and (C) by Rattus norvegicus
TargetScan5.1. As there are no miRNA targets from the PicTar prediction
for both species and PITA prediction for Rattus norvegicus, this figure
shows the proportion of miRNA targets predicted by TargetScan5.1 and
the Rattus norvegicus PITA. The horizontal lines above histogram bars
represent the proportion of miRNA targets using genes with human
orthologs as background.

Additional file 4: Table S3: The 4,126 papers investigating the
expression profiles of human genes in response to ECs.

Additional file 5: Figure S2: miRNA targets are enriched among
human EC-genes after filtering out the cancer-related genes in
simulations. This figure shows the proportion of miRNA targets
predicted by PicTar, TargetScan5.1, both programs of PicTar and
TargetScan5.1 (intersections), and PITA. The horizontal lines above the
histogram bars represent the proportion of miRNA targets using genes
with mouse orthologs as background.
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Additional file 6: Figure S3: miRNA targets are enriched among
human EC-genes after controlling for potential false-negatives of
non-EC-genes. This figure shows the proportion of miRNA targets
predicted by PicTar, TargetScan5.1, both programs of PicTar and
TargetScan5.1 (intersections), and PITA. The horizontal lines above the
histogram bars represent the proportion of miRNA targets using genes
with mouse orthologs as background.

Additional file 7: Figure S4: miRNA targets are enriched among
human EC-genes in 11 raw-data-based microarray datasets. This
figure shows the proportion of miRNA targets between differentially vs.
non-differentially regulated genes where (A) A549 cells treated with
asbestos, (B) Beas-2B cells treated with asbestos, (C) Dendritic cells
treated with AM580, (D) Dendritic cells treated with rosiglitazone, (£)
Epithelia cells treated with selenium, (F) Epithelia cells treated with
Vitamin E, (G) Stromal cells treated with selenium, (H) HCT116 cells
treated with fluorouracil, (/) HCT116 cells treated with SN38, (J) HepG2
cells treated with NMN and (K) HepG2 cells treated with phenol. The
horizontal lines above the histogram bars represent the proportion of
miRNA targets using genes with mouse orthologs as background.

Additional file 8: Table S4: The 1,842 pairs of significantly
concurrent EC-miRNA based on the TargetScan5.1.

Additional file 9: Table S5: The 14 topological modules with their
miRNAs and ECs. The number in the bracket indicates the number of
miRNAs associated with the corresponding disease categories.

Additional file 10: Figure S5: miRNA targets are enriched among
human EC-associated genes by STITCH2.0. This figure shows the
proportion of miRNA targets predicted (A) by PicTar, (B) by TargetScan5.1,
(O) by both programs of PicTar and TargetScan5.1 (intersections), and (D)
by PITA. The horizontal lines above the histogram bars represent the
proportion of MiRNA targets using genes with mouse orthologs as
background.
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Non-EC-genes: genes not observed to be regulated by the environmental
chemicals; UTR: untranslated region; Ks: synonymous substitution rates of
coding region; K3u: substitution rate of 3'UTR;

Acknowledgements

We thanked Jingjing Li for useful information and critical discussion, this
work was supported by the National Basic Research Program of China
(2007CB108800) and the National High Technology Research and
Development Program of China (2009AA01A137).

Author details

'Key laboratory of Photosynthesis and Environmental Molecular Physiology,
the Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
“Institute of Genomic Medicine, Wenzhou Medical College, Wenzhov,
325035, China. >State key laboratory of Molecular Reaction Dynamics, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023,
China.

Authors’ contributions

XW designed and performed the experiments. XW analyzed the datasets
and wrote the paper. YS participated in the analysis of datasets. All authors
read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 1 November 2010 Accepted: 18 May 2011
Published: 18 May 2011

References
1. Bartel DP: MicroRNAs: genomics, biogenesis, mechanism and function.
Cell 2004, 116:281-297.

22.

23.

24.

25.

26.

27.

Page 12 of 13

He L, Hannon GJ: MicroRNAs: small RNAs with a big role in gene
regulation. Nat Rev Genet 2004, 5:522-531.

Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, Pasquinelli AE:
Regulation by let-7 and lin-4 miRNAs results in target mRNA
degradation. Cell 2005, 122:553-63.

Ding XC, Grosshans H: Repression of C. elegans microRNA targets at the
initiation level of translation requires GW182 proteins. EMBO J 2009,
28:213-22.

Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J,

Bartel DP, Linsley PS, Johnson JM: Microarray analysis shows that some
microRNAs downregulate large numbers of target mRNAs. Nature 2005,
433:769-73.

Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K,
Enright AJ, Schier AF: Zebrafish MiR-430 promotes deadenylation and
clearance of maternal mRNAs. Science 2006, 312:75-9.

Yu Z, Jian Z, Shen SH, Purisima E, Wang E: Global analysis of microRNA
target gene expression reveals that miRNA targets are lower expressed
in mature mouse and drosophila tissues than in the embryos. Nucleic
Acids Res 2007, 35:152-64.

Hornstein E, Shomron N: Canalization of development by microRNAs. Nat.
Genet 2006, 38:520-524.

Yan Li, Wang Fay, Jin-A Lee, Fen-Biao Gao: MicroRNA-9a ensures the
precise specification of sensory organ precursors in Drosophila. Genes
Dev 2006, 20:2793-2805.

Cohen SM, Brennecke J, Stark A: Denoising feedback loops by
thresholding - a new role for microRNAs. Genes Dev 2006, 20:2769-2772.
O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT: c-Myc-regulated
microRNAs modulate E2F1 expression. Nature 2005, 435:839-843.
Edwards TM, Myers JP: Environmental exposures and gene regulation in
disease etiology. Cien saude Colet 2008, 13:269-281.

Audouze K, Juncker AS, Roque FJ, Krysiak-Baltyn K, Weinhold N,

Taboureau O, Jensen TS, Brunak S: Deciphering diseases and biological
targets for environmental chemicals using toxicogenomics networks.
PLoS Comput Biol 2010, 6:21000788.

Davis AP, Murphy CG, Saraceni-Richards CA, Rosenstein MC, Wiegers TC,
Mattingly CJ: Comparative Toxicogenomics Database: a knowledgebase
and discovery tool for chemical-gene-disease networks. Nucleic Acids Res
2009, 37 Database: D786-92.

Thomas C Wiegers, Allan Peter Davis, Bretonnel Cohen K,

Lynette Hirschman, Carolyn JMattingly: Text mining and manual curation
of chemical-gene-disease networks for the Comparative Toxicogenomics
Database (CTD). BMC Bioinformatics 2009, 10:326.

Gohlke JM, Thomas R, Zhang Y, Rosenstein MC, Davis AP, Murphy C,
Becker KG, Mattingly CJ, Portier CJ: Genetic and environmental pathways
to complex diseases. BMC Syst Biol 2009, 3:46.

Patel CJ, Butte AJ: Predicting environmental chemical factors associated
with disease-related gene expression data. BMC Med Genomics 2010, 3:17.
Garofalo M, Croce CM: microRNAs: Master Regulators as Potential
Therapeutics in Cancer. Annu Rev Pharmacol Toxicol 2010, 18.

Bader AG, Brown D, Winkler M: The promise of microRNA replacement
therapy. Cancer Res 2010, 70:7027-30.

Chen T: The role of MicroRNA in chemical carcinogenesis. J Environ Sci
Health C Environ Carcinog Ecotoxicol Rev 2010, 28:89-124.

Pogribny , Igor P: MicroRNA dysregulation during chemical
carcinogenesis. Epigenomics 2009, 1:281-290.

Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by
adenosines, indicates that thousands of human genes are microRNA
targets. Cell 2005, 120:15-20.

Krek A, Griin D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P,
da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N: Combinatorial microRNA
target predictions. Nat Genet 2005, 37:495-500.

Chen K, Rajewsky N: Natural selection on human microRNA binding sites
inferred from SNP data. Nat Genet 2006, 38:1452-1456.

Kertesz M, lovino N, Unnerstall U, Gaul U, Segal E: The role of site
accessibility in microRNA target recognition. Nat Genet 2007,
39:1278-1284.

Sun J, Zhao Z: A comparative study of cancer proteins in the human
protein-protein interaction network. BMC Genomics 2010, 11(Suppl 3):55.
Axelsen JB, Lotem J, Sachs L, Domany E: Genes overexpressed in different
human solid cancers exhibit different tissue-specific expression profiles.
Proc Natl Acad Sci USA 2007, 104:13122-13127.


http://www.biomedcentral.com/content/supplementary/1471-2164-12-244-S6.JPEG
http://www.biomedcentral.com/content/supplementary/1471-2164-12-244-S7.JPEG
http://www.biomedcentral.com/content/supplementary/1471-2164-12-244-S8.PDF
http://www.biomedcentral.com/content/supplementary/1471-2164-12-244-S9.XLSX
http://www.biomedcentral.com/content/supplementary/1471-2164-12-244-S10.JPEG
http://www.ncbi.nlm.nih.gov/pubmed/14744438?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15211354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15211354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16122423?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16122423?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19131968?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19131968?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15685193?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15685193?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16484454?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16484454?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17158157?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17158157?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17158157?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16736020?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17015424?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17015424?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17043305?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17043305?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15944709?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15944709?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18813540?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18813540?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20502671?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20502671?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19814812?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19814812?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19814812?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19416532?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19416532?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20459635?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20459635?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20807816?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20807816?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20552498?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15652477?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15652477?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15652477?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15806104?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15806104?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17072316?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17072316?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17893677?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17893677?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21210971?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21210971?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17664417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17664417?dopt=Abstract

Wu and Song BMC Genomics 2011, 12:244
http://www.biomedcentral.com/1471-2164/12/244

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

51

52.

Li J, Musso G, Zhang Z: Preferential regulation of duplicated genes by
microRNAs in mammals. Genome Biol 2008, 9(8):R132.

Cui Q Yu Z Pan Y, Purisima EO, Wang E: MicroRNAs preferentially target
the genes with high transcriptional regulation complexity. Biochem
Biophys Res Commun 2007, 352:733-8.

Robertson G, Bilenky M, Lin K, He A, Yuen W, Dagpinar M, Varhol R,
Teague K, Griffith OL, Zhang X, Pan Y, Hassel M, Sleumer MC, Pan W,
Pleasance ED, Chuang M, Hao H, Li YY, Robertson N, Fjell C, Li B,
Montgomery SB, Astakhova T, Zhou J, Sander J, Siddiqui AS, Jones SJ:
CisRED: a database system for genome-scale computational discovery of
regulatory elements. Nucleic Acids Res 2006, 34:D68-73.

Cheng C, Bhardwaj N, Gerstein M: The relationship between the evolution
of microRNA targets and the length of their UTRs. BMC Genomics 2009,
10:431.

Maslov S, Sneppen M, Zaliznyak A: Detection of topological patternsin
complex networks: Correlation profile of the internet. Physica A 2004,
333:529-540.

Barabasi AL, Oltvai ZN: Network biology: understanding the cell’s
functional organization. Nat Rev Genet 2004, 5:101-113.

Newman MEJ: The structure and function of complex networks. SIAM Rev
2003, 45:167-256.

Girvan M, Newman ME: Community structure in social and biological
networks. Proc Natl Acad Sci USA 2002, 99:7821-26.

Danon L, Diaz-Guilera A, Duch J, Arenas A: Comparing community
structure identification. J Stat Mech 2005, P09008:1-10.

Wu X, Qi X: Genes encoding hub and bottleneck enzymes of the
Arabidopsis metabolic network preferentially retain homeologs through
whole genome duplication. BMC Evolutionary biology 2010, 10:145.

Lu M, Zhang Q, Deng M, Miao J, Guo Y, Gao W, Cui Q: An analysis of
human microRNA and disease associations. PLoS One 2008, 3(10):e3420.
Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y:
miR2Disease: a manually curated database for microRNA deregulation in
human disease. Nucleic Acids Res 2009, 37:D98-104.

Ruepp A, Kowarsch A, Schmidl D, Buggenthin F, Brauner B, Dunger |,

Fobo G, Frishman G, Montrone C, Theis FJ: PhenomiR: a knowledgebase
for microRNA expression in diseases and biological processes. Genome
Biol 2010, 11:R6.

Kuhn M, von Mering C, Campillos M, Jensen LJ, Bork P: STITCH: interaction
networks of chemicals and proteins. Nucleic Acids Res 2008, 36:D0684-8.
Yong huang, Xun Gu: A bootstrap based analysis pipeline for efficient
classification of phylogenetically related animal miRNAs. BMC Genomics
2007, 8:66.

Shalgi Reut, Lieber Daniel, Oren Moshe, Pilpel Yitzhak: Global and Local
Architecture of the Mammalian microRNA-Transcription Factor
Regulatory Network. PLoS Comput Biol 2007, 3(7):e131.

Zhiguang Li, William S Branham, Stacey L Dial, Wang Yexun, Lei Guo,
Leming Shi, Tao Chen: Genomic analysis of microRNA time-course
expression in liver of mice treated with genotoxic carcinogen N-ethyl-N-
nitrosourea. BMC Genomics 2010, 11:609.

Zhang B, Pan X: RDX induces aberrant expression of microRNAs in
mouse brain and liver. Environ Health Perspect 2009, 117:231-40.

Jardim MJ, Fry RC, Jaspers |, Dailey L, Diaz-Sanchez D: Disruption of microRNA
expression in human airway cells by diesel exhaust particles is linked to
tumorigenesis-associated pathways. Environ Health Perspect 2009, 117:1745-51.
Chung-I Wu, Shen Yang, Tang Tian: Evolution under canalization and the
dual roles of microRNAs-A hypothesis. Genome Res 2009, 19(5):734-43.
Rekowski MW, Giannis A: Histone acetylation modulation by small
molecules: A chemical approach. Biochim Biophys Acta 2010, 1799(10-
12):760-7.

Su Z, Han L, Zhao Z: Conservation and divergence of DNA methylation in
eukaryotes: new insights from single base-resolution DNA methylomes.
Epigenetics 2011, 6(2):134-140.

Wilker EH, Baccarelli A, Suh H, Vokonas P, Wright RO, Schwartz J: Black
carbon exposures, blood pressure, and interactions with single
nucleotide polymorphisms in MicroRNA processing genes. £nviron Health
Perspect 2010, 118:943-8.

Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP: The impact of
microRNAs on protein output. Nature 2008, 455:64-71.

Smedley D, Haider S, Ballester B, Holland R, London D, Thorisson G,
Kasprzyk A: BioMart-biological queries made easy. BMC Genomics 2009,
14:10-22.

53.

54.

55.

56.

57.

Page 13 of 13

Thompson JD, Gibson TJ, Higgins DG: Multiple sequence alignment using
ClustalW and ClustalX. Curr Protoc Bioinformatics 2002, Chapter 2: Unit 2 3.
Yang Z: PAML: a program package for phylogenetic analysis by
maximum likelihood. Comput Appl Biosci 1997, 13(5):555-556.

Rice P, Longden |, Bleasby A: EMBOSS: the European Molecular Biology
Open Software Suite. Trends Genet 2000, 16(6):276-277.

Storey JD, Tibshirani R: Statistical significance for genomewide studies.
Proc Natl Acad Sci USA 2003, 100(16):9440-9445.

Lopes CT, Franz M, Kazi F, Donaldson SL, Morris Q, Bader GD: Cytoscape
Web: an interactive web-based network browser. Bioinformatics 2010,
26(18):2347-8.

doi:10.1186/1471-2164-12-244

Cite this article as: Wu and Song: Preferential regulation of miRNA
targets by environmental chemicals in the human genome. BMC
Genomics 2011 12:244.

~
Submit your next manuscript to BioMed Central
and take full advantage of:
e Convenient online submission
e Thorough peer review
¢ No space constraints or color figure charges
¢ Immediate publication on acceptance
¢ Inclusion in PubMed, CAS, Scopus and Google Scholar
¢ Research which is freely available for redistribution
Submit your manuscript at ( -
www.biomedcentral.com/submit BioMed Central
J



http://www.ncbi.nlm.nih.gov/pubmed/18727826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18727826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17141185?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17141185?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381958?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381958?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19751524?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19751524?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14735121?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14735121?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12060727?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12060727?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20478072?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20478072?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20478072?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18923704?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18923704?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18927107?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18927107?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20089154?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20089154?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18084021?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18084021?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17341314?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17341314?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17630826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17630826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17630826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21029445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21029445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21029445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19270793?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19270793?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20049127?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20049127?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20049127?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19411598?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19411598?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20493978?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20493978?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20962593?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20962593?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20211803?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20211803?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20211803?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18668037?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18668037?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9367129?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9367129?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10827456?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10827456?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12883005?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20656902?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20656902?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	miRNA targets are preferentially regulated by environmental chemicals
	Enrichment of miRNA targets is not dependent on the collection bias of EC-genes
	Enrichment of miRNA targets is not caused by other properties of EC-genes
	Target preference of miRNAs on genes regulated by different environmental chemicals
	Association network of miRNAs and ECs

	Discussion
	Conclusions
	Methods
	The compilation of EC-genes
	The compilation of miRNA targets
	Analysis of microarray datasets
	The compilation of human genes
	Measurement of the evolutionary constraints on the 3’UTRs of human genes
	Identification of significant concurrence between miRNAs and ECs
	The network and modules analysis
	The disease information of miRNAs
	Statistical analysis and computational methods

	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

