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A systematic analysis of the skeletal muscle
miRNA transcriptome of chicken varieties with
divergent skeletal muscle growth identifies novel
miRNAs and differentially expressed miRNAs
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Abstract

Background: Functional studies have demonstrated that microRNAs (miRNAs or miRs) play critical roles in a wide
spectrum of biological processes including development and disease pathogenesis. To investigate the functional
roles that miRNAs play during chicken skeletal muscle development, the miRNA transcriptomes of skeletal muscles
from broiler and layer chickens were profiled using Solexa deep sequencing.

Results: Some miRNAs have multiple isoforms and several miRNAs* are present at higher levels than their
corresponding miRNAs. Thirty three novel and 189 known chicken miRNAs were identified using computational
approaches. Subsequent miRNA transcriptome comparisons and real-time PCR validation experiments revealed 17
miRNAs that were differentially expressed between broilers and layers, and a number of targets of these miRNAs
have been implicated in myogenesis regulation. Using integrative miRNA target-prediction and network-analysis
approaches an interaction network of differentially expressed and muscle-related miRNAs and their putative targets
was constructed, and miRNAs that could contribute to the divergent muscle growth of broiler and layer chickens
by targeting the ACVR2B gene were identified, which can causes dramatic increases in muscle mass.

Conclusions: The present study provides the first transcriptome profiling-based evaluation of miRNA function
during skeletal muscle development in chicken. Systematic predictions aided the identification of potential miRNAs
and their targets, which could contribute to divergent muscle growth in broiler and layer chickens. Furthermore,
these predictions generated information that can be utilized in further research investigating the involvement of
interaction networks, containing miRNAs and their targets, in the regulation of muscle development.

Background
Embryonic patterning and organogenesis involve coordi-
nated differentiation, migration, proliferation and pro-
grammed cell death in metazoans. These complex
cellular and developmental processes rely on precise
spatiotemporal networks that regulate transcription fac-
tors at multiple levels including mRNA transcription
and translation, protein stability and degradation.
Recently, evidence has demonstrated that microRNAs

(miRNAs or miRs) are involved in diverse aspects of
biology including developmental regulation and the
pathogenesis of human diseases [1-4]. miRNAs are small
19-24 nucleotide (nt) regulatory RNAs that generally
modulate gene expression through translational repres-
sion or by causing deadenylation and degradation of tar-
get mRNAs [5,6]. However, miRNAs could function as
activators to regulate gene expression [7,8]. The biogen-
esis of miRNAs is spatiotemporally regulated by various
mechanisms [9], providing additional evidence that miR-
NAs are functionally significant, and potentially key reg-
ulators of gene expression during development [10-15].
An essential role for miRNAs in terms of regulating

skeletal muscle development is evident from studies
demonstrating that deletion of a conditional Dicer allele

* Correspondence: dhzhu@pumc.edu.cn
† Contributed equally
1National Laboratory of Medical Molecular Biology, Institute of Basic Medical
Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine,
Peking Union Medical College, Beijing, China
Full list of author information is available at the end of the article

Li et al. BMC Genomics 2011, 12:186
http://www.biomedcentral.com/1471-2164/12/186

© 2011 Li et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:dhzhu@pumc.edu.cn
http://creativecommons.org/licenses/by/2.0


in embryonic skeletal muscle results in perinatal lethal-
ity due to skeletal muscle hypoplasia [16]. In particular,
the critical roles of three muscle-specific miRNAs, miR-
1, miR-133 and miR-206, in the regulation of myogen-
esis have been well documented [17,18]. miR-1 and
miR-133 have been reported to regulate different aspects
of skeletal muscle development in vitro and in vivo [19].
miR-1 promotes myocyte differentiation by repressing
the expression of histone deacetylase 4 (HDAC4), a
negative regulator of differentiation and a repressor of
the MEF2 (myocyte enhancer factor-2) transcription fac-
tor [19]. In C2C12 myoblasts, miR-133a promotes prolif-
eration, in part, by repressing serum response factor
(SRF) [19]. Like miR-1, miR-206 promotes differentia-
tion of C2C12 myoblasts in vitro. miR-206 induces mus-
cle differentiation by repressing the expression of the
DNA polymerase a subunit (Pola1) [20], connexin 43
(Cx43) [21], follistatin-like 1 (Fstl1) and utrophin (Utrn)
[22]. In addition to muscle-specific miRNAs, several ubi-
quitously expressed miRNAs have a role to play during
muscle development. For example, zebrafish miR-214
was reported to regulate the slow muscle phenotype by
targeting suppressor of fused (Sufu), a negative regulator
of hedgehog signaling [23]. Expression of miR-181 iso-
forms, miR-181a and miR-181b, are induced upon initia-
tion of myogenesis and they participate in the regulation
of myoblast differentiation by repressing HoxA-11 pro-
tein levels [24]. The functional significance of miRNAs
in terms of controlling myogenesis has been documen-
ted, but the majority of miRNAs are abundantly
expressed. Therefore, identifying novel miRNAs that are
expressed at low levels during skeletal muscle develop-
ment but are functionally important requires robust
approaches such as high-throughput deep sequencing
technology.
The chicken (Gallus gallus) is an established model

organism for studying vertebrate development, primarily
because chicken embryos are readily accessible and
easily manipulated [25]. In addition, a variety of stan-
dard chicken breeds with different phenotypes are read-
ily available, which collectively represent a valuable
genetic resource. Broiler chickens (bred for meat pro-
duction) and layer chickens (bred for egg production)
are ideal model systems for studying the molecular
mechanisms underlying myogenesis [26]. During the
past 80 years, genetic selection in broilers has concen-
trated on a high growth rate and large muscle mass; in
contrast, layers have been selected for egg production.
Therefore, even under optimal growth conditions, the
body size of layers is smaller than that of broilers owing
to intrinsic genetic differences between the two varieties.
These unique biological features of broilers and layers
allow muscle development to be investigated. In pre-
vious studies, we have successfully identified protein-

coding and non-coding genes with roles during myogen-
esis using broilers and layers as model systems [27,28].
In the current study, previous work was expanded to

identify miRNAs involved in myogenesis regulation by
comparing the miRNAs transcriptome in skeletal muscle
tissues of broilers and layers. Solexa deep sequencing was
carried out to profile miRNAs expressed in chicken ske-
letal muscle tissues. Sequence-tag analyses have shown
that a group of highly abundant, known miRNAs are
expressed in skeletal muscles and 33 novel putative
chicken miRNAs from skeletal muscle tissues have been
identified. Comparing the expression patterns of known
and novel miRNAs demonstrated that they were signifi-
cantly differentially expressed between broiler and layer
chicken muscle tissues. These results were confirmed
using microarrays and real-time reverse transcription-
polymerase chain reaction (RT-PCR) validation experi-
ments. Of the 17 miRNAs examined using RT-PCR, nine
presented with an expression pattern consistent with the
microarray analysis; 15 miRNAs had a pattern consistent
with the deep sequencing data. Using computational pre-
diction, targets for these differentially expressed miRNAs
and muscle-related miRNAs were identified, and an
interaction network was constructed. Furthermore, miR-
1 was demonstrated specifically to target the 3’ untrans-
lated region of the activin receptor IIB gene, ACVR2B,
which can cause dramatic increases in muscle mass [29].
This integrative analysis highlights the complexity of
gene expression networks regulated by microRNAs in
muscle cells during muscle development.

Results
Characterization of the miRNA transcriptome of skeletal
muscle from broiler and layer chickens using deep
sequencing
Solexa sequencing was used to profile miRNAs
expressed in layer and broiler chicken skeletal muscles.
Sequencing of a small RNA fraction (16-30 nt) from
total RNA extracted from pectoralis muscles collected
from 10-day-old chicken embryos yielded 2,700,003 and
2,576,562 reads for the layer and broiler libraries,
respectively (Figure 1A). Of these, 1,987,912 layer
sequences and 1,553,308 broiler sequences, which
account for more than 67% of the total reads, were per-
fectly mapped to the chicken genome (May 2006). The
sequencing data were simplified by grouping all identical
sequence reads together; therefore, 105,475 unique layer
sequences and 89,148 unique broiler sequences were
used for subsequent analysis (Figure 1A).
The most abundant size class in the small RNA

sequences distribution was 22 nt, followed by 21 and 23
nt (Figure 1B and 1C), and this was consistent with the
known 21-23 nt range for miRNAs. To assess the effi-
ciency of deep sequencing for miRNA detection, all
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sequence reads were annotated and classified by analyz-
ing the sequence tags in relation to the data from miR-
Base (version 16), RefSeq mRNA, RepeatMasker and
non-protein-coding RNAs annotated by ENSEMBL. The
sequence tag annotations demonstrated that known
chicken miRNAs (gga_miRNAs) and metazoan miRNA

homologs accounted for ~50% of all sequence reads in
the broiler and layer libraries (Figure 1D). These results
indicate that the deep sequencing data were highly
enriched for mature miRNA sequences, suggesting that
the data are reliable for expression profiling of known
miRNAs and deep mining for novel miRNAs.

Figure 1 Deep sequencing results and annotations of small RNAs from chicken skeletal muscle. A. Number of small RNA reads from
broilers and layers. B, C. Size distribution of sequenced small RNAs. D. Annotations of sequenced small RNAs.
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To investigate the expression of known miRNAs in
broiler and layer skeletal muscles, the numbers and dis-
tribution of small RNA sequences that matched known
chicken miRNA genes were analyzed. The results
demonstrated that of 467 known chicken miRNAs and
77 miRNA*s in the miRBase (version 16), perfect
matches to 231 miRNAs and 29 miRNA*s were obtained
in the sequencing data (Figure 2A and Additional file 1).
Among the sequences that were not perfectly matched
to known chicken miRNAs or miRNA*s there were 244
metazoan miRNA homologs and 72 metazoan miRNA*
homologs (Figure 2A and Additional file 2).
As presented in Additional file 5 and 6, known miRNAs
and metazoan homologs had a broad range of

expression levels in skeletal muscle tissues, ranging from
hundreds of thousands of sequence reads for the most
abundant miRNAs to single reads for the least abun-
dant. The distribution of read numbers for the known
miRNAs is summarized in Figure 2B. The 33 most
abundant miRNAs (i.e. those with > 1,000 reads) are
presented in Table 1.

miRNA transcriptome analysis demonstrated the presence
of several highly abundant miRNAs in skeletal muscles of
broilers and layers
Almost all known muscle-specific miRNAs (myomiRs)
were represented among the more abundant miRNAs
identified. The most abundant miRNA was gga-miR-

Figure 2 Known miRNAs and homologs of metazoan miRNAs detected in chicken skeletal muscle. A. Numbers of known miRNAs and
chicken homologs of metazoan miRNAs detected by perfect match in the present study. B. Reads distribution of known miRNAs and chicken
homologs of metazoan miRNAs in chicken skeletal muscle.
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206, which was represented by approximately 200,000
sequence reads in the broiler and layer libraries (Table
1). The predominance of miR-206 is consistent with its
well established function during skeletal muscle develop-
ment [30] and reported role during chicken myogenesis
[31,32]. Two other myomiRs, miR-1 [19] and miR-181
[24], were high-count sequences in both libraries (Table
1). Compared with the three myomiRs, forms of the
myomiR miR-133 were expressed at low levels in the
skeletal muscle libraries: there were 126 reads for gga-
miR-133a in the layers library and 67 in the broilers
library; 7 reads for gga-miR-133b in the layers library
and 12 in the broilers library; one gga-miR-133c read in
the layers library and no read in the broilers library

(Additional file 1). These variations in abundance could
reflect differences in the roles of these miRs in terms of
the regulation of myogenesis [19,24]. In addition to
miR-206, miR-1 and miR-181, nine other miRNAs
among the most abundant in these libraries (miR-221,
miR-222, miR-21, miR-103, miR-130, miR-99, miR-30,
miR20, and miR128) have been implicated in the prolif-
eration and differentiation of muscle cells (Table 1)
[15,19,33]. Therefore, the miRNA transcriptome for
layers and broilers revealed by this analysis is highly
enriched for miRNAs involved in myogenesis regulation.

The expression patterns of several miRNA*s during
chicken skeletal muscle development are unique
A total of 29 miRNA*s were detected in broiler and
layer libraries (Figure 2A and 2B). The majority were
expressed at low levels (Additional file 1), but of those
expressed at higher levels, such as miR-181a and miR-
1677, the read counts were significantly lower than
those of the corresponding miRNAs (Table 2). One
striking exception to this general trend was gga-miR-
140*; this was present as 911 reads in the layers and 711
reads in the broilers libraries, but gga-miR-140 was not
detected in either library (Table 2), suggesting that gga-
miR-140* functions during chicken skeletal muscle
development. gga-miR-126* is another case in which
only miRNA* was detected (Table 2). There were several
cases, such as miR-199 and miR-1329, where miRNA
and miRNA* were generated at similar levels (Table 2).

Analysis of sequence variants indicated that many
miRNAs possess isomiRs
As found in previous deep sequencing studies, heteroge-
neity at the 5’ and/or 3’ ends of miRNAs was observed
(Figure 3, Additional file 3). miRNAs with such varia-
tions from their miRBase reference sequences are
referred to as isomiRs [34,35]; some typical examples
are presented in Figure 3. In the majority of cases (e.g.
gga-miR-221) the most abundant isoform is identical to
the reference in miRBase (Figure 3). In some cases, such
as gga-miR-222 and gga-miR-128, more than one highly
abundant isoform was present (Figure 3), indicating that

Table 1 The most abundant miRNAs in chicken skeletal
muscles as determined using deep sequencing

miRNA ID Layer Broiler B/L Studies related to skeletal
muscle

gga-miR-206 222998 131609 0.59 [20-22]

gga-let-7c 32663 87111 2.67

gga-miR-103 59224 37050 0.63 [19]

gga-let-7j 26141 42513 1.63

gga-let-7f 24694 16121 0.65

gga-miR-221 18238 5340 0.29 [33,84]

gga-miR-107 10815 10353 0.96 [85]

gga-miR-130a 2630 10933 4.16 [19]

gga-let-7b 4832 8155 1.69

gga-miR-128 5059 6669 1.32 [15]

gga-miR-130b 1409 9002 6.39 [19]

gga-miR-222 3735 4013 1.07 [33,84]

gga-miR-16c 1209 6058 5.01 [39]

gga-miR-15b 875 5759 6.58

gga-miR-125b 1506 4801 3.19 [40]

gga-miR-21 1056 5128 4.86 [19,39,86]

gga-miR-101 3647 1305 0.36

gga-miR-181a 2015 2543 1.26 [24,85]

gga-miR-130c 795 2872 3.61 [19]

gga-miR-99a 1589 1561 0.98 [19,87]

gga-miR-1a 979 1495 1.53 [19]

gga-miR-456 1601 592 0.37

gga-miR-148a 1180 738 0.63

gga-miR-30a-
3p

1189 422 0.35 [19]

gga-miR-146c 1067 309 0.29 [88,89]

gga-miR-460 307 914 2.98

gga-miR-181b 421 795 1.89 [24]

gga-miR-10a 890 269 0.30 [41]

gga-miR-20b 210 940 4.48 [19]

gga-miR-15c 91 1038 11.4

gga-let-7i 479 632 1.32

gga-let-7k 506 602 1.19

gga-miR-383 886 219 0.25

Table 2 A comparison of read counts between miRNA
and the corresponding miRNA*

miRNA ID miRNA miRNA*

Layer Broiler Layer Broiler

gga-miR-181a 2015 2543 142 32

gga-miR-1677 429 184 20 76

gga-miR-199 91 318 26 133

gga-miR-1329 16 123 36 44

gga-miR-140 0 0 911 711

gga-miR-126 0 0 11 28
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Figure 3 IsomiRs from several gga-miRs. Reads alignments of the various isoforms of several gga-miRs are presented. The sequence of the
gga-miR hairpin is presented in the top line; the brackets below denote the secondary structure. Reads that aligned with the mature gga-miR
sequence as reported in miRBase are denoted by a series of asterisks. The number of reads corresponding to each sequence is presented on the
right.
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some miRNAs have more than one functional isoform
in specific tissues/organs. For some miRNAs, such as
gga-miR-181a, gga-miR-1a and gga-miR-499, the most
abundant isoform was not among the known miRNA
sequences reported in miRBase 16 (Figure 3). A similar
phenomenon has previously been observed for miRNAs
identified in chicken embryos [36], suggesting that a
refinement to the miRBase annotations for chicken miR-
NAs is required to reflect experimentally observed
abundances.

Novel miRNAs are less abundant and less evolutionarily
conserved in chicken skeletal muscle
In addition to profiling known miRNAs, deep sequen-
cing is a powerful strategy for discovering novel miR-
NAs that may not have been detected using traditional

methods for sequencing cDNA libraries. Using the miR-
Deep program as a predictive tool [37], 33 putative
novel chicken miRNAs were obtained from broiler and
layer sequence tags (Table 3, Additional file 4). Genomic
sequence analyses demonstrated that six of these puta-
tive miRNAs were located in the exons of annotated
genes, fourteen resided in the introns of annotated
genes and thirteen were present in intergenic regions
(Additional file 5). The putative novel miRNAs were less
abundant (Table 3) than known miRNAs (Figure 2A
and 2B). Only one novel putative miRNA had read
counts greater than 100 in the library (Table 3).
To investigate evolutionary conservation of the 33

novel chicken miRNAs, a search for highly similar
sequences among human, mouse, rat, opossum, frog and
zebrafish genomic sequences was carried out using a

Table 3 Novel chicken miRNAs predicted by miRDeep

miRNA ID chr strand start end Layer* Broiler*

gga-miR-N1 chr3 + 4348337 4348358 135 62

gga-miR-N2 chrUn_random - 13277374 13277395 2 52

gga-miR-N3 chrUn_random + 30704197 30704218 29 21

gga-miR-N4 chr17 + 2477065 2477087 18 14

gga-miR-N5 chr27 + 1117232 1117255 22 6

gga-miR-N6 chr2 + 103042957 103042979 26 0

gga-miR-N7 chr18 - 5042929 5042952 20 5

gga-miR-N8 chr4 - 3214463 3214484 23 0

gga-miR-N9 chr6 + 31550357 31550378 18 4

gga-miR-N10 chr1 - 180215042 180215065 14 3

gga-miR-N11 chr4 - 51257851 51257872 7 9

gga-miR-N12 chrZ - 28247215 28247238 12 4

gga-miR-N13 chr3 + 85117942 85117965 13 1

gga-miR-N14 chr4 + 563352 563373 11 3

gga-miR-N15 chr26 - 2669812 2669834 11 2

gga-miR-N16 chr3 + 59307968 59307990 5 7

gga-miR-N17 chr18 - 4116255 4116279 6 5

gga-miR-N18 chr3 + 724977 724994 0 7

gga-miR-N19 chr4 + 2151238 2151261 4 3

gga-miR-N20 chr7 - 37893831 37893851 6 1

gga-miR-N21 chr19 + 4862173 4862194 1 4

gga-miR-N22 chr20 - 10896392 10896413 5 0

gga-miR-N23 chr15 - 11255901 11255922 4 0

gga-miR-N24 chr24 + 2618818 2618840 3 1

gga-miR-N25 chr27 - 4426392 4426414 4 0

gga-miR-N26 chr4 + 16625715 16625736 3 1

gga-miR-N27 chrUn_random - 40250702 40250728 3 1

gga-miR-N28 chr1 + 52701699 52701723 2 1

gga-miR-N29 chr10 - 16415151 16415173 1 1

gga-miR-N30 chr2 + 133303756 133303776 1 1

gga-miR-N31 chr27 - 3957524 3957545 2 0

gga-miR-N32 chr3 - 49536173 49536194 1 1

gga-miR-N33 chr7 + 12850964 12850988 0 2

*Sequenced read-numbers are presented.
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BLAST analysis. Obtaining mature miRNAs from
homology sequences does not necessarily signify that
the miRNAs are conserved as they might not be capable
of forming hairpin structures. We further identified
hairpin-like RNA structures using RNAfold (see Materi-
als and Methods). The same analysis was carried out for
known chicken miRNAs. The results demonstrated that
novel miRNAs are less evolutionarily conserved (Addi-
tional file 6), a result that is consistent with previous
studies [36]. Further analyses using a multiple alignment
of six vertebrate genomes in the UCSC database with
that of the chicken genome revealed that only gga-miR-
N3 was conserved in at least one of the analyzed verte-
brate genomes. gga-miR-N3 exists in zebrafish and frogs
but is lost after the emergence of mammalian lineages
(Additional file 7). The remaining 32 miRNAs could be
avian- and/or chicken-specific miRNAs. To identify
potential chicken-specific miRNAs, the sequences were
checked against the Zebra Finch (Taeniopygia guttata)
Alignment Net Track in UCSC. Nineteen of the 32
novel chicken miRNAs were present in the Zebra Finch,
suggesting that the remaining 13 novel miRNAs could
be specific to the chicken lineage (Additional file 8).
Combining conservation and relative abundance infor-
mation for the newly identified and known miRNAs
revealed that the evolutionarily conserved miRNAs were
among the most abundant, supporting a correlation
between evolutionary conservation and the expression
level of miRNAs.

Identification of differentially expressed miRNAs in broiler
and layer skeletal muscle
The main objective of the present study was to identify
miRNAs involved during skeletal muscle development
by comparing skeletal muscle miRNA transcriptomes in
broilers and layers. Analysis of sequencing results
demonstrated that more than 80% of reads overlapped
between broilers and layers (Figure 4A). The overlap
between libraries was greater (94%) for those reads with
perfect genomic matches (Figure 4B), suggesting that
the deep sequencing data were reliable for direct com-
parison of miRNA abundance between broilers and
layers.
In addition to the 33 novel miRNAs, 189 known miR-

NAs were identified in miRBase using miRDeep (Addi-
tional file 9). Comparing Table S6 with Table S1
demonstrates that the number of reads could differ for
the same miRNA. In Table S1, the reads number for
each miRNA is based on perfect matches to known
chicken miRNAs in miRBase. As presented in Figure 3
and Additional file 3, many miRNAs have different iso-
miRs in addition to perfect matches. Counting only per-
fect-match isoforms may not be appropriate as the
isoform listed in the miRBase may not be the only

functional isoform. In miRDeep, different isoforms of
the same miRNA are counted together. To arrive at the
figure of 189 known miRNAs identified by miRDeep,
the DEGseq package [38] was used to identify differen-
tially expressed miRNAs on the basis of potentially sig-
nificant changes in relative miRNA abundance between
broilers and layers. Expression of 102 miRNAs was sig-
nificantly different between broilers and layers (Addi-
tional file 10, Figure 4C). miRNA microarrays were
employed to characterize the expression profiles of these
102 differentially expressed miRNAs further (Additional
file 10, Figure 4D).
To validate the differential expression of these miR-

NAs between broilers and layers, 17 miRNAs were ran-
domly selected and their expression levels quantified
using real-time RT-PCR (Figure 5). Of the 17 miRNAs
examined, nine (52.9%) had an expression pattern con-
sistent with the microarray analysis (Figure 5A and 5C),
and 15 miRNAs (88.2%) presented with a pattern con-
sistent with the deep sequencing data (Figure 5A and
5B). These data provide evidence that deep sequencing
is a more sensitive and reliable method for identifying
differentially expressed miRNAs than miRNA
microarrays.

Target prediction and network analysis highlight the
complexity of interactions among miRNAs and their
targets during muscle development
Of the 17 differentially expressed miRNAs confirmed
using real-time RT-PCR, six have been functionally
linked to myogenesis [39-42]. However, the majority
including one novel miRNAs (gga-miR-N2) and eight
known miRNAs (miR-101, miR-15b, miR-15c, miR-
1677, miR-200, miR-460, gga-mir-2188 and miR-429)
have not been implicated in the regulation of muscle
development. To approach the question of how miRNAs
could function in concert with their target genes in
terms of controlling muscle development and to provide
some molecular insight into the process, targets of the
miRNAs were identified and a possible regulatory net-
work of interactions among miRNAs and their targets
was constructed. The strategy and workflow are sum-
marized in Figure 6A.
The starting point of the miRNA target prediction

strategy was the 16 validated, differentially expressed,
known miRNAs and eight other muscle-related miR-
NAs. TargetScan (version 5.1) [43] was used to predict
the putative targets for these 24 miRNAs, identifying
more than 1000 annotated mRNA transcripts that were
potential targets (Additional file 11). The mechanism of
miRNA function predicts that miRNAs and their targets
normally exhibit correlated expression patterns [44].
Therefore, an mRNA transcriptome analysis was per-
formed using microarrays to identify mRNAs in
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Figure 4 miRNAs differentially expressed in the skeletal muscles of broilers and layers. A. Venn diagram demonstrating the overlap of
original sequenced reads between broilers and layers. B. Venn diagram demonstrating the overlap of sequenced reads with perfect genomic
matches in broilers and layers. C. Heat-map of miRNAs differentially expressed in broilers and layers based on the read counts obtained by deep
sequencing. D. Heat-map of differentially expressed miRNAs confirmed by microarrays. Triplicate samples of total RNA from the skeletal muscle
of E10 broilers and layers were used to perform miRNA microarray experiments. B, broiler chicken; L, layer chicken.

Li et al. BMC Genomics 2011, 12:186
http://www.biomedcentral.com/1471-2164/12/186

Page 9 of 20



Figure 5 Validation of differentially expressed miRNAs using real-time RT-PCR. A. Real-time RT-PCR results for 17 miRNAs that were
differentially expressed in broilers and layers. B. Relative abundance of 17 miRNAs in skeletal muscles of broilers and layers based on deep
sequencing data. C. Expression pattern of 17 miRNAs in skeletal muscles of broilers and layers based on microarray experiments.
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Figure 6 Interaction network of differentially expressed miRNAs and their candidate targets. A. Workflow of interaction network analysis.
Network construction can be divided into two components: miRNA-target interactions and target-target interactions. For miRNA-target
interactions, candidate miRNA targets were predicted by TargetScan. Differentially expressed candidate targets were identified using mRNA
microarrays that covered embryonic days 10, 12, 14 and 18. The final miRNA-target relations correspond to those mRNAs differentially expressed
between broiler and layer that exhibited a pattern of expression opposite to that of the corresponding miRNAs. Target-target interaction pairs
were extracted from the STRING database. A pairwise PCC was then calculated for each pair based on transcription profiles during skeletal
muscle development to extract putative target-target interactions. B. The final integrated network. In the network, miRNAs are represented by
yellow nodes and targets are represented by pink nodes. Blue lines denote miRNA-target interactions and red lines denote target-target
interactions.
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embryonic skeletal muscle that were differentially
expressed between broilers and layers. In addition to
analyzing mRNA transcriptomes on embryonic day 10
(E10), as was done for the miRNA transcriptome,
embryos were analyzed on embryonic days 12, 14 and
18 (E12, E14 and E18), yielding a total of 1057 non-
redundant genes that were differentially expressed
between broilers and layers (Additional file 12). To nar-
row the field of candidate targets for the 24 miRNAs
further, the analysis was restricted to those miRNA tar-
gets that were differentially expressed between broilers
and layers and had an expression pattern opposite to
that of the corresponding miRNAs. Using these criteria,
57 candidate targets for 16 miRNAs were identified
(Additional file 13) and used for subsequent network
analysis.
In addition to interacting with miRNAs, targets should

interact with each other. To investigate such interac-
tions, protein-protein interactions (PPIs) of these puta-
tive targets were extracted from the STRING database.
Information concerning protein-protein interactions in
bird species in the current PPIs database is very limited.
Therefore, PPI data for human orthologs of these
miRNA targets were utilized. It is widely accepted that
some human PPIs may not be conserved in chickens,
and protein interactions are time- and condition-speci-
fic. To establish more reliable interactions, we applied a
previously proposed referencing strategy in which PPIs
are filtered with dynamic gene expression patterns
[45,46]. The chicken gene expression dataset contained
54 microarrays that covered nine developmental stages
during skeletal muscle development of broiler and layer
chickens (see Materials and Methods). To identify puta-
tive target-target interactions, the Pearson Correlation
Coefficient (PCC), which is known to provide informa-
tion about the “shape” of gene expression changes
[47,48], was used; an absolute PCC value of 0.3 was
used as a cutoff.
miRNA-target interactions and target-target interac-

tions were integrated to construct possible regulatory
networks (Figure 6B). One of the predicted miRNA-tar-
get relationships presented in Figure 6B, between miR-
27b and the target CYP1B1, has been reported pre-
viously [49]. The remaining relationships are reported
for the first time; therefore, this analysis predicts several
candidates for future studies concerning miRNA-target
function in controlling muscle development. In the pre-
sented network, one major regulatory module involved
13 miRNAs (yellow nodes) and 55 targets (pink nodes).
Of these 13 miRNAs, five (miR-206, miR-1a, miR499,
miR-128 and miR-27b) have been reported to have a
role during muscle development [30,50]. Little is known
about the functional roles of the remaining eight (miR-
31, miR-101, miR-200b, miR-10b, miR-460, miR-15b,

miR-16 and miR-203) during muscle development.
However, analysis of their targets demonstrated that sev-
eral were involved in myogenesis regulation, suggesting
that these miRNAs could participate in regulating mus-
cle development through their target genes. For exam-
ple, miR-200b has eight predicted targets, among which
are three genes RECK, SLC38A2 and Nr5a2, which
encode proteins that are reported to be involved in mus-
cle development [51-53].
It has been reported that activin A receptor type IIB

(ACVR2B) plays an important role in regulating muscle
development by interacting with a number of transform-
ing growth factor-b (TGF-b) family members [54,55].
ACVR2B causes dramatic increases in muscle mass (up
to 60% in two weeks) when injected into wild-type mice
[29]. No miRNAs have been identified previously as reg-
ulatory factors for ACVR2B, but the network analysis
predicted that ACVR2B is a target of three miRNAs:
gga-miR-101, gga-miR-1a and gga-miR-499 (Figure 6B).
It has been demonstrated that miR-1 is an important
regulator of myogenesis [19,56]. miR-1 and ACVR2B
had opposite expression patterns in skeletal muscle tis-
sue from broiler and layer chickens (Figure 7B). There-
fore, the target relationship between miR-1 and
ACVR2B was validated using a luciferase reporter gene
assay. As demonstrated in Figure 7C, the luciferase
activity was significantly reduced when a miR-1 mimic
was co-transfected with pGL3-ACVR2B-UTR containing
a miR-1 targeting site into 293T cells, suggesting that
miR-1 directly targets chicken ACVR2B UTR. Therefore,
it is conceivable that miRNAs could be involved in regu-
lating ACVR2B function in terms of controlling muscle
development. Taken together, the results of the network
analysis suggest that myogenesis is regulated by a com-
plicated network, mediated by multiple miRNAs acting
through the same target gene, and/or single miRNAs
targeting multiple genes.

Discussion
Recent developments in high-throughput sequencing
technology have enabled the miRNA transcriptome to
be profiled in various organisms [36,57,58]. In the pre-
sent study, Solexa deep sequencing was used to provide
an extensive miRNA profile of the previously unexa-
mined skeletal muscle of broiler and layer chicken lines.
The sequence analysis identified 33 novel chicken miR-
NAs and demonstrated that many miRNA precursors
could generate multiple isoforms (isomiRs). Importantly,
a comparison of miRNA transcriptomes allowed us to
identify 16 known miRNAs and one novel miRNA that
were differentially expressed in the skeletal muscles of
broilers and layers. On the basis of the predicted targets
of the 16 differentially expressed known miRNAs and
eight muscle-related miRNAs, an interaction network
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comprising these miRNAs and their candidate targets
was constructed.
The data presented in this report provide the first

miRNA transcriptome profile of chicken skeletal muscle.
Two hundred and thirty one known miRNAs and 29
miRNA*s were detected in skeletal muscles. gga-miR-
206 was the most abundant miRNA in skeletal muscles
of broilers (131,609 reads) and layers (222,998 reads), a
result that is consistent with the well-established func-
tion of miR-206 during skeletal muscle development
[30]. Interestingly, Rathjen and colleagues recently per-
formed miRNA profiling in chicken somites and demon-
strated that among the 85 detectable known miRNAs,
gga-miR-10b was the most abundant (113,106 reads),
whereas gga-miR-206 was much less abundant (259
reads) [59]. Taken together, these observations suggest
that miR-206 and miR-10b could play important roles at
different stages during muscle development. The

expression level of myomiR miR-133 was lower than
miR-206 in the skeletal muscle library, an outcome that
could reflect differences in the roles of these miRNAs in
terms of myogenesis regulation. Consistent with this
interpretation, miR-206 has been shown to promote ske-
letal muscle differentiation, whereas miR-133 regulates
myogenesis by increasing muscle cell proliferation [19].
In addition to well-known myomiRs, recent studies

have demonstrated that several other miRNAs are
involved in regulating myogenesis. For example, a com-
parison of miRNA expression profiles in proliferating
myoblasts and differentiated myotubes revealed that
miR-221 and miR-222 are down-regulated upon differ-
entiation of primary and established myogenic cells,
whereas miR-21, miR-103, miR-130, miR-99, miR-30
and miR20 are up-regulated [19,33], suggesting that
these miRNAs play important roles in the transition
between proliferation and differentiation of muscle cells.

Figure 7 miR-1 directly targets the chicken ACVR2B UTR. A. Schema of miR-1 binding site in chicken ACVR2B 3’-UTR sequence (seed
sequence highlighted in red). Mutated ACVR2B 3’-UTR eliminates the seed binding site pointed by arrow. B. Expression of miR-1 and ACVR2B
gene in skeletal muscle of broiler and layer chickens at embryonic day 18 were analyzed using real-time RT-PCR. C. Target validation using a
luciferase reporter assay. 293T cells were co-transfected with miR-1 mimic or scramble double-strand small RNA and the reporter plasmid pGL3
or pGL3-ACVR2B-UTR or pGL3-mACVR2B-UTR, respectively.
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Interestingly, these same eight miRNAs were abundantly
expressed in our sequencing libraries, indicating that
they could play regulatory roles in controlling the differ-
ence in skeletal muscle growth rates between broilers
and layers during development.
Seventeen miRNAs that were differentially expressed

in the skeletal muscle of broiler and layer chickens were
identified. Seven (miR-101, miR-10a, miR-10b, miR-
1677, let-7f, miR-31, and miR-205b) were expressed at
higher levels in layers, and ten (miR-203, miR-200b,
miR-16c, miR-15b, miR-15c, miR-460, miR-429, let-7c,
miR-2188, and gga-miR-N2) were expressed at higher
levels in broilers. Six of these miRNAs (miR-31, miR-
10a, miR-10b, miR-16C and two let-7 members) have
been implicated in skeletal muscle regeneration or
development [39-42]. Greco and colleagues demon-
strated that miR-31 was induced in dystrophic (mdx)
mice and in Duchenne muscular dystrophy patients, and
in newborn mice and newly formed myofibers during
postischemic regeneration, suggesting that it could be
important in pathophysiological pathways that regulate
muscle responses to damage and regeneration [42].
Recent studies have reported that miR-10 contributes to
retinoic acid-induced smooth muscle cell differentiation
[41], and may be important during the early stage of
embryonic myogenesis [59]. Taken together, the
approaches used in this study have identified a number
of differentially expressed miRNAs that could exert
novel functions in terms of regulating muscle cell prolif-
eration and differentiation during development. Further
investigations concerning the function of these miRNAs
should facilitate our understanding of the regulatory
roles of miRNAs in terms of controlling the divergent
skeletal muscle growth rates of broiler and layer
chickens.
miRNAs exert their effects by interacting with target

mRNAs. Therefore, target-predicting software (TargetS-
can) was used to identify putative targets of these differ-
entially expressed miRNAs and eight muscle-related
miRNAs, before an interaction network of these miR-
NAs and their candidate targets was constructed. The
interaction networks predicted that ACVR2B is a target
of gga-miR-101, gga-miR-1a and gga-miR-499. Prior to
this analysis, there have been no reports concerning
associations between ACVR2B and miRNAs. The
ACVR2B receptor signaling pathway mediates the func-
tion of myostatin [60] and can regulate muscle growth
in vivo [29]. ACVR2B haplotypes have been reported to
be associated with muscle mass and strength in humans
[60]. Furthermore, acute inhibition of myostatin/
ACVR2B signaling with the antagonist ACVR2B-Fc pre-
serves skeletal muscle in mouse models of cancer
cachexia [61]. ACVR2B was expressed at higher levels in
the skeletal muscle of broilers than in layers at E18,

indicating that ACVR2B could be related to the higher
growth rate of broiler skeletal muscle. The results of
this analysis indicate that the three putative miRNA reg-
ulators of ACVR2B may be involved in this process. The
analysis demonstrated that ACVR2B interacts with two
other targets, CDR2 and GREM1. GERM1, a putative
target of gga-miR-128, encodes a protein that is a BMP4
antagonist and an effective regulator of myogenic pro-
genitor proliferation [62].
RECK, the putative target of gga-miR-200b, is down-

regulated by MyoD to facilitate myotube formation, and
up-regulated by MRF4 to promote other aspects of
myogenesis [51]. SLC38A2, encoding a sodium-coupled
amino acid transporter, is the putative target of gga-
miR-200b. SLC38A2 regulates proteolysis through phos-
phoinositol 3-kinase, and provides a link among acido-
sis, insulin resistance and protein wasting in skeletal
muscle cells [52]. SOX8, the putative target of gga-miR-
27b, acts as a specific negative regulator of skeletal mus-
cle differentiation, possibly by interfering with the func-
tion of myogenic basic helix-loop-helix proteins [63].
MEIS1 is the putative target gene of gga-miR-1a and
gga-miR-499. MEIS1, together with PBX1A, facilitates
binding of MyoD (a family of transcription factors with
the remarkable ability to induce myogenesis in vitro and
in vivo) to non-canonical E boxes in the myogenin gene
to induce myogenesis [64]. Furthermore, a putative
MEIS1 binding site is located in the minimal promoter
of myostatin [65]. The CALD1 gene, the putative target
of gga-miR-27b, encodes two caldesmon-1 isoforms
through alternative splicing: high molecular mass CaD
(h-CaD), which is exclusively expressed in smooth mus-
cle, and low molecular mass CaD (l-CaD), which is ubi-
quitously expressed in all cell types except skeletal
muscle. The h-CaD/l-CaD ratio can be used as a marker
to monitor differentiating and pathological states of
smooth muscles [66]. LATS2, a putative target of gga-
miR-31, encodes a protein that has been reported to
regulate the size of myocytes in the heart negatively
[67]. Nr5a2 is the putative target of gga-miR-200b, gga-
miR-128 and gga-miR-27b. Its product, the nuclear
receptor transcription factor Nr5a2, has been reported
to function during skeletal muscle organization [53].
Therefore, although little is known about the specific
functions of several of these miRNAs (e.g. miR-31, miR-
101, miR-200b, miR-10b, miR-460, miR-15b, miR-16
and miR203) during muscle development, the close rela-
tionship between their targets and myogenesis regula-
tion demonstrates a potential role during muscle
development.
Given the significant functions of miRNAs in various

biological processes, it is perhaps not surprising that
miRNA biogenesis is tightly regulated at each stage of
miRNA generation; in particular, a number of studies
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have highlighted the complexity of post-transcriptional
processing [9]. Sequence variations in mature miRNAs
attributable to heterogeneity at the 5’ and 3’-ends cre-
ates an additional level of complexity in miRNA proces-
sing [36]. A majority of miRNA genes have strand bias
[68]. In some cases, miRNA genes have been found to
generate similar amounts of miRNAs and their corre-
sponding miRNA*s [36]. The analysis of deep sequence
tags identified several miRNAs that had read counts
similar to those of their corresponding miRNA*s, sug-
gesting that these genes encode miRNAs on both arms
of the precursor in skeletal muscle tissues. Although the
functional significance of this observation has not been
established experimentally, the fact that the miRNA and
its miRNA* are co-expressed at similar levels indicates
that miRNAs serve independent functions in cells.
This study identified 33 novel chicken miRNAs and

analysis of the evolutionary conservation of these newly
identified miRNAs revealed that only one is conserved
in non-avian vertebrates and the remaining 32 are likely
to be specific to bird and/or chicken lineages. Few
newly identified miRNAs are conserved among verte-
brates, whereas the majority of known miRNAs identi-
fied using traditional cloning methods are abundantly
expressed and relatively conserved during evolution
[69-71]. Further support for this observation was pro-
vided by a recent report concerning the identification of
miRNAs in various organisms using high-throughput
sequencing. This approach demonstrated that most
newly identified miRNAs discovered using deep sequen-
cing are present only in a small group of organisms
[36]. Therefore, it is reasonable to hypothesize that
these non-conserved miRNAs could play important
roles in establishing and maintaining phenotypic diver-
sity among different groups of organisms during evolu-
tion. In addition, the bird and/or chicken lineage
miRNAs reported in this study could have arisen during
genetic selection, and function as key regulators of the
differences in growth rates between broiler and layer
chickens. A functional examination of novel and spe-
cies-specific miRNAs is a challenge for future research
and an important step in improving our understanding
of the critical roles played by miRNAs during develop-
ment and evolution.

Conclusions
The present study is the first to examine the chicken
skeletal muscle miRNA transcriptome, and to evaluate
miRNA function during skeletal muscle development
through the identification of differentially expressed
miRNAs between broiler and layer chickens, which have
divergent skeletal muscle growth. Identification of novel
miRNAs highlights the important function of low abun-
dance and less conserved miRNAs during development

of specific tissues. To investigate the functional roles of
miRNAs during chicken skeletal muscle development,
an interaction network of the differentially expressed
miRNAs and their putative targets was constructed.
This integrated analysis provides information that will
aid further experimental investigations concerning miR-
NAs and their targets during skeletal muscle
development.

Materials and methods
Chicken embryo incubation and tissue collection
Meat-type broiler eggs (Arbor Acres) and egg-type layer
eggs (White Leghorn) were incubated at 37.5°C for 10
or 18 days (E10 or E18). For Solexa sequencing and
miRNA microarray analysis, skeletal muscles (pectoralis)
were collected from broilers and layers at E10; for
mRNA microarray analysis, muscles were collected at
E10, E12, E14 and E18. Muscle samples were immedi-
ately frozen in liquid nitrogen and stored at -80°C pend-
ing RNA isolation. For analysis of the tissue expression
pattern of novel miRNAs, tissues (brain, heart, liver,
lung, breast muscle, intestine, kidney, fat, and stomach)
were collected from layer chickens at E18. All embryo-
nic manipulations were conducted in accordance with
the protocols of the Chinese Academy of Medical
Sciences and the Institutional Animal Care and Use
Committee of Peking Union Medical College.

Small RNA library construction and sequencing
Total RNA was isolated from skeletal muscles using
TRIzol reagent (Invitrogen) and precipitated overnight
at -20°C. Approximately 20 μg of total RNA from broi-
ler and layer chickens was submitted to the Beijing
Genomics Institute (BGI) for Solexa sequencing. In
brief, sequencing was performed by fractionating total
RNA using polyacrylamide gel electrophoresis (PAGE)
to enrich for molecules in the range of 16-30 nt, and
then ligated with proprietary adapters. Following adap-
tor ligation, cDNA was synthesized from total RNA by
reverse transcription and amplified with 15 PCR cycles
to produce libraries for sequencing.

Analysis of sequencing data
After filtering low-quality reads and trimming the adap-
tor sequences, totals of 2,700,003 and 2,576,562 reads
were obtained for layers and broilers, respectively.
Sequencing data were simplified by grouping identical
sequence reads together, yielding 827,431 unique
sequences. The unique sequence reads were mapped to
the UCSC chicken genome galGal3 by ZOOM; 168,642
uniq reads, corresponding to 3,541,220 sequences, were
mapped to the genome with an exact match.
The various types of ncRNAs or degradation products in

the sequence library (Figure 1D) were annotated by
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reference to miRNAs from miRBase (version 16); coding
exons based on RefSeq mRNA and repeat sequences based
on RepeatMasker were obtained from UCSC; snoRNA,
snRNA, rRNA and tRNA were based on Ensembl ncRNA
data (version 54). Metazoan miRNA homologs of chicken
miRNAs were identified in Anopheles gambiae, Ateles geof-
froyi, Apis mellifera, Bombyx mori, Bos taurus, Caenorhab-
ditis briggsae, Caenorhabditis elegans, Canis familiaris,
Drosophila melanogaster, Danio rerio, Fugu rubripes, Gor-
illa gorilla, Homo sapiens, Lemur catta, Lagothrix lagotri-
cha, Monodelphis domestica, Macaca mulatta, Mus
musculus, Macaca nemestrina, Ovis aries, Pan paniscus,
Pongo pygmaeus, Pan troglodytes, Rattus norvegicus, Sagui-
nus labiatus, Sus scrofa, Tetraodon nigroviridis, Xenopus
laevis and Xenopus tropicalis. Sequencing reads represent-
ing miRNA sequences often have untemplated nucleotides
in the 3’ end [72,73]. Therefore, miRNAs were annotated
by identifying tags that were exactly matched to the 5’ 19
nt of known miRNAs. An analysis of the size distribution
of these 5’ end-matched sequences indicated that the most
abundant size was 22 nt (Additional file 14). Those 20-25
nt tags whose 5’ 19 nt matched the 5’ 19 nt of known miR-
NAs were counted as copies of known miRNAs. The num-
bers of chicken miRNA*s, and miRNAs and miRNA*s of
other metazoans, were established using the same criterion.
Other ncRNAs including snoRNA, snRNA, rRNA and
tRNA, repeat sequences and mRNA degradation products
were annotated on the basis of perfect matches. The anno-
tation order was chicken miRNA, chicken miRNA*,
metazoan miRNA homolog, metazoan miRNA* homolog,
snoRNA, snRNA, rRNA, tRNA, mRNA, and RepeatMas-
ker. After each annotation step, only unmatched reads
were used for the next annotation step.
Simple perfect matches to miRBase (version 16)

sequences were used to determine the 467 known
chicken miRNAs and 77 miRNA*s and their expression
patterns (read numbers) in the data sets (Figure 2A and
Additional file 5). For sequences that were not perfectly
matched to known chicken miRNAs or miRNA*s,
metazoan miRNA homologs and metazoan miRNA*
homologs were identified using perfect sequence
matches (Figure 2A and Additional file 6).
The deep sequencing data obtained were deposited in

the GEO database with the accession number GSE20942.

Prediction of novel miRNAs
Novel miRNAs were identified using the miRDeep pack-
age described by Friedlander et al., which can effectively
distinguish miRNAs from other kinds of ncRNAs [37].
All sequences were mapped to the chicken genome
(gal3) using megaBLAST, and only exactly matched
sequences were retained for further analysis. As some
miRNAs could lie in exonic regions of mRNAs [74,75],
reads that aligned to more than five genomic positions

or RepeatMasker annotation files were discarded. The
remaining aligned reads were used as a reference, and
potential precursor sequences were extracted from the
chicken genome. The secondary structures of potential
precursor sequences were predicted by RNAfold [76]. A
FASTA file containing known mature metazoan miRNA
sequences in miRBase was used as input to allow for
conservation scoring. Using miRDeep, 222 putative miR-
NAs were obtained, 189 of which mapped to known
miRNAs in the chicken genome. The remaining 33 were
novel chicken miRNAs (Table 3). Using the same cutoff
on a permuted dataset, 16 putative miRNAs were
obtained. Therefore, the corresponding signal-to-noise
ratio was approximately 14:1 (222/16).

Conservation analysis of miRNAs
Genomic sequences for six vertebrates (hg18, mm8, rn4,
monDom4, xenTro2 and danRer4) were downloaded
from the UCSC genome browser. BLASTN was used to
identify regions of homology to chicken miRNA
sequences in these genomes. From the BLAST results,
sequences that covered more than 80% of the queried
mature miRNA sequences and had fewer than two mis-
matches in the covered region were selected. The seed
regions of the miRNAs are more conserved, therefore
covered regions were required to start from the 5’ end.
Finding “hit” sequences to mature miRNAs does not
necessarily signify that the miRNAs are conserved as
they may not be capable of forming hairpin structures.
Accordingly, candidate sequences were extracted and all
hairpin-like RNA structures encompassing small RNA
sequence tags identified using RNAfold. Hairpin-like
RNAs, whose mature miRNA regions were more than
70% matched with the miRNA* regions, were accepted
as homologs of chicken miRNAs. The conservation
heat-map was constructed using Cluster 3.0 [77] and
visualized in TreeView 1.60. In the heat-map (Additional
file 2), the dark color represents 0, signifying that no
homologs were identified in the corresponding species.
The red color represents 1, which indicates the presence
of homologs in the corresponding species.

Identification of differentially expressed miRNAs on the
basis of deep sequencing data
miRNAs expressed at significantly different levels in
broilers and layers were identified using the DEGseq
package [38]. Using the likelihood ratio test model, pro-
posed by Marioni et al. [78], and a cutoff of 1 × 10-4,
102 known miRNAs were identified as being signifi-
cantly differentially expressed.

miRNA microarray
Custom-designed miRNA microarrays were synthesized
in situ by LC Sciences (Houston, USA) and used to
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analyze miRNA expression patterns in the skeletal mus-
cle of broilers and layers. Arrays contained 1721 DNA
probes including a non-redundant set of probes comple-
mentary to 440 known chicken miRNAs and 78 to
known chicken miRNA*s. Arrays included probes for 78
predicted chicken snoRNAs, positive control probes for
chicken U6 snRNA, 1124 unknown chicken small RNAs
and negative controls for normalizing data with low-
density signals. Hybridizations and scans were per-
formed by LC Sciences; microarrays were scanned using
an Axon GenePix 4000B Microarray Scanner. Data
among arrays were normalized using a cyclic LOWESS
(locally weighted regression) method [79]. The microar-
ray data obtained were deposited in the GEO database
with the accession number GSE20947.

Quantitative real time RT-PCR
Differentially expressed miRNAs identified using deep
sequencing and microarrays were validated by stem-loop
RT-PCR [80] using the stem-loop RT-PCR primers pre-
sented in Additional file 15. Total RNA was isolated from
skeletal muscles using TRIzol (Invitrogen), and genomic
DNA contamination was removed by digesting with
DNase I at 37°C for 30-40 min. DNase-treated RNAs
were extracted using phenol/chloroform and precipitated
with ethanol. Reverse transcriptase reactions contained
RNA samples, 50 nM stem-loop RT primer, 1 × RT buf-
fer, 0.25 mM each dNTPs, 3.33 U/ml MultiScribe reverse
transcriptase and 0.25 U/ml RNase inhibitor. Reaction
mixtures were incubated in a 9700 Thermocycler for 30
min at 16°C, 30 min at 42°C, 5 min at 85°C, and held at
4°C. Reverse transcriptase reactions including no-tem-
plate controls and RT-minus controls were run in dupli-
cate. Real-time PCR was performed using a standard
SYBR Green PCR Master Mix (ABI). The reaction mix-
tures were incubated in a 96-well plate at 95°C for 10
min, followed by 40 cycles of 95°C for 15 s and 60°C for
1 min. All reactions were run in triplicate.

Network construction
Network construction was divided into two components:
miRNA-target interactions and target-target interactions.
Starting with 16 known miRNAs validated as differen-
tially expressed between broilers and layers, and eight
muscle-related miRNAs (gga-miR-1, gga-miR-206, gga-
miR-499, gga-miR-221, gga-miR-222, gga-miR-128, gga-
miR-367 and gga-miR-27b), TargetScan (version 5.1)
[43] was used to predict putative targets. Given the
reported inverse correlation between miRNA and target
expression patterns [44], the analysis was restricted to
those differentially expressed miRNA targets whose
mRNA expression pattern opposed that of the corre-
sponding miRNAs. Expression levels of mRNA targets
of miRNAs were measured using commercial Affymetrix

Chicken Genome Arrays. Microarray experiments were
carried out by CapitalBio Corporation (Beijing, China).
Total RNA from skeletal muscles collected from broilers
and layers at E10, E12, E14 and E18, and prepared as
described above, was hybridized in triplicate with three
biological repeats from broilers and layers at each devel-
opmental stage. Therefore, a total of 24 microarrays
were used in the present study. Normalization was per-
formed using RMA [81] software with a CDF file anno-
tated by Dai et al. [82]. The Affymetrix GeneChip is a
commonly used microarray platform for genome-wide
expression studies. However, several genes/transcripts
on the arrays are out of date owing to updates in gen-
ome assemblies, causing problems when mapping the
probes to new versions of the genome assembly [83]. To
solve this problem, Dai et al. [82] aligned the probes to
different sources of genome data to filter out proble-
matic probes. The original. CEL files were re-annotated
in the present study using annotations generated by Dai
et al., ultimately obtaining 12,495 probe sets correspond-
ing to 12,495 Entrez genes. Entrez genes whose expres-
sion values changed more than 1.5 fold between broilers
and layers were selected for each of four time points. To
filter out genes that did not have identical expression
profiles in each group, t-tests (p-value < 0.05) were used
to obtain a final differentially expressed gene list. The
microarray data obtained were deposited in the GEO
database with the accession number GSE20990.
In addition to interactions between miRNAs and their

targets, interactions between miRNA targets were identi-
fied. To establish target-target interactions, PPI data
from the STRING database (version 8.0) were down-
loaded. The chicken PPI data were limited, so human
ortholog PPI data were used for these miRNA targets,
applying a previously proposed referencing strategy that
filtered the PPIs with gene expression patterns [45,46]
to increase the reliability of the predicted interactions.
The gene expression dataset used here contained nine
time points: E10, E12, E14, E18, Day1 (day of birth), W2
(postnatal week 2), W4, W6 and W8 for broilers and
layers. For each time point, there were three biological
repeats for a total of 54 microarrays (Additional file 16).
The generation of E10, E12, E14 and E18 expression
data is described above. Day 1, W2, W4, W6 and W8
expression data were generated in a previous study [27].
For each target-target interaction pair extracted from
the STRING database, a PCC value was calculated on
the basis of the expression profiles from E10 to W8. An
absolute PCC value of 0.3 (p-value < 0.05) was used as a
cutoff to establish putative target-target interactions.

Target validation using a luciferase reporter gene assay
A pGL3-control vector (pGL3) was used for 3’ UTR-luci-
ferase reporter assays. The TargetScan Human database
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http://www.targetscan.org/ was used to identify the pre-
dicted miR-1 binding site. 3’ UTR fragment of chicken
ACVR2B containing a miR-1 binding site was amplified
from chicken genomic DNA with primers [F: GCTCTA-
GAGCTGGCCAGTTTTGAAGCAGAGGC (Xba I) and
R: GCTCTAGAGCCCCCTGCTCACGGCTGTTGG (Xba
I)] and cloned downstream of the luciferase gene to create
the pGL3-luc-ACVR2B-UTR constructs. miR-1 seed
region mutations were generated by site-directed muta-
genesis with primers (mut-F: CAAACTCAGTATA-
TAAGCTATGAGTAAGGTTAGTATTGCAAAAC and
mut-R: GCAATACTAACCTTACTCATAGCTTATA-
TACTGAGTTTGATTGGT). Reporter assays were con-
ducted in triplicate using 293T cells in 24-well plates.
Transfections were performed with 150 ng of reporter
plasmid and 50 ng of miR-1 mimic or scramble (Fugene;
Roche). A pRL-TK reporter was used as an internal con-
trol to normalize for transfection efficiencies.
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