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Abstract

Background: Genomic aberrations can be used to determine cancer diagnosis and prognosis. Clinically relevant
novel aberrations can be discovered using high-throughput assays such as Single Nucleotide Polymorphism (SNP)
arrays and next-generation sequencing, which typically provide aggregate signals of many cells at once. However,
heterogeneity of tumor subclones dramatically complicates the task of detecting aberrations.

Results: The aggregate signal of a population of subclones can be described as a linear system of equations. We
employed a measure of allelic imbalance and total amount of DNA to characterize each locus by the copy number
status (gain, loss or neither) of the strongest subclonal component. We designed simulated data to compare our
measure to existing approaches and we analyzed SNP-arrays from 30 melanoma samples and transcriptome
sequencing (RNA-Seq) from one melanoma sample.

We showed that any system describing aggregate subclonal signals is underdetermined, leading to non-unique
solutions for the exact copy number profile of subclones. For this reason, our illustrative measure was more robust
than existing Hidden Markov Model (HMM) based tools in inferring the aberration status, as indicated by tests on
simulated data. This higher robustness contributed in identifying numerous aberrations in several loci of melanoma
samples. We validated the heterogeneity and aberration status within single biopsies by fluorescent in situ
hybridization of four affected and transcriptionally up-regulated genes E2F8, ETV4, EZH2 and FAM84B in 11
melanoma cell lines. Heterogeneity was further demonstrated in the analysis of allelic imbalance changes along
single exons from melanoma RNA-Seq.

Conclusions: These studies demonstrate how subclonal heterogeneity, prevalent in tumor samples, is reflected in
aggregate signals measured by high-throughput techniques. Our proposed approach vyields high robustness in
detecting copy number alterations using high-throughput technologies and has the potential to identify specific
subclonal markers from next-generation sequencing data.

Keywords: copy number SNP arrays, Next generation sequencing, melanoma

Background

The molecular basis for cancer evolution and metastatic
spread remain largely unknown. The formidable complex-
ity and evasive nature of tumor biology are the major rea-
sons for the slow progress in implementing effective
modalities of prevention and treatment of most cancers.
Tumor populations are evolutionarily advantaged because
they are dynamic aggregates of constantly evolving
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subclones, each carrying a variety of genomic aberrations
[1]. To date copy number alterations, such as deletion,
duplications and amplifications, or spatial genomic re-
arrangements, such as translocations and inversions, have
been characterized and associated with several different
types of cancers [2,3]. In addition, certain sets of aberra-
tions present at diagnosis are expected to be associated
with disease recurrence [1]. Identification and characteri-
zation of these alterations is of great relevance in under-
standing the underlying biology of cancer, as well as the
design of clinically useful biomarkers of cancer relapse or
metastases.
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Karyotyping is a standard and effective single cell
screening approach that has been used to detect significant
genomic aberrations in cancer and in normal populations.
Resolution is the main limitation of this technique; the
coarse aberration profile obtained by karyotyping is not
sensitive enough to detect short, yet relevant, abnormal-
ities [4]. Array-based techniques, such as Comparative
Genomic Hybridization (CGH) and Single Nucleotide
Polymorphisms (SNP) arrays, have been used as an alter-
native to conventional cytogenetic approaches in the study
of copy number alterations (CNA) in cancer [4]. SNP-
arrays generally have a higher resolution than CGH-arrays
and can also be used to detect allele-specific information.
In addition, genome-wide association studies have
employed SNP-arrays successfully to identify copy number
variation (CNV) in normal and diseased populations [5-7].
In contrast to traditional karyotyping, SNP-arrays offer the
possibility of investigating up to 10° loci at once for several
million cells in a single experiment. However, these high-
throughput approaches do not reveal the full genealogical
perspective of the tumor biopsy. Instead, they measure
aggregate signals of multigenerational progeny. While this
is not an issue when analyzing a homogeneous population
of cells, it negatively affects the feasibility of correct CNA
identification and classification of tumor samples. In con-
trast to germline samples, aggregate signals of tumor biop-
sies exhibit a higher degree of complexity due to the
extent, variety and frequency of aberrations, contamina-
tion from stromal cells and the intrinsic heterogeneity of
cancer [8]. Heterogeneity, in particular, reflects the
dynamic nature of tumors as aggregates of different sub-
clones, each carrying a continually varying number of
genomic aberrations. Progress in effective treatment of
early stage cancers will likely be restricted by this immense
complexity until we are able to find new methods to sepa-
rate, catalog and classify the subclones that are responsible
for invasion and metastases.

In order to systematically investigate the effects of sub-
clonal heterogeneity in the quantitative analysis of cancer
biopsies, we studied the feasibility of uncovering subclonal
components and their relative abundance from aggregate
signals using linear algebra. Motivated by the need of
CNA detection measures that are robust to tumor hetero-
geneity we defined a class of measures that can be used to
classify CNAs from tumor biopsies into three categories:
gain, loss and normal. We extended the application of this
class of measures to demonstrate how heterogeneity is
reflected in data derived from transcriptome massive
parallel sequencing (RNA-Seq). Altogether, our study
addresses some of the challenges arising in analyses of
aggregate signals at the DNA and RNA levels of heteroge-
neous tumor samples. To our knowledge, the present
work is the first to explicitly address the limitations
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imposed by subclonal heterogeneity in high-throughput
experiments and to discuss the tractability of copy number
inference from aggregate signals of subclones in mathema-
tical terms.

Methods

De-mixing of samples

In a homogeneous sample s, the exact genotype of each
cell in the sample can be represented by the pair of vec-
tors, A and B, containing respectively the number of
copies of the A- and B-allele at each locus. For the sake of
simplicity, we assume that each locus is at most bi-allelic,
namely that only two variants, A and B, can occur. In the
case of tumor biopsies, or studies in which cells from sev-
eral individuals are pooled together, the measured A and B
vectors correspond to the average copy number of the A-
and B-alleles at each locus across all cells in the sample.
When studying heterogeneous samples, it is very unlikely
to find any cell in the sample whose genotype corresponds
exactly to the measured profile.

The “de-mixing problem” is the task of recovering the
fraction x;, called the mixing coefficient, and the geno-
type g; = {A;, B;} of each i-th homogeneous group of
cells in the sample (e.g. the different subclones). This
problem corresponds to solving the linear system

A= AX
B =BX (1)
with x; > 0, in =1, dji € No, bji € Np

where x; is an element of the vector X, j is the locus
index, a;; and bj; are elements of the matrices A and B
respectively, and N, is the set of all non-negative integers.

Deconvoluting genotyping data signal from
heterogeneous cell population

The de-mixing problem is trivially solved when only two
independent components (e.g. from two different indivi-
duals) are mixed together, and their copy number, a;; + bj;
is measured using independent experimental approaches
in at least two loci. However, in general, deconvolution of
CNA signals from a heterogeneous sample to its homoge-
neous components is an ill-posed mathematical problem.
Linear algebra solution approaches will encounter non-
unique solutions corresponding to a non-unique combina-
tion of possible discrete vectors representing different
subclonal aberration profiles.

Regularization methods (such as L1 minimization for
recovery of sparse signals) are often employed to reduce
the number of feasible solutions in underdetermined
problems. The underlying assumption of applying regu-
larization in this context is that a sample will not gener-
ally contain all theoretical subclones, defined by all
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possible combinations of aberrations. Instead, a few sub-
clones arising during cancer progression will be selected.
This assumption is also consistent with the possibility
that subclones’ viability may be hindered by the lethal
synergy of some of their aberrations. Donoho and Tan-
ner reported key results on regularization methods from
counting faces of randomly projected polytopes when
the projection radically lowers dimension [9]. It is possi-
ble to show that even in the simplified problem with a;
e {0,1} b;; € {0,1}, the required condition for sparse
reconstruction,

s > 2klog (2 _ll> (2)

S+

is not fulfilled for any s > 2, where 2°-1 is the size of the
search space, with s equal to the number of loci measured,
k is the number of components (e.g. observable subclones)
and s+1 is the maximum number of equations, corre-
sponding to the number s of unique measurements (e.g.
SNPs), including the additional constraint that the sum of
mixing coefficients is 1. Thus, a mixture of 3 or more
components, which is typical in tumor biopsies, cannot be
uniquely deconvolved solving the linear system, or using
sparse reconstruction methods. In the presence of hetero-
geneous samples no inference can be made of the exact
copy number from the aggregate signal of the subclones.

To illustrate these points, we provide a detailed example
of the conditions and solution of copy number inference
for a mixture of a tumor subclone component with its
matched stromal component. In this scenario, de-mixing
is elicited by additional constraints on the copy number of
the stromal and of the tumor components. The stromal
component is assumed to have no CNA, thus its number
of copies is constant and equal to 2. The linear system in
Eq.1 of the measured aggregate genotypes (a;, E]) at the j-
th locus is reduced to:

{ dj = aji (1 —x) + ajpx
b]‘ = b]‘l(l —-x)+(2— ajz)x (3)
with 0 <x < 1, aj € No, bjl € Ny, ap € {0,1,2}

where x is the mixing coefficient of the stromal com-
ponent, @;; and b;; are the A- and B-allele copy number
of the tumor, a;, is the A-allele copy number of the
stromal component and N, is the set of all non-negative
integers. In addition, we include the equation a;;+b;; =
m; in the system in order to restrict the copy number of
the tumor component at the j-th locus to an integer ;.
We consider only the loci harboring deletion events
with an aggregate copy number smaller than two, where
m; - the copy number of the tumor component - can
take one of two values: one if the deletion in the tumor
cells is hemizygous, or zero if it is homozygous. We
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then solve the system at each locus independently for
the two possible values of m; and determine the two
corresponding possible values of x. Since there is only
one tumor component, there must exist one value of x
to solve Eq.3 for all loci simultaneously. The mode of all
values of x across all loci corresponds to this value. The
corresponding value of m; at the j-th locus is then the
exact copy number of the tumor component.

A simple framework for CNA analysis
CNA analysis encompasses the tasks of detecting and clas-
sifying copy number aberrations. Current HMM based
applications for CNA analysis rely on the assumption that
increasing the number of hidden states, thereby increasing
the complexity of the underlying model, will eventually
result in higher CNA classification accuracy [10-12]. As
detailed above, determination of the exact number of
copies is an ill-posed problem in the presence of heteroge-
neous samples. Therefore, we propose to detect substantial
deviation from the normal diploid state by classifying the
aberrations as gains or losses inferred from the dominant
component in the mixture. The goal of CNA analysis then
becomes to infer the most recurring aberration that would
be observed in a hypothetical, high-resolution karyotyping
of the same heterogeneous sample, if it were available.
Peiffer et al. [13] employed a convenient transforma-
tion of A- and B-allele copy numbers to B-allele fre-
quency B and the total-DNA enrichment p. For clarity
of discussion, we use a simpler version of this transfor-
mation for each SNP defined as:

~ A ~

2N ' ! Aj+1§j

(4)

where N is the total number of cells in the sample,
A, B are the allele counts estimated from the SNP-
arrays. Peiffer and et al. suggest estimating this quantity
from the signal of a normal population (e.g. HapMap
samples [5]). In general, occurrence of CNA is reflected
in the total-DNA enrichment. In the presence of hetero-
geneous samples, these changes can be difficult to detect
due to the high level of noise. As expected, in heteroge-
neous samples, aberrations also lead to allelic imbalance
at positions of heterozygous SNPs (Figure 1). We thus
propose to base CNA detection in heterogeneous sam-
ples on measures of allelic imbalance.

One such measure of allelic imbalance is

W
Mj= )" (pisin 2By (1 — cos (27p;))) (5)

i=j—W

where W corresponds to a window of appropriate size.
This quantity is an aberration score for each SNP, based
on the measure of allelic imbalance in its neighborhood.
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Figure 1 Simulated binary mixtures of aberrant and normal states. Mixtures of aberrant and normal states are reflected in deviations from
the balance between A and B alleles in heterozygous SNPs and can be detected by simple measures. In panels A and B we display simulations
of log R-ratio (p) and B allele frequency () spanning 1000 loci for mixtures of a normal state with a copy number of 2 with an aberrant state
derived from this normal state with a copy number of 3 or 1. As the fraction of aberrant cells increases, the central band of the B-allele
frequency, which exhibits the balance between A and B alleles, deviates to the outer band, indicating the dominance of one of the two alleles.
The M-measure shown in panels C and D is a detector of allelic imbalance corresponding to the simulations shown in panels A and B,
respectively. A limitation of the M-measure is that deviations of the M-measure from 0 for pure deletion states are indistinguishable from
deviations in pure stromal states. This can be easily overcome by testing whether the log R-ratio is significantly below its expected value of 0.
The combination of the log R-ratio and the M-measure indicates whether the aberrant state is a deletion (log R-ratio < 0) or duplication (log R-

ratio > 0).

We denote this measure as the M-measure and use it
for the remainder of the analyses with W = 20. W = 20
is an arbitrary choice of a window large enough to have
a reasonably robust estimate of the M-Measure. The M-
measure is insensitive to hemizygous deletion events if
they occur in the majority of cells in the sample. We
address this issue by testing whether the total-DNA
enrichment p, also known as R-ratio, is significantly
below its expected value of 1. We use the M-measure to
classify SNP CNA profiles into three states: gain, loss
and neither. The M-measure is a measure of deviation
from the expected state of normal non-tumor sample.
In order to have a measure that is robust to noise, we
chose trigonometric functions such that their product is
close to zero in a wide region around the value of the
expected state of a normal, non-tumor sample. These

trigonometric functions have a non-linear rapid change
of the deviation score once the threshold of having a
true gain or loss is crossed. As previously discussed, in
this context there are numerous solutions to the pro-
blem of inferring the exact number of copies consistent
with the measured aggregate cell population signal
(Eq.1). As none of the possible solutions can be pre-
ferred to the others, characterization of CNAs in terms
of gain and loss is a practical alternative.

The three-state M-measure classification can also be
used in a three-state Viterbi algorithm whose hidden
states are normal, deletion, and duplication segments.
We name this classification approach 3SMM. We use
3SMM only in our simulated scenarios. In order to use
the best parameters for our simulations, we determined
transition and emission probabilities from the underlying



Parisi et al. BMC Genomics 2011, 12:230
http://www.biomedcentral.com/1471-2164/12/230

true copy number status of the simulated data for each
run.

Simulated data

We randomly generated two haplotypes of 10,000 loci to
simulate a mixture of a homogeneous tumor subclone
and its matched stromal cells. A haplotype is a vector of
zeros and ones, representing the two alleles respectively.
Our random generation process ensures that at each
locus, the germline had a 90.5% probability of being
homozygous and a 9.5% probability of being heterozy-
gous. The stromal (non aberrant) component of the
mixture was obtained by combining the two haplotypes
as described in Eq.1. The tumor (aberrant) component
was obtained by adding aberrations to the two haplo-
types. To have a unique profile of aberration status, we
excluded simultaneous occurrence of different kinds of
aberrations (e.g. deletion and duplication) at the same
locus. We mixed the normal and aberrant components
with proportions of a and (1-o) respectively. Gaussian
noise with a signal-to-noise ratio of 30 was used to
simulate experimental noise.

We then simulated samples comprising two tumoral
subclones and their matched stromal component. As in
the case with one subclone, we excluded simultaneous
occurrence of different kind of aberrations (e.g. deletion
and duplication) at the same locus in the same subclone
(e.g. neutral LOH); however, the two tumor components
were generated such that their aggregate signal con-
tained all combinations of aberrations (e.g. deletion and
duplication). The three components were then mixed by
a linear combination with proportions of o, 2(1-a)/3
and (1-a)/3 corresponding to the normal component
and the remaining two tumoral subclones respectively.
As in the case with two components, Gaussian noise
with a signal-to-noise ratio of 30 was used to simulate
experimental noise.

We tested four different types of aberrations: homozy-
gous deletion, hemizygous deletion, a gain of one copy,
and a gain of two copies. We did not test neutral LOH
since it is not an event that would affect the copy num-
ber. Each aberration covers 1,000 loci (~20 Mbps).
Aberrations were separated by 1,000 aberration-free loci
(~20 Mbps). Our aim was to test the classification per-
formance of different approaches to heterogenous-like
data rather than testing the sensitivity to detect short
focal events. This motivated our choice of aberrations of
1000 loci each.

Measure of performance

To assess algorithmic performance we used the Area
Under the Receiver-Operator Characteristic Curve
(AUCROC) measure. In the present study, which is dif-
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ferent from the usual formulation, in which the classifi-
cation task is to distinguish between a set of positive
instances and a set of negative instances, we had three
class labels: gain, loss and normal. In a typical machine
learning scenario in which there is no parameter to
vary, the AUCROC in the operative point (which is also
termed balanced accuracy) is computed as

aucroc= L (T, IN ©)
“olp ' N

where TP is the number of true positives, P is the
number of positives, TN is the number of true negatives
and N is the number of negatives. Similarly, in our
three-classes scenario, the AUCROC can be computed
as

1 (TPgi TN g4i
AUCROCgam - ( gain . gam)
2 P, gain N, gain
1 /TP TN;
AUCRO Class _ ( loss + loss)
2 Pioss Nioss (7)
1 (TPnormai TNnormal)
AUCROC, | = ( +
o 2 Prormal Nuorma
AUCROC = AUCROCgin + AUCR;)CIOSS + AUCROCormal

where TP,,;, is the number of SNPs that are amplified
and correctly inferred as such by the algorithm, Pg;, is
the total number of SNPs that are amplified in the sam-
ple, TNy, is the number of SNPs that are not amplified
and that are correctly inferred as such by the algorithm,
Ngain is the total number of SNPs that are not amplified
in the sample; TP, is the number of SNPs that are
deleted and correctly inferred as such by the algorithm,
Py, is the total number of SNPs that are deleted in the
sample, TN, is the number of SNPs that are not
deleted and that are correctly inferred as such by the
algorithm, N, is the total number of SNPs that are not
deleted in the sample; TP,,y,.4; is the number of SNPs
that are not aberrated and that are correctly inferred as
such by the algorithm, P, is the total number of
SNPs that are not aberrated in the sample, TN, s is
the number of SNPs that are aberrated and correctly
inferred as such by the algorithm, and N,,,,,,.; is the
total number of SNPs that are aberrated in the sample.

SNP profiling using microarrays

DNA from 30 melanoma cell lines were hybridized to
Illumina’s HumanlM BeadChip (Illumina Inc. San
Diego, CA). We generated B-allele frequencies and Log-
R ratios using standard procedures included in the Illu-
mina BeadStudio package. We normalized with respect
to the population of western European ancestry (CEU)
from the HapMap project that was analyzed on the Illu-
mina HumanlM BeadChip.



Parisi et al. BMC Genomics 2011, 12:230
http://www.biomedcentral.com/1471-2164/12/230

Design, probe annotation, and data processing of the
arrays for detection of genome-wide gene expression

We used NimbleGen genome-wide human expression
arrays (2005-04-20_Human_60mer_1in2) with a total of
< 400,000 probes for < 30,000 transcripts and < 20,000
known genes, as of NimbleGen annotations. NimbleGen
provides design and probe annotation. Standard meth-
ods for one-channel and two-channel microarrays from
the R statistical software were used as previously
described [14].

Transcriptome profiling using next-generation sequencing
We re-analyzed the RNA-seq sample MeWo from a
recent study [15,16]. Namely, the reads were aligned to
the reference genome using Bowtie [17] with standard
parameters. Nucleotide variations were determined after
pileup using Samtools [18], and the frequency of the
variant, 5, was calculated as in Eq.4.

Fluorescent in situ hybridization (FISH)

Fluorescence in situ hybridization (FISH) was performed
using probes from the bacterial artificial chromosome
(BAC) clones (RPCI-11 human BAC library) containing
the selected genes E2F8 (248D22 and 80B10 at 11p15.1),
ETV4 (100E5 and 147C10 at 17q21.31), EZH2 (140E16
and 24N19 at 7q36.1) and FAM84B (455K11 and 90G11
at 8q24.21). All BAC clones were cultured in 100 ml LB
media supplemented with chloramphenicol at 37°C sha-
ker incubator overnight, and cell pellets collected by
centrifuge were used for DNA extraction using the
large-construct kit (Qiagen, Valencia, CA). Two BAC
clones for the 5’-end or the 3’-end of each gene were
labeled differently by SpectrumGreen-dUTP or Spectru-
mOrange-dUTP using the nick translation kit (Abbott
Molecular, Des Plaines, IL). Probe hybridization on
slides of interphase cells was performed following the
laboratory’s standardized protocol. Hybridization signals
were visualized and captured using an Olympus BX60
fluorescence microscope with CytoVision software ver-
sion 4.5.2 (Genetix, San Jose, CA). In each sample, 200
nuclei were inspected and the signal patterns were
documented.

Results

The measure of allelic imbalance (M-measure) is robust to
heterogeneity

We performed simulations to study the behavior of the
allelic imbalance M-measure in presence of aberrations
(Figure 1C and Figure 1D). A simple threshold proce-
dure can be used to identify high confidence CNA loci.
An arbitrary choice of 0.1 for the cutoff of the M-mea-
sure and window size W = 20 is sufficient to achieve
satisfactory accuracy (Figure 1). Remarkably, the M-
measure is robust in detecting aberrations even when
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the aberrated component is present at low concentra-
tions (Figure 1).

Comparison of the performance of the M-measure to
that of state-of-the-art HMM-based CNA methods
requires data in which the subclonal composition and
copy number of each subclone are known. Currently,
there is no practical solution to catalog all aberrations
in all clones in a given sample, and we therefore used
simulated data to test the accuracy of CNA classification
of complex mixtures. Following the binary mixture pro-
cedure described in the Methods section, we generated
200 independent datasets for selected values of the mix-
ing coefficient a to simulate a scenario of contaminating
a homogeneous tumor sample (composed of only one
subclone) with stromal cells. This binary mixture sce-
nario should not be confused with the one used by Peif-
fer et al [13]. Peiffer et al. mixed tumor samples of one
individual with normal cells from another individual,
generating a mixed sample that was not reflective of
clinical settings. In our simulations, we mixed compo-
nents from the same individual, reflecting stromal con-
tamination, which is often present in tumor samples.
Deconvolution strategies to analyze mixtures comprising
one normal and one homogenous tumor component
have been proposed by others [10,13].

We tested PennCNV [11], genoCNA [10], the M-mea-
sure and the three-state Viterbi algorithm based on the
M-measure (3SMM, see Methods) using the mixture
scenario of a stromal contamination with a “pure”
tumor sample. We used default parameters for both
PennCNV and genoCNA. As a measure of performance,
we calculated the average of the areas under the recei-
ver-operator characteristic curve (AUCROC) at the
operative points (Eq. 7), reducing the classification task
to the correct classification of gain, loss and normal
states (Figure 2B). As expected, PennCNV performed
the worst. PennCNYV is not designed for tumor copy
number inference. Its poor performance indicates that
algorithms that do not take into account the possibility
that the data could be a mixture of more than one com-
ponent will perform worse than algorithms that do not
ignore this possibility. Given the low performance,
PennCNYV was not included in any further analysis.
Overall, the M-measure performed as well as, or better
than, the state-of-the-art HMM-based methods.
Remarkably, it exhibited higher robustness to the mixing
coefficient. Interestingly, 3SMM shows no evident
improvement compared to the M-measure (Figure 2A,
blue and green AUCROCs). We also compared the
actual value of the mixing coefficient to the value
inferred by solving the linear system, as described in the
Methods, and to the value returned by genoCNA, as
described in the genoCNA documentation. As shown in
Figure 2B, our solution obtained using linear algebra is
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Figure 2 Comparisons between performance of the M-measure, HMIM-based CNA algorithms and the three-state Viterbi decoding
based on the M-measure (3SMM) for binary mixtures. We simulated 200 datasets reflecting the mixture of a homogeneous tumor sample
and a stromal component at different levels of the mixing coefficient. Panel A shows the average of the areas under the ROC curve (AUCROC) at
the operative point for the correct classification of the three states (Eq.7) of GenoCNA (black), PennCNV (red), the M-measure (green) and a
three-state Viterbi decoding based on the M-measure, 3SMM (blue). The dotted envelope around each curve represents two units of standard
deviation centered at the mean performance. Overall, the M-measure performs equally well or better than the HMM-based algorithm. B.
Inference of the mixing coefficient according to the genoCNA algorithm (black) or to the solution of the linear systems (Eq.3) in regions
classified as loss based on the M-measure classification (green) or 3SMM (blue). The dotted envelope around each curve represents two units of
standard deviation around the mean of the inferred coefficient. The value of the mixing coefficient, which is inferred from the classification using
the M-measure and/or 3SMM, is not surprising as it reflects the deterministic nature of the underlying linear system. On the other hand, the low
performance of genoCNA s attributed to the non-uniqueness of solutions in the problem of inferring exact copy numbers, particularly

amplifications.

close to the actual solution (green and blue curves),
even when the normal component was overwhelmingly
abundant. The main effect of increasing stromal con-
tamination seems to be reflected in a slightly larger var-
iance of the estimated mixing coefficient, which is
particularly visible in the inference based upon the
3SMM algorithm. This increase in the variance reflects
the overall decrease in performance in terms of
AUCROC (Figure 2A green and blue curves). The sur-
prisingly weak performance of genoCNA in inferring the
correct mixing coefficient is probably linked to the non-
uniqueness of solutions in the problem of inferring
exact copy numbers. As the use of Viterbi decoding did
not significantly improve algorithmic performance, we
did not use 3SMM for further analyses.

To test classification performance in more heteroge-
neous conditions, we generated 200 independent datasets
of a tumor sample with two subclones contaminated by a
stromal component for selected values of the normal
component mixing coefficient o, as described above. In

this scenario, the M-measure clearly shows its superior
robustness in the inference of CNA status from heteroge-
neous samples with an AUCROC above 0.9 for mixtures
in which the tumor components together constitute at
least half of the sample (Figure 3). The classification per-
formance of the M-measure decreases as the total frac-
tion of stromal cells increased, suggesting that the
decreasing signal-to-noise ratio of allelic imbalance, as
already shown in Figure 1, is the main cause for misclas-
sification. Further comparison using real SNP-array
tumor data revealed higher robustness of the M-Measure
in identifying de novo aberrations during tumor progres-
sion (Additional file 1, Additional file 1, Figure.S1, Addi-
tional file 1, Figure.S2 and Additional file 1, Table S1).

In general, the linear relationship between probe signal
and allelic content shown in Equation 1 recapitulates that
pooling and counting the number of occurrences of each
allele from a biological sample follows basic algebraic rela-
tionships. This is the case in karyotyping, FISH experi-
ments, exome sequencing, DNA-seq and many other
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Figure 3 Performance comparisons between HMM-based CNA
algorithms and M-measure for mixtures of three states. We
simulated 200 datasets by mixing a stromal component with
relative concentration of a, with two independent tumor
components with relative concentrations of 2(1- a)/3 and (1- a)/3,
respectively. To assess performance, the output of these algorithms
is first classified into three states (gain, loss and normal), and the
average between the AUCROCs at the operative points (Eq.7) is
computed for GenoCNA (black) and the M-measure (green). The
correct state is defined as the state of the aberrant signal with the
largest coefficient. The dotted envelope around each curve
represents two units of standard deviation, and the central solid line
represents the mean performance. Overall, the M-measure (green)
exhibits a high degree of robustness to increasing levels of stromal
contamination. Real samples will generally have more than two
components, including the stromal fraction. Therefore, although
genoCNA is not designed to handle heterogeneous samples with
more than two components, its performance has been added to
the plot to show the way in which state-of-the-art HMM-based
methods perform.

experimental procedures. Equation 1 does not refer to a
specific technology; instead, it reflects basic statistics
notions and is, in its theoretical formulation, exact. It has
been shown that SNP-array data may require preprocessing
steps involving non-linear transformations [19]. We have
shown that copy numbers cannot be inferred at the linear
level and that a fortiori cannot be inferred after applying
the non-linear transformations required to faithfully ana-
lyze SNP-array data.

Experimental validation of robustness of the allelic
imbalance measure to heterogeneity

We sought to demonstrate that the allelic imbalance mea-
sure can detect CNA in highly heterogeneous tumor sam-
ples. For this purpose, we selected loci from melanoma
tumor samples (Table 1 for details on the samples) that
exhibited deviations relative to normal melanocytes in
terms of CNA and mRNA expression. We identified 299
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Table 1 Characterization of samples by disease status,
stage and BRAF or NRAS mutation

Sample_ID Normal/Nevus/ Stage

BRAF status NRAS status

Melanoma

HFSC Normal Normal NA NA
Nbmel Normal Normal NA NA
YULOWY Melanoma |, primary WT Q61L
YUPLA Melanoma Il WT WT
YUGOE Melanoma Il WT WT
YUKIM Melanoma Il WT Q61R
YUROL Melanoma Il WT WT
YUPAO Melanoma IIl, acral WT WT
YUCAS Melanoma [\ WT WT
YUCHER Melanoma vV WT Q61R
YUMAG Melanoma IV WT Q61R / WT
YUROB Melanoma % WT WT
YUSIV Melanoma I\ WT WT
YUTUR Melanoma % WT WT
YUZOR Melanoma vV WT WT
YUWERA Melanoma |V, acral WT WT
YUHOIN Melanoma IV, primary ~ WT WT
YUDOSO Melanoma llb, primary  WT Q61K / WT
YUHEIK Melanoma primary WT WT
YUFULO Melanoma primary WT Q61L / WT
YUSTE Melanoma Il V60OE WT
YUCAL Melanoma % V60OE WT
YUSAC Melanoma v V600E WT
YUGENS8 Melanoma vV V600E WT
YUCLIR Giant nevus Giant nevus V60OE / WT ~ WT
YUSIK Melanoma I+ V600E / WT ~ WT
YUNIBO Melanoma Ib, primary V600K WT
YUKSI Melanoma v V600K WT
YULAC Melanoma vV V600K WT
YUMAC Melanoma vV V600K WT
YURIF Melanoma % V600K WT
YUSIT Melanoma vV V600K / WT ~ WT

Samples have been characterized by disease status, stage and BRAF or NRAS
mutation.

genes that were over-expressed in more than 24 mela-
noma samples (> 80% of the 30 samples in the cohort)
relative to normal melanocytes. We selected the 20 most
frequently over-expressed genes for further analyses by
intersecting these genes with all aberrant genes whose M-
measure and log-R were indicative of gain in copy num-
ber. Fluorescent in situ hybridization (FISH) analysis of
four genes, E2F8, ETV4, EZH2 and FAM84B, which show
the most recurring gains, revealed remarkably complex
mixtures with varying gains and number of subclones
(Figure 4). The prevalence of copy number gains of ETV4
and FAMS84B suggests that aberrations involving these
genes may be functionally involved in maintaining the dis-
ease, or that they occurred early in tumor genesis and
inherited by most subclones during tumor expansion. This
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Figure 4 Fluorescent in situ hybridization (FISH) analysis of four candidate genes that are up-regulated in melanoma and have a high M-
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YUDOSO, at least one locus among FAM84B, ETV4 and EZH2 are aberrant in more than 75% of the cells in the tumor samples.

finding is consistent with melanoma cytogenetic reports of
recurring early aberrations of their hosting chromosomes

(3].

High-resolution profiling of heterogeneity using next-
generation sequencing

Allelic imbalance can also be used to detect heterogeneity
using next-generation sequencing, in particular genomic

DNA sequencing, mRNA sequencing (RNA-seq) and
whole-exome sequencing. Similar to the CNA analysis,
allelic imbalance at the single nucleotide level can give
insights into tumor heterogeneity, provided that there is
sufficient sequencing coverage to reliably identify varia-
tions distinctive of subclonal populations. A recent study
produced an in-depth sequencing profile of melanoma
samples [15,16]. We re-analyzed sequencing data from
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the MeWo melanoma cell line, which had the highest
sequencing depth, to identify patterns associated with
subclonal heterogeneity. Inferring heterogeneity from
RNA-Seq is very difficult due to the co-occurrence of
numerous effects, such as allele-specific expression, vary-
ing expression levels across subclones, and alternative
splicing, all of which can alter the allelic balance. To
overcome the presence of confounding effects, we
focused on the variation of single nucleotide allelic
imbalance along exons. We argue that in the absence of
subclonal heterogeneity and of CNA at the level of DNA,
allelic imbalance is expected to be constant along the
entire exon. On the other hand, in the presence of sub-
clonal heterogeneity, acquired variations in some sub-
clones will introduce allelic imbalance at a population
level with significant fluctuations between neighboring
loci (Figure 5A). This imbalance is not associated with
differential expression between paternal and maternal
alleles, but rather with the co-occurrence of subclonal
variants whose observed expression level may reflect
their relative abundance. In addition, large fluctuations
between contiguous nucleotides can exclude the presence
of focal CNA, which would instead result in highly corre-
lated fluctuations at each nucleotide along the aberration.
Given the lack of independent CNA information for the
MeWo sample, we studied heterogeneity in RNA-seq
using single-nucleotide mutations. However, the pro-
posed approach is general enough to be extended to the
study of CNA heterogeneity in next-generation
sequencing.

As proof of concept, we examined all nucleotide var-
iants occurring along any exon. To achieve statistical sig-
nificance, we discarded all nucleotide variants that were
supported by less than 100 reads in each sample. We
identified several genes in different samples that had
signs of significant allelic imbalance at the RNA level. In
particular, we observed significant fluctuations in allelic
imbalance at different consecutive positions within the
same exon that were not associated with indels (Table 2).
RNA-editing and short CNAs could be considered an
alternative explanation for the observed imbalance. One
approach to exclude the occurrence of RNA-editing
would be to sequence the genomic DNA of these exons.
However, we note that the majority of the reported
examples did not correspond to the typical C—U and
A—I RNA-editing modifications. In principle, the pre-
sence of very short CNAs can be excluded, verifying the
signal obtained on high-resolution SNP-arrays. Notably,
in some cases, the distance between loci with significantly
different allelic imbalance is shorter than the RNA-seq
read length; the presence of a CNA common to all sub-
clones would simultaneously affect both loci, leading to
similar allelic imbalances. Taken together, these results
suggest that these base variations affect only a fraction of
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the subclones in the sample (Figure 5B and Additional
file 2). In conclusion, allelic imbalance measures, besides
being robust to heterogeneity in high-throughput ana-
lyses, can also be used to detect heterogeneity and
uncover specific subclonal markers from next-generation
sequencing.

Discussion

High-throughput technologies can effectively replace
cytogenetics to generate high-resolution maps of chro-
mosomal aberrations. Cataloging potential markers at
different length-scales, such as whole chromosome dele-
tions, to few genes, or even to specific nucleotide muta-
tions, has enabled the association of important biological
mechanisms with tumor formation and progression.
However, the caveat of interpreting data generated by
these techniques is that signals measured from tumor
biopsies can be an aggregate profile of different cells. To
better understand the potential of high-throughput tech-
nologies, our study addresses two issues: i) the effects of
subclonal heterogeneity on CNA analysis; ii) the identifi-
cation of copy number alteration measures that are
robust to heterogeneity.

In our work we show that heterogeneity has a hinder-
ing effect on CNA analyses. Currently there is no direct
mathematical procedure to correctly infer the copy num-
ber of a heterogeneous sample when the number of
homogeneous components is greater than two. Even in
toy-models, in which the main focus is on the aberration
status rather than on the actual copy number (binary
encoding in vectors of 0 and 1’s), the search space of
aberration profiles grows exponentially with the number
of measurements.

On the other hand, at this point, it is important to note
that most aberrations span several loci; thus, measure-
ments from SNP-arrays, or from next-generation sequen-
cing techniques will be grouped in clusters of statistically
indistinguishable numerical values. As a result, the num-
ber of unique measurements is generally smaller than the
total number of SNPs on an array, or than the number of
base pairs sequenced using next-generation sequencing
techniques. The search space of aberration profiles, how-
ever, is too large to lead to a unique solution, even using
powerful regularization methods. To address this issue,
one has to impose additional mathematical constraints
motivated by the specific properties of the biological sys-
tem under investigation.

Currently, state-of-the-art CNA detectors are model-
based, i.e. they attempt to predict the exact copy number
status and the genotype by fitting the measured quanti-
ties with pre-coded models [10,11,20]. The underlying
models have been designed to improve sensitivity. How-
ever, when HMM-based approaches are employed in
simulated scenarios representing optimal signals, the
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Figure 5 Inference of subclonal heterogeneity from RNA-Seq data. The scheme shown in panel A demonstrates the way in which allelic
imbalance along a single exon arises. The exon of interest (black lines) carries a germline polymorphism on one of the copies in position Xq
(grey dot). In addition, out of three sub clones, one acquired a somatic point mutation in position X1, and two acquired somatic point
mutations in position X2 (red dots). Assuming that both alleles are expressed with equal frequencies and that the expression level is the same
across all subclones, the measured allelic imbalance is determined by the unequal distribution of somatic mutations, as shown in the table.
Differences of allele-specific expression levels or of the subclonal expression levels affect the exon as a whole, but do not change the overall
picture of distinct allelic imbalances at the Xo, X; and X, loci. Allelic imbalance along AKIPT (NM_020642) shown in panel B reflects subclonal
heterogeneity. The score of the non-reference nucleotide has been calculated as 0.5 - | 0.5 - (#B/(#B+#A)) |, where #A is the number of reads
matching the reference sequence, and #B is the number of reads with a mismatch at the given nucleotide (non-reference nucleotide). The AKIP1
exhibits multi-modal B-allele frequency at heterogeneous nucleotides. Vertical bars represent 95% confidence interval of the estimated
proportion, assuming an underlying binomial distribution. All non-reference nucleotides shown are supported by at least 100 reads. Vertical
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underlying aberrations are not properly inferred (Figure
2A and Figure 3). We propose to reduce the CNA analy-
sis to discrimination between three distinct states, gain,
loss, and normal, to detect the presence and type of the
state of the strongest aberrant component in the aggre-
gate signal.

We present a simple and biologically motivated frame-
work to design measures of CNAs based on alteration of

total DNA, and allelic balance at heterozygous loci.
These measures can be easily implemented for three-
state classification tasks using thresholding. Our M-mea-
sure is one example selected from a family of measures,
and it clearly showed unparalleled robustness to sample
heterogeneity, thus leading to improved performance in
detecting the presence of CNAs. Interestingly, the three-
state Viterbi algorithm based on the M-measure did not



Parisi et al. BMC Genomics 2011, 12:230
http://www.biomedcentral.com/1471-2164/12/230

Table 2 Subclonal point mutations

Refseq gene position in transcript Reference Variant
NM_001077619 2874 A G/C
NM_001113202 1035 G A
NM_001113202 1038 T A
NM_001113202 1034 T A
NM_003112 4016 G A
NM_003112 4024 T A
NM_003112 4042 C T
NM_005431 1294 C G
NM_005431 1325 T C
NM_005431 1408 A G
NM_013276 2909 A G
NM_013276 3065 C T
NM_013276 3110 G T
NM_018129 1977 C T
NM_018129 2044 C T
NM_018129 2154 A G
NM_018129 1973 C A
NM_018129 2822 G C
NM_018373 1930 G A
NM_018373 1887 C T
NM_020642 934 C T
NM_020642 942 T C
NM_020675 1099 G T
NM_020675 1129 G T
NM_031886 3289 A G
NM_031886 3285 C T
NM_031886 3278 G A
NM_031886 3271 G A
NM_033426 3002 C T
NM_033426 2821 A C
NM_033426 2856 C T
NM_144578 3320 C A
NM_144578 3317 T C
NM_144578 3425 C T
NM_144578 3948 G C
NM_144578 3946 G A
NM_145280 1865 G A
NM_145280 1623 G A
NM_145280 1866 C T/G
NM_145280 3564 A G
NM_145280 2096 T C

The majority of these mutations are not indels or typical RNA-editing
substitutions, supporting the idea that these point mutations occur in a
fraction of the subclones from the heterogeneous melanoma sample.

show a significant improvement in terms of perfor-
mance over the M-measure alone. This reflects the fact
that the decay in performance as the mixing coefficient
of the stromal component increases is mostly due to the
decreasing strength of the aberrant signal in the mix-
ture, relative to the constant level of experimental noise.
Clearly, the simpler goal of three-state classification
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based on measures such as the M-measure is easier to
meet; the advantage is that this type of measure is also
more robust when put to test.

Our proposed framework for detecting CNAs in high-
throughput SNP-profiling is a conceptual generalization
of a class of empirical measures used to identify CNAs
[21] and sample heterogeneity [22] employing massive
parallel sequencing of genomic DNA. Here, we seek to
demonstrate that they can be used to analyze signals in
other types of sequencing experiments such as RNA-
seq, exome sequencing or ChIP-seq. High-throughput
mRNA profiling of tumors has shown dependency
between the copy number status and the expression
level of the mRNA product [23]. Measuring allelic
imbalance from RNA-Seq experiments is partially asso-
ciated with copy number status of the underlying geno-
mic DNA, yet, as mentioned above, it is not feasible to
correctly infer the exact CNA status due to a variety of
confounding effects, including heterogeneity. We there-
fore do not expect RNA-seq alone to be useful in infer-
ring focal copy number aberrations in cancer samples.
Next-generation sequencing signals, however, are suita-
ble for studying heterogeneity and characterizing subclo-
nal components by their collection of specific markers.
Subclonal heterogeneity is not reflected in CNA exclu-
sively; it is also reflected in other somatic mutations
(e.g. point mutations) and other traits, such as DNA
methylation and histone modification.

We analyzed RNA-Seq experiments to unravel subclo-
nal heterogeneity. We show that some of the measured
allele-specific expression patterns result from differences
in the abundance of subclonal populations, each harbor-
ing different acquired mutations (Figure 5A). The
reported loci are remarkable examples of novel candidate
somatic polymorphisms, likely associated with subclonal
populations. This approach has striking conceptual and
methodological simplicity, and in the near future devia-
tions in the distribution of allelic imbalances along exons
might be used to infer the extent of the sample’s hetero-
geneity. The possibility of identifying novel candidate
somatic mutations associated with subclonal populations
requires experimental strategies that will enable separat-
ing different subpopulations for further analyses.

Our results uncover a large degree of heterogeneity at
the level of genomic DNA, both in terms of CNA and
point mutations. Interestingly enough, heterogeneity is
present in both primary and metastatic tumors, suggest-
ing that the variety of underlying mutations may already
be overwhelming at diagnosis. The identification of driver
mutations, which typically requires examination of DNA
at high resolution, is linked to our ability to detect sub-
clones capable of escaping the selective survival pressure
and metastasizing. Detecting potentially rare subclones at
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this resolution requires very deep sequencing of large
cohorts of patients.

Conclusions

Subclonal characterization of cancer samples is crucial to
understanding disease progression (seeds of metastasis)
and to studying the presence or emergence of resistant
subclones in metastatic cells after drug exposure [1,24].
To have a clinical impact, such characterization should
not only identify markers for specific subclones in the
sample, as we have shown above, but to estimate the rela-
tive subclonal abundance as well. Some remarkable
attempts have been made in the direction of characterizing
subclones from heterogeneous tumor samples [25,26].
These pioneering efforts are promising and important
undertakings addressing the difficult problem of subclonal
de-mixing. However, due to the non-unique number of
solutions of the underlying linear system (Eq.1), reported
results have to be interpreted cautiously, more as a sugges-
tive and intuitive representation of one possible evolution-
ary summary of the sample, rather than the true
representation of the subclonal composition of the sample.
While we recognize the potential relevance of novel mar-
kers reported in these studies [25,26], neglecting the effect
of CNA may lead to incorrect inference of the order and
the co-occurrence of genomic aberrations.

Exact assessment of copy number in heterogeneous
samples using high-throughput or next-generation
sequencing technologies is an ill-posed task. However,
characterizing CNA in terms of states of deletion or
amplification is still feasible. To achieve this goal, we pro-
vide a measure that can robustly characterize the domi-
nant aberrations present in heterogeneous tumor samples.
As described above, similar measures to the one we use to
characterize heterogeneity in the CNA analysis can be
applied to data obtained in next-generation sequencing.
Understanding the effect of subclonal heterogeneity on
measurements and analysis of tumor biopsies is a neces-
sary step to understanding etiology and evolutionary
dynamics of tumors. The ability to decipher subclonal
composition from tumor biopsies will likely have a major
impact on the development of personalized medicine.

Additional material

Additional file 1: Detecting copy number status and uncovering
subclonal markers in heterogeneous tumor biopsies. Comparing the
M-Measure-based approach to a state-of-the-art CNA algorithm by
testing their ability to identify de novo aberrations in SNP-array signals
from an evolving tumor at two time points.

Additional file 2: Evidence of subclonal heterogeneity from RNA-
Seq data across a collection of melanoma samples. Allelic imbalance
along each gene demonstrates subclonal heterogeneity. The score of the
non-reference nucleotide has been calculated as 0.5- | 0.5 - (#B/(#B-+#A))
, where #A and #B are the numbers of reads hosting the reference and
non-reference nucleotide respectively. However, all the reported genes
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have a multimodal distribution of B-allele frequencies along at least one
exon. The B-allele frequencies close to 0.5 have been marked in grey, B-
alleles that significantly deviate from this cluster are considered acquired
somatic mutations (black) and can be explained by subclonal
heterogeneity. Vertical bars represent 95% confidence intervals. All non-
reference nucleotides shown are supported by at least 100 reads. Vertical
dashed lines mark the boundaries between exons in the transcript.
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