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Abstract

Background: MicroRNAs (miRNAs) are important genetic elements that regulate the expression of thousands of
human genes. Polymorphisms affecting miRNA biogenesis, dosage and target recognition may represent
potentially functional variants. The functional consequences of single nucleotide polymorphisms (SNPs) within
critical miRNA sequences and outside of miRNA genes were previously demonstrated using both experimental and
computational methods. However, little is known about how copy number variations (CNVs) affect miRNA genes.

Results: In this study, we analyzed the co-localization of all miRNA loci with known CNV regions. Using
bioinformatic tools we identified and validated 209 copy number variable miRNA genes (CNV-miRNAs) in CNV
regions deposited in Database of Genomic Variations (DGV) and 11 CNV-miRNAs in two sets of CNVs defined as
highly polymorphic. We propose potential mechanisms of CNV-mediated variation of functional copies of miRNAs
(dosage) for different types of CNVs overlapping miRNA genes. We also showed that, consistent with their essential
biological functions, miRNA loci are underrepresented in highly polymorphic and well-validated CNV regions.

Conclusion: We postulate that CNV-miRNAs are potential functional variants and should be considered high
priority candidate variants in genotype-phenotype association studies.

Background
MicroRNAs (miRNAs) are a family of short (~20 nt),
single-stranded, noncoding RNAs that are primarily
involved in post-transcriptional down-regulation of gene
expression in most eukaryotes [1]. Specific miRNAs are
engaged in a variety of processes, including develop-
ment, cell proliferation, differentiation and apoptosis [2].
Numerous studies have demonstrated that aberrant
over-expression or down-regulation of certain miRNAs
contribute to carcinogenesis and that these miRNAs can
therefore be classified as either oncogenes (oncomirs) or
tumor suppressors, respectively [3].
Mature, functional miRNAs are generated from pri-

mary precursors (pri-miRNA) encoded either by inde-
pendent transcriptional units or within protein- or
RNA-coding genes. In mammals, maturation of miRNAs
involves two subsequent RNA cleavage steps. The first
step takes place in the nucleus and is carried out by the
Drosha nuclease to produce the secondary precursor

(pre-miRNA) [4]. The pre-miRNAs (~60 nt) possess a
hairpin structure, with the double-stranded portion
interrupted by one or more mismatched nucleotides.
Upon export to the cytoplasm, the pre-miRNA is further
processed into an miRNA duplex by the RNAse III
Dicer; [5] one of the duplex strands (passenger) is
released, and the other serves as the mature miRNA [6].
The miRNA-induced silencing complex (miRISC) inter-
acts with complementary target sequences, which are
usually located within the 3’ untranslated regions
(3’UTRs) of mRNAs, causing mRNA degradation or
inhibition of translation [7-9].
It is estimated that, in humans and other mammals,

the expression of at least one-third of protein-coding
genes is fine-tuned by approximately 1,000 miRNAs
[10,11]. Currently, over 700 human miRNAs have been
identified, and their sequences are deposited in miRBase
(the microRNA database; http://www.mirbase.org).
Polymorphisms in miRNA genes can affect the expres-

sion of many downstream-regulated genes [12,13]. The
most common form of polymorphism that affects the
function of an miRNA (e.g., the structure of miRNA
precursors, the efficiency of miRNA biogenesis and
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miRNA-target recognition) is the single nucleotide poly-
morphism (SNP). Computational and experimental stu-
dies have revealed many SNPs located in different parts
of pre-miRNA sequences [14-16]. The occurrence of
SNPs (including INDELs) in pre-miRNA regions is sig-
nificantly lower than that in the surrounding reference
sequences [16]. While sequences of mature miRNAs are
the most conserved, the sequences of anti-miRNAs and
the stems (outside miRNA and anti-miRNA) and loops
of pre-miRNAs are somewhat less conserved [16]. SNPs
naturally occurring within pre-miRNA sequences may
affect miRNA biogenesis and impair miRNA-mediated
gene silencing, as demonstrated by functional assays
[15,17]. Recently, large genome-wide association study
has demonstrated that also SNPs located outside (>14
kb) of pre-miRNA sequences can modulate miRNA
expression both as cis- and trans-regulators (miRNA-
eQTLs). One of identified miRNA-eQTLs (rs1522653)
was shown to correlate with expression of 5 different
miRNAs [18].
MiRNA target sites are also conserved genetic ele-

ments. Bioinformatic analyses show that SNPs are
underrepresented in both experimentally validated and
computationally predicted miRNA target sites, [16,19]
and SNPs have the potential to either disrupt or create
new miRNA target sites [19]. It has also been proposed
that target site polymorphisms may play a role in evolu-
tion by altering miRNA specificity and function.
However, little is known about copy number variation

(CNV) of miRNA genes. CNVs are segments of genomic
DNA (roughly 1 kb to 1 Mb in length) that show vari-
able numbers of copies in the genome due to deletions
or duplications. CNVs recurrently occurring in a popu-
lation are often called copy number polymorphisms
(CNPs). Only a few CNV discovery studies report the
presence of miRNAs in detected CNV regions and
recognize their potential consequences [20-22]. Indeed,
it was suggested that a comprehensive analysis of the
co-localization of miRNAs and CNVs is needed [12].
Numerous studies show that CNVs can influence the

expression of protein-coding genes in a copy number-
dependent manner [23-25]. Recent results of genome-
wide association study has confirmed such association
for dozens of protein-coding genes and showed that
CNVs capture at least 18% of the total detected genetic
variation in gene expression [26]. It seems obvious that
the expression of miRNA genes can also be modified
by CNVs. This notion is supported by results from
cancer genetics studies. For instance, there is a correla-
tion between somatic copy number variation and the
expression of miRNA genes, and miRNA genes recur-
rently amplified or lost in cancer genomes can serve as
oncogenes or cancer suppressor genes, respectively
[27-31].

In this study, by comparing the coordinates of human
miRNAs with different sets of CNV regions (DGV-
deposited and highly polymorphic), we identified over
200 human copy number variable miRNA loci. By com-
paring fractions of miRNAs and the genome that are
covered by differentially validated CNV regions, we
showed that miRNA loci are underrepresented in highly
polymorphic CNVs, but not in CNVs deposited in the
DGV database. We discuss the potential functional rele-
vance of identified copy number variable miRNAs and
propose models of how different types of CNVs can
affect miRNA dosage.

Results and Discussion
Prior to bioinformatic identification of copy number
variable miRNA genes (CNV-miRNAs), we compared
the frequency of SNPs in annotated pre-miRNA
sequences (3.7 SNPs/1,000 bp) and in reference human
genome (4.8 SNPs/1,000 bp). Significantly lower number
of SNPs in the pre-miRNA sequences (Fisher’s exact
test; p < 0.0001) most likely results from SNP purifica-
tion effect and confirms general conservation of the ana-
lyzed pre-miRNA sequences. These analyses confirmed a
SNP purification effect in pre-miRNA sequences
reported previously [16]. The much higher number of
SNPs identified in annotated pre-miRNA sequences in
our study (N = 229; Additional file 1) versus N = 65
reported previously [16] results from the increased num-
ber of both SNPs (dbSNP - build 130; Apr 30, 2009;
only annotated as ‘single’; ~14 million SNPs) and miR-
NAs (miRBase - v 13.0), available in versions of data-
bases used in this study.
To identify CNV-miRNAs, we compared the positions

of miRNA loci with three sets of CNVs: ‘DGV-deposited’
(N = 29133; 30% genome coverage), ‘polymorphic-SMC’
(N = 1319; 1.2% genome coverage) [32] and ‘poly-
morphic-DC’ (N = 5037; 2.3% genome coverage) [22]
CNVs. ‘DGV-deposited’ CNVs include all 29133 CNVs
deposited in the Database of Genomic Variants (DGV
update Aug 05, 2009 - http://projects.tcag.ca/variation).
Two sets of ‘polymorphic’ CNVs (’polymorphic-SMC’
[32] and ‘polymorphic-DC’ [22]) include highly poly-
morphic CNVs (minor allele frequency >0.01) validated
by high-quality genotyping in two recent CNV-discovery
studies using CNV-dedicated high-density hybrid arrays
(combining traditional SNP probes and probes targeting
CNVs) [22,32]. In both of these studies, precise break-
points and unambiguous copy numbers were deter-
mined for each analyzed sample. All ‘DGV-deposited’
CNV-miRNA regions were further characterized by the
following validation factors: (i) number of publications
reporting CNVs (references), (ii) number of overlapping
CNVs (DGV records) and (iii) number of observations
in discovery studies (frequency) (Additional file 2). Since
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the exact boundaries of miRNA genes (including regula-
tory elements) are difficult to determine, we used the
genomic coordinates of all pre-miRNA loci deposited in
miRBase (v 13.0; N = 715) as a proxy of miRNA gene
sequences (three pre-miRNA loci located in the mito-
chondrial genome were excluded from our analysis)
[33,34]. We realize, however, that CNVs overlapping
other functional regions of miRNA coding genes (e.g.,
promoters) can also affect miRNA biogenesis and func-
tionality, and those CNVs will be missed in our analysis.
The CNV-miRNAs identified in ‘DGV-deposited ’

CNVs (N = 209) and in two sets of ‘polymorphic ’
CNVs (N = 4 and N = 8) are shown in Additional file
2 and Table 1, respectively. Top-validated ‘DGV-
deposited’ CNV-miRNAs are also shown in Table 2.
Most miRNA loci identified in ‘polymorphic’ CNVs
also overlapped with top-validated ‘DGV-deposited’
CNV regions (Table 1 and Table 2). All ‘polymorphic’
CNV-miRNAs were relatively frequent (combined
minor genotype frequency >0.1 in at least one HapMap
population). Among the identified miRNA-CNVs, we

found deletions (e.g., hsa-mir-384 and hsa-mir-1324),
duplications (e.g., hsa-mir-1972 and hsa-mir-1977),
and multiple duplications (multiallelic polymorphisms;
e.g., hsa-mir-1233 and hsa-mir-1268). The number of
observed copies ranged from 0 (e.g., hsa-mir-384 and
hsa-mir-650) to 6 (e.g., hsa-mir-1268).
The sequences of miRNA deposited in miRBase are

derived from discovery studies in which many strict
miRNA verification criteria were applied (e.g. hairpin
forming potential, evolutionary conservation, presence
in multiple clones/sequence reads or homogeneity of
the 5’end). The SNP frequency analysis presented in this
study also confirmed global conservation of annotated
pre-miRNA sequences. However, there is still a possibi-
lity that some of the miRNAs in the miRBase represent
experimental artifacts of false positive discoveries [35].
To provide additional data that can further validate
miRNAs identified in CNVs we have conducted bioin-
formatic analysis of their expression and conservation.
Table 1 and Table 2 show that according to different
miRNA expression resources summarized in mimiRNA

Table 1 miRNA loci localized in polymorphic CNV regions

miRNAs localized in ‘polymorphic-SMC’ CNV regions

miRNA
ID

miRNA
position

dupl. CNV region
position

genotypes CNV ID functional relevance expression (mimiRNA/[18]) conservation

mir-
1268

chr15:20014593-
20014644

chr15:19803370-
20089386

2,3,4,5,6 2057 1) recurrently deleted in
classical Hodgkin’s
lymphoma [47]

not reported/NA primates

mir-
1233

chr15:32607783-
32607864

chr15 chr15:32487975-
32617680

0,1,2,3 2082 1) not reported/NA primates

mir-
1972

chr16:15011679-
15011755

chr16 chr16:14897364-
15016088

2,3,4 2141 not reported/NA primates

mir-384 chrX:76056092-
76056179

chrX:76053855-
76057477

0,1,2 2648 in several tissues/NA mammals

miRNAs localized in ‘polymorphic-DC’ CNV regions

miRNA
ID

miRNA
position

dupl. CNV region
position

genotypes CNV ID functional relevance expression (mimiRNA/[18]) conservation

mir-
1977

chr1:556050-
556128

chrM chr1:554403-
560267

2,3,4 3.1 not reported/NA primates

mir-
1324

chr3:75762604-
75762699

chr3:75464498-
75782745

1,2 1432.2 not reported/NA primates

mir-
548i-2

chr4:9166887-
9167035

chr4:9117494-
9354801

1,2 1815.3 not reported/NA primates

mir-
1275

chr6:34075727-
34075806

chr6:34071086-
34077139

1,2 2853.1 2) upregulated in blood
cells of MS patients [41]

not reported/NA primates

mir-
1302-2

chr9:20144-
20281

chr1,
15,19

chr9:485-38531 2,3 4134_full not reported/NA primates

mir-
1233

chr15:32461562-
32461643

chr15 chr15:32450046-
32662643

2,3,4,5 6351.3 1) not reported/NA primates

mir-
1233

chr15:32607783-
32607864

chr15 chr15:32450046-
32662643

2,3,4,5 6351.3 1) not reported/NA primates

mir-650 chr22:21495270-
21495365

chr22:20711019-
21578950

0,1,2 8103_full 1) in several tissues (mostly ovary
and ovary-derived cancers)/

high

primates

dupl. - localization of duplicated copies; mimiRNA/[18] - miRNA expression according to database mimiRNA/and according to resent result of expression analysis
in primary fibroblast cells (high - high expression, absent - low or undetectable expression in fibroblast cells, NA - not analyzed).

Marcinkowska et al. BMC Genomics 2011, 12:183
http://www.biomedcentral.com/1471-2164/12/183

Page 3 of 9



Table 2 miRNA loci localized in CNV regions validated by multiple overlapping CNVs

miRNAs localized in ‘DGV-deposited’ CNV regions validated by multiple overlapping CNVs

miRNA
ID

miRNA position dupl. minimal CNV
region

#
CNVs

functional relevance expression
(mimiRNA/[18])

conservation

mir-
1977

chr1:556050-
556128

chrM chr1:554340-
569354

6 not reported/NA primates

mir-149 chr2:241044091-
241044179

chr2:241039698-
241051687

6 3) downregulated in squamous cell carcinoma
of the tongue [44]

in multiple tissues/
high

vertebrates

mir-566 chr3:50185763-
50185856

chr3:50173490-
50214015

7 in several tissues/
absent

primates

mir-
1324

chr3:75762604-
75762699

chr3:75761737-
75839337

6 not reported/NA primates

mir-570 chr3:196911452-
196911548

chr3:196905807-
196918722

9 in several tissues/
absent

primates

mir-
548i-2

chr4:9166887-
9167035

chr4:9152768-
9182838

9 not reported/NA primates

mir-
548i-3

chr8:7983873-
7984021

chr8:7965981-
8024983

14 not reported/NA primates

mir-383 chr8:14755318-
14755390

chr8:14741501-
14763659

8 4) downregulated in non-obstructive
azoospermia [39]

in multiple tissues/
absent

vertebrates

mir-661 chr8:145091347-
145091435

chr8:145090343-
145104971

8 5) downregulates the expression of metastatic
tumor antigen 1 (MTA1), inhibits the motility,
invasiveness, anchorage-independent growth,

and tumorigenicity of cancer cells [48]

in several tissues
(mostly ovary and
ovary-derived
cancers)/absent

primates

mir-
1299

chr9:68292059-
68292141

chr9:68291272-
68298205

7 not reported/NA primates

mir-126 chr9:138684875-
138684959

chr9:138680837-
138688363

14 6) suppresses cell growth in colon cancer [43];
downregulates HOXA9, playing a role in the
development of many organs and often
upregulated in myeloid leukemias [37];

regulates angiogenic signaling and vascular
integrity [38]; overexpressed in ALL and AML

[42]

high, in multiple
tissues/high

vertebrates

mir-202 chr10:134911006-
134911115

chr10:134903011-
134918923

10 in several tissues/
absent

vertebrates

mir-
1268

chr15:20014593-
20014644

chr15:19975453-
20046356

37 1) see Table 1 not reported/NA primates

mir-
1233

chr15:32461562-
32461643

chr15 chr15:32461525-
32469857

9 1) see Table 1 not reported/NA primates

mir-
1233

chr15:32607783-
32607864

chr15 chr15:32599966-
32615283

17 1) see Table 1 not reported/NA primates

mir-662 chr16:760184-
760278

chr16:750040-
764098

6 in several tissues/
absent

primates

mir-
1972

chr16:68621750-
68621826

chr11 chr16:68621490-
68653097

6 not reported/NA primates

mir-142 chr17:53763592-
53763678

chr17:53751608-
53767652

11 7) increased expression correlates with rejection
of organ transplants [40]; overexpressed in pre-
B-ALL patients [46]; potentially involved in the
development of blood cancer or brain tumors

[45]

high, in multiple
tissues/absent

vertebrates

mir-
1270

chr19:20371080-
20371162

chr19:20370872-
20383238

9 not reported/NA primates

mir-663 chr20:26136822-
26136914

chr20:26136626-
26139184

6 in several tissues/NA primates

mir-650 chr22:21495270-
21495365

chr22:21494381-
21502189

38 1) see Table 1 in several tissues/
high

primates

mir-
514-2

chrX:146171153-
146171240

chrX:146168796-
146174575

6 in several tissues/NA mammals

mir-
514-3

chrX:146173851-
146173938

chrX:146168796-
146174575

6 in several tissues/NA mammals

dupl. - localization of duplicated copies; mimiRNA/[18] - miRNA expression according to database mimiRNA/and according to resent result of expression analysis
in primary fibroblast cells (high - high expression, absent - low or undetectable expression in fibroblast cells, NA - not analyzed).
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database [36] over half (14/26) of top-validated CNV-
miRNAs (Table 1 and Table 2) were shown to be
expressed in at least several tissues/cell lines (detailed
expression profiles are shown in Additional file 3).
MiRNA whose expression is not reported in mimiRNA
were either not analyzed for expression or did not show
expression in the analyzed tissues. Additionally, three
out of ten (30%) top-validated CNV-miRNAs (Table 1
and Table 2) which expression in primary fibroblast cell
lines was analyzed by the micro-fluidics-based TaqMan
Human MiRNA Array show high level of expression
[18]. Based on the currently available sequence data for
miRNAs deposited in miRBase and blast searches of the
vertebrate genomic sequences we also determined evolu-
tionary conservation of the miRNAs found in top-vali-
dated CNV regions. Most of these miRNAs seem to be
specific only for primates. There are, however, 8 miR-
NAs that are conserved across mammals or vertebrates
(Table 1 and Table 2).
The functional relevance of several of the CNV-miR-

NAs identified in this survey was previously reported in
the literature (manual screening; Table 1 and Table 2).
CNV-miRNAs are involved in many processes and phe-
notypes (diseases), including organ development [37],
angiogenesis [38], male infertility [39], transplant rejec-
tion [40], multiple sclerosis [41] and cancer. Many
CNV-miRNAs are specifically deleted, amplified or
expressed in different types of cancers [42-47] and can
regulate the expression of important cancer-related
genes [37,48]. The copy number variation of those func-
tionally relevant miRNAs can modulate or predispose
one to the aforementioned phenotypes.
In the next step, we determined whether the overlap

of CNVs and miRNA loci was random (null hypothesis)
or whether the CNVs were underrepresented at these
loci (alternative hypothesis). To test this hypothesis, we
compared fractions of miRNA loci and fractions of the
genome covered by differentially defined CNV regions.
Figure 1A shows that the fraction of miRNA loci cov-
ered by two sets of ‘polymorphic’ CNVs is approxi-
mately two times lower than expected (fraction of the
covered genome). Although this effect was only margin-
ally significant (Figure 1A), it suggested that at least
highly polymorphic CNVs are under negative (purifying)
selection at miRNA genes. Conversely, the fraction of
miRNAs (0.292) covered by ‘DGV-deposited’ CNVs cor-
responded almost exactly to the fraction of the genome
covered by those CNVs (0.299). The CNV purification
effect was not observed, even after narrowing ‘DGV-
deposited’ CNV regions by different validation factors
defined above (Figure 1B and 1C). The fact that the pur-
ifying effect did not apply to the ‘DGV-deposited’ CNVs
suggested that a significant portion of these CNVs are
very rare, private, or significantly oversized or represents

false positive artifacts. This observation is consistent
with the conclusions from other recently published
results [32,49].
Although copy number variation can influence gene

expression through different mechanisms (e.g., position
effect and deletion or duplication of regulatory elements

Figure 1 Comparison of observed and expected number
(fraction) of miRNA loci located in different CNV regions.
Expected values were estimated based on the fraction of the
genome covered by CNVs. A) Graph showing the fractions of
miRNA loci (observed number of CNV-miRNAs; green bars) and the
genome (expected number of CNV-miRNAs; orange bars) covered
by two sets of ‘polymorphic’ CNVs. Binomial probabilities of equal or
lower than the observed number of miRNA loci covered by CNVs
are indicated over the bars. B) and C) The fractions of miRNA loci
and the genome covered by ‘DGV-deposited’ CNV regions gradually
narrowed by the increasing number of overlapping CNVs (DGV
records) (B) and the increasing number of reporting references (C).
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that control transcription or splicing), the most obvious
mechanism is in the variability of dosage (number of
functional copies). All of these mechanisms can affect
both protein-coding and miRNA genes. However,
mechanisms of dosage variation may be different for
protein-coding and miRNA genes. In Figure 2, potential
consequences of different CNV types overlapping differ-
ent parts of miRNA genes are proposed. Not only whole
gene amplification but also certain partial gene duplica-
tions (multiple duplications) can increase the dosage of
miRNAs. Conversely, partial gene deletions may not
always result in decreased miRNA dosage. This con-
trasts with the situation observed for protein-coding
genes, in which only duplication of the entire gene
(including the promoter and regulatory sequences) can
lead to an increased number of functional copies, and
almost every (even partial) gene deletion is deleterious.
Analysis of 11 miRNAs located in CNVs with well

defined breakpoints (Table 1) showed that (i) 3 of these
miRNAs are located in the protein coding genes which
are entirely positioned within CNVs, (ii) 4 of the miR-
NAs are located in intergenic regions and are flanked by
at least 20 kb of CNV sequences, (iii) 3 miRNAs are
located in intergenic regions flanked by short CNV
sequences (< 5 kb) and (iv) 1 miRNA is located in a
gene of which the 3’end extends beyond CNV (Addi-
tional file 4). Taking into account the average size of a
human gene (~30 kb) one can expect that miRNAs
located in large CNVs (groups (i) and (ii)) will be
expressed from genes entirely embedded within the
CNV regions. According to the model presented in Fig-
ure 2A the expression of such miRNAs very likely will
correlate with expression (number of copies) of genes
from which these miRNAs are generated (no matter
whether generated from protein-coding or non-coding
transcripts). MiRNA located in short CNVs (group (iii))
most likely will form the tandem copies transcribed
from one promoter. A number of such copies may mod-
ulate the number of miRNA precursors (pre-miRNAs)
present in one primary transcript (pri-miRNA) and thus
may modulate expression of miRNA (Figure 2D).
Expression of miRNA whose gene only partially is
embedded in CNV (iii) may be modified according to
the model shown in Figure 2B and will depend on
expression and stability of the transcript truncated at
the 3’end. Moreover, it should be noted that some pre-
miRNA sequences occur in the genome in multiple
copies. Although the functionality of such copies is still
mostly unknown, the duplicated copies of miRNA genes
may mask the effect of copy number variations that
usually affect only one copy.
Finally, not only common CNVs, but also CNVs

implicated in specific diseases can affect miRNA loci
and thus can play important role in pathogenesis. We

Figure 2 Potential mechanism of CNV-mediated variation of
miRNA dosage. Schematic representation of an miRNA gene and
its primary transcript (solid or dotted arrow-lines). The position of
the pre-miRNA sequence is indicated as a hairpin-loop structure in
the miRNA primary transcript. Dotted lines represent transcripts
unlikely to be produced due to the lack of promoter and
transcriptional start sequences. Orange boxes represent CNV regions
(deletions, duplications and dispersed duplications). The following
panels show a CNV spanning different parts of the miRNA gene: (A)
whole gene, (B) 5’-portion, (C) 3’-portion and (D) intragenic region
of the gene. +, - and 0 indicate potential increase, decrease and no
change of miRNA dosage, respectively.
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have identified 38 loci of miRNAs located in chromoso-
mal regions implicated in microdeletion/microduplica-
tion syndromes (DECYPHER v5.0 [50]) (Additional file
5). For example, six miRNA loci (hsa-mir-185, hsa-mir-
1306, hsa-mir-1286, hsa-mir-649, hsa-mir-301b and hsa-
mir-130b) are located within genomic region implicated
in DiGeorge syndrome. The role of somatic copy num-
ber variation of miRNA genes in cancer is extensively
investigated in multiple studies (e.g. [27-31]) and was
recently summarized in several review articles [51-53].

Conclusions
Although ‘polymorphic’ CNVs showed some purifying
effects at miRNA loci, there were still many miRNA loci
that overlapped with known CNV regions (Additional
file 2 and Table 2), including those that are highly vali-
dated and confirmed by high-quality genotyping (Table
1). Taking into account the CNV genome coverage
(1.2% ‘polymorphic-SMC’ and 2.3% ‘polymorphic-DC’)
and the relatively small overlapping fractions (0.39 and
0.20, respectively) between the two sets of ‘polymorphic’
CNVs analyzed in this study, we estimated that up to
10% of the human genome is covered by highly poly-
morphic CNVs. This fraction corresponds to approxi-
mately 30 highly polymorphic CNV-miRNAs in the
human genome (extrapolation of the fraction of miRNA
loci covered by highly polymorphic CNVs analyzed in
this study). It is likely that at least some of these loci
are among the CNV-miRNAs identified from the top-
validated ‘DGV-deposited’ CNVs (Table 2 and Addi-
tional file 2).
CNV-miRNAs are potential functional variants and

should be considered high priority candidate variants in
genotype-phenotype association studies, especially when
they are located in regions implicated by linkage or
association studies. As indicated in Table 1, only a small
fraction of CNV-miRNAs were genotyped in three Hap-
Map populations, which provides precise information
about their polymorphisms. This is mostly due to the
lack of appropriate methods for precise characterization
of CNV polymorphisms. Although several genome-wide
approaches that substantially fulfill the above require-
ment were proposed recently, a simple and inexpensive
method that enables accurate characterization of several
CNVs of interest in a large number of samples is still
needed. The lack of such a method significantly ham-
pers the analyses of CNVs and their correlation with the
phenotype. To verify and characterize the polymorph-
isms of all CNV-miRNAs, we are developing several
medium-throughput assays suited for large scale popula-
tion studies that are focused on selected CNVs of poten-
tial functional effect. These assays will take advantage of
the MLPA-based strategy proposed previously [54-56].

Methods
Genomic coordinates (hg18) of 718 human miRNA loci,
13 600 093 SNPs (only annotated as ‘single’), 29 133
CNVs (only annotated as ‘Copy Number’) and 58 loci
implicated in microdeletion syndromes were down-
loaded from miRBase v13.0 http://www.mirbase.org,
dbSNP build 130; Apr 30, 2009, Database of Genomic
Variants update Aug 05, 2009 http://projects.tcag.ca/var-
iation and DECIPHER database v5.0 [50]http://decipher.
sanger.ac.uk, respectively. The coordinates of 1319
CNVs described as ‘polymorphic-SMC’ and 5037 CNVs
described as ‘polymorphic-DC’ were extracted from sup-
plementary materials of references [32] and [22], respec-
tively. The number of miRNA loci and fraction of
genome covered by CNV regions were calculated using
‘feature coverage’ and ‘base coverage’ tools available on
the Galaxy, web portal for large-scale interactive data
analyses [57].
The expression profiles of CNV-miRNAs were gener-

ated with the use of mimiRNA database [36] that sum-
marizes expression data from miRNA Atlas [58],
quantitative real-time PCR [59,60] as well as microarray
and deep sequencing data from GEO (Gene Expression
Omnibus) [61]. The assessment of evolutionary conser-
vation of microRNAs was done based on the data avail-
able at the miRBase and blast searches of the vertebrate
genomic sequences with human pre-microRNAs.
All statistical analyses were performed using Statistica

(StatSoft, Tulsa, OK). The Fisher’s exact test for com-
parison of SNPs frequency in the annotated miRNA
sequences and in the total genome sequence was calcu-
lated as described in [62], with the use of the online
tool available on webpage http://www.langsrud.com/
fisher.htm.

Additional material

Additional file 1: SNPs identified in pre-miRNA sequences. Excel
table containing list of SNPs identified in annotated pre-miRNA
sequences.

Additional file 2: miRNA identified in CNV regions. Excel table
containing list of pre-miRNA annotated sequences identified in ‘DGV-
deposited’ CNVs.

Additional file 3: Expression profiles of selected CNV-miRNAs.
Expression profiles of selected CNV-miRNAs generated with the use of
mimiRNA database [36]. The expression of all miRNAs was normalized in
each tissue to a standard score spanning 1-1,000 (1,000 represents
highest expression observed in tissue). The bars represent mean
expression measured in multiple experiments and the error bars
represent standard error of the mean. The variability of the expression
level is indicated by colors (red - lowest variability; yellow - highest
variability). Details can be found on mimiRNA webpage http://mimirna.
centenary.org.au and in [36].

Additional file 4: miRNAs located in CNVs with well defined
breakpoints. Excel table showing characteristics of miRNAs located in
CNVs with well defined breakpoints.
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Additional file 5: miRNAs located in chromosomal regions
implicated in microdeletion/microduplication syndromes. Excel table
containing list of miRNAs located in chromosomal regions implicated in
microdeletion/microduplication syndromes (DECYPHER v5.0 [50]).

Acknowledgements
This work was supported by the Ministry of Science and Higher Education
[N N302 278937, N N302 260938].
The authors have declared no conflict of interest.

Author details
1Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan,
Poland. 2Computational Genomics Laboratory, Institute of Molecular Biology
and Biotechnology, Adam Mickiewicz University, Poznan, Poland.

Authors’ contributions
MM performed the computational analysis, literature screening, participated
in the manuscript preparation. MS participated in the computational analysis
(sequence conservation analysis) and the manuscript preparation. WJK
participated in the design of the study and in the manuscript preparation.
PK performed the statistical analysis, conceived of the study, and
participated in its design and coordination. All authors have read and
approved the final manuscript.

Received: 24 March 2010 Accepted: 12 April 2011
Published: 12 April 2011

References
1. Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function.

Cell 2004, 116: 281-297.
2. Kim VN, Nam JW: Genomics of microRNA. Trends Genet 2006, 22: 165-173.
3. Esquela-Kerscher A, Slack FJ: Oncomirs - microRNAs with a role in cancer.

Nat Rev Cancer 2006, 6: 259-269.
4. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O,

Kim S, Kim VN: The nuclear RNase III Drosha initiates microRNA
processing. Nature 2003, 425: 415-419.

5. Bernstein E, Caudy AA, Hammond SM, Hannon GJ: Role for a bidentate
ribonuclease in the initiation step of RNA interference. Nature 2001, 409:
363-366.

6. Hammond SM, Bernstein E, Beach D, Hannon GJ: An RNA-directed
nuclease mediates post-transcriptional gene silencing in Drosophila
cells. Nature 2000, 404: 293-296.

7. Guo H, Ingolia NT, Weissman JS, Bartel DP: Mammalian microRNAs
predominantly act to decrease target mRNA levels. Nature 2010, 466:
835-840.

8. Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E,
Bertrand E, Filipowicz W: Inhibition of translational initiation by Let-7
MicroRNA in human cells. Science 2005, 309: 1573-1576.

9. Yekta S, Shih IH, Bartel DP: MicroRNA-directed cleavage of HOXB8 mRNA.
Science 2004, 304: 594-596.

10. Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by
adenosines, indicates that thousands of human genes are microRNA
targets. Cell 2005, 120: 15-20.

11. Rajewsky N: microRNA target predictions in animals. Nat Genet 2006,
38(Suppl): S8-13.

12. Borel C, Antonarakis SE: Functional genetic variation of human
miRNAs and phenotypic consequences. Mamm Genome 2008, 19:
503-509.

13. Georges M, Coppieters W, Charlier C: Polymorphic miRNA-mediated gene
regulation: contribution to phenotypic variation and disease. Curr Opin
Genet Dev 2007, 17: 166-176.

14. Iwai N, Naraba H: Polymorphisms in human pre-miRNAs. Biochem Biophys
Res Commun 2005, 331: 1439-1444.

15. Duan R, Pak C, Jin P: Single nucleotide polymorphism associated with
mature miR-125a alters the processing of pri-miRNA. Hum Mol Genet
2007, 16: 1124-1131.

16. Saunders MA, Liang H, Li WH: Human polymorphism at microRNAs and
microRNA target sites. Proc Natl Acad Sci USA 2007, 104: 3300-3305.

17. Sun G, Yan J, Noltner K, Feng J, Li H, Sarkis DA, Sommer SS, Rossi JJ: SNPs
in human miRNA genes affect biogenesis and function. RNA 2009, 15:
1640-1651.

18. Borel C, Deutsch S, Letourneau A, Migliavacca E, Montgomery SB, Dimas AS,
Vejnar CE, Attar H, Gagnebin M, Gehrig C, et al: Identification of cis- and
trans-regulatory variation modulating microRNA expression levels in
human fibroblasts. Genome Res 2011, 21: 68-73.

19. Chen K, Rajewsky N: Natural selection on human microRNA binding sites
inferred from SNP data. Nat Genet 2006, 38: 1452-1456.

20. Wong KK, deLeeuw RJ, Dosanjh NS, Kimm LR, Cheng Z, Horsman DE,
MacAulay C, Ng RT, Brown CJ, Eichler EE, Lam WL: A comprehensive
analysis of common copy-number variations in the human genome. Am
J Hum Genet 2007, 80: 91-104.

21. Lin CH, Li LH, Ho SF, Chuang TP, Wu JY, Chen YT, Fann CS: A large-scale
survey of genetic copy number variations among Han Chinese residing
in Taiwan. BMC Genet 2008, 9: 92.

22. Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, Aerts J,
Andrews TD, Barnes C, Campbell P, et al: Origins and functional impact of
copy number variation in the human genome. Nature 2010.

23. Perry GH, Dominy NJ, Claw KG, Lee AS, Fiegler H, Redon R, Werner J,
Villanea FA, Mountain JL, Misra R, et al: Diet and the evolution of human
amylase gene copy number variation. Nat Genet 2007, 39: 1256-1260.

24. Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G,
Nibbs RJ, Freedman BI, Quinones MP, Bamshad MJ, et al: The influence of
CCL3L1 gene-containing segmental duplications on HIV-1/AIDS
susceptibility. Science 2005, 307: 1434-1440.

25. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW,
Lee C: Detection of large-scale variation in the human genome. Nat
Genet 2004, 36: 949-951.

26. Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N,
Redon R, Bird CP, de Grassi A, Lee C, et al: Relative impact of nucleotide
and copy number variation on gene expression phenotypes. Science
2007, 315: 848-853.

27. Bottoni A, Piccin D, Tagliati F, Luchin A, Zatelli MC, degli Uberti EC: miR-15a
and miR-16-1 down-regulation in pituitary adenomas. J Cell Physiol 2005,
204: 280-285.

28. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H,
Rattan S, Keating M, Rai K, et al: Frequent deletions and down-regulation
of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic
leukemia. Proc Natl Acad Sci USA 2002, 99: 15524-15529.

29. Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, Liang S,
Naylor TL, Barchetti A, Ward MR, et al: microRNAs exhibit high frequency
genomic alterations in human cancer. Proc Natl Acad Sci USA 2006, 103:
9136-9141.

30. Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S, Yoshida Y, Seto M:
Identification and characterization of a novel gene, C13orf25, as a target
for 13q31-q32 amplification in malignant lymphoma. Cancer Res 2004, 64:
3087-3095.

31. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S,
Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM: A
microRNA polycistron as a potential human oncogene. Nature 2005, 435:
828-833.

32. McCarroll SA, Kuruvilla FG, Korn JM, Cawley S, Nemesh J, Wysoker A,
Shapero MH, de Bakker PI, Maller JB, Kirby A, et al: Integrated detection
and population-genetic analysis of SNPs and copy number variation. Nat
Genet 2008, 40: 1166-1174.

33. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ: miRBase: tools for
microRNA genomics. Nucleic Acids Res 2008, 36: D154-158.

34. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ:
miRBase: microRNA sequences, targets and gene nomenclature. Nucleic
Acids Res 2006, 34: D140-144.

35. Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D,
Johnston WK, Russ C, Luo S, Babiarz JE, et al: Mammalian microRNAs:
experimental evaluation of novel and previously annotated genes. Genes
Dev 2010, 24: 992-1009.

36. Ritchie W, Flamant S, Rasko JE: mimiRNA: a microRNA expression profiler
and classification resource designed to identify functional correlations
between microRNAs and their targets. Bioinformatics 2010, 26: 223-227.

37. Shen WF, Hu YL, Uttarwar L, Passegue E, Largman C: MicroRNA-126
regulates HOXA9 by binding to the homeobox. Mol Cell Biol 2008, 28:
4609-4619.

Marcinkowska et al. BMC Genomics 2011, 12:183
http://www.biomedcentral.com/1471-2164/12/183

Page 8 of 9

http://www.biomedcentral.com/content/supplementary/1471-2164-12-183-S5.XLS
http://www.ncbi.nlm.nih.gov/pubmed/14744438?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16446010?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16557279?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14508493?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14508493?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11201747?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11201747?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10749213?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10749213?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10749213?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20703300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20703300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16081698?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16081698?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15105502?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15652477?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15652477?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15652477?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16736023?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18787897?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18787897?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17467975?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17467975?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15883035?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17400653?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17400653?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17360642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17360642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19617315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19617315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21147911?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21147911?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21147911?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17072316?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17072316?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17160897?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17160897?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19108714?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19108714?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19108714?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17828263?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17828263?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15637236?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15637236?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15637236?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15286789?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17289997?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17289997?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15648093?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15648093?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12434020?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12434020?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12434020?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16754881?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16754881?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15126345?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15126345?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15944707?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15944707?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18776908?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18776908?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17991681?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17991681?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381832?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20413612?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20413612?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19933167?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19933167?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19933167?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18474618?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18474618?dopt=Abstract


38. Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, Ivey KN,
Bruneau BG, Stainier DY, Srivastava D: miR-126 regulates angiogenic
signaling and vascular integrity. Dev Cell 2008, 15: 272-284.

39. Lian J, Zhang X, Tian H, Liang N, Wang Y, Liang C, Li X, Sun F: Altered
microRNA expression in patients with non-obstructive azoospermia.
Reprod Biol Endocrinol 2009, 7: 13.

40. Anglicheau D, Sharma VK, Ding R, Hummel A, Snopkowski C, Dadhania D,
Seshan SV, Suthanthiran M: MicroRNA expression profiles predictive of
human renal allograft status. Proc Natl Acad Sci USA 2009, 106: 5330-5335.

41. Keller A, Leidinger P, Lange J, Borries A, Schroers H, Scheffler M, Lenhof HP,
Ruprecht K, Meese E: Multiple sclerosis: microRNA expression profiles
accurately differentiate patients with relapsing-remitting disease from
healthy controls. PLoS One 2009, 4: e7440.

42. Zhang H, Luo XQ, Zhang P, Huang LB, Zheng YS, Wu J, Zhou H, Qu LH,
Xu L, Chen YQ: MicroRNA patterns associated with clinical prognostic
parameters and CNS relapse prediction in pediatric acute leukemia. PLoS
One 2009, 4: e7826.

43. Guo C, Sah JF, Beard L, Willson JK, Markowitz SD, Guda K: The noncoding
RNA, miR-126, suppresses the growth of neoplastic cells by targeting
phosphatidylinositol 3-kinase signaling and is frequently lost in colon
cancers. Genes Chromosomes Cancer 2008, 47: 939-946.

44. Wong TS, Liu XB, Wong BY, Ng RW, Yuen AP, Wei WI: Mature miR-184 as
Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue.
Clin Cancer Res 2008, 14: 2588-2592.

45. Rossi S, Sevignani C, Nnadi SC, Siracusa LD, Calin GA: Cancer-associated
genomic regions (CAGRs) and noncoding RNAs: bioinformatics and
therapeutic implications. Mamm Genome 2008, 19: 526-540.

46. Ju X, Li D, Shi Q, Hou H, Sun N, Shen B: Differential microRNA expression
in childhood B-cell precursor acute lymphoblastic leukemia. Pediatr
Hematol Oncol 2009, 26: 1-10.

47. Hartmann S, Martin-Subero JI, Gesk S, Husken J, Giefing M, Nagel I,
Riemke J, Chott A, Klapper W, Parrens M, et al: Detection of genomic
imbalances in microdissected Hodgkin and Reed-Sternberg cells of
classical Hodgkin’s lymphoma by array-based comparative genomic
hybridization. Haematologica 2008, 93: 1318-1326.

48. Reddy SD, Pakala SB, Ohshiro K, Rayala SK, Kumar R: MicroRNA-661, a c/
EBPalpha target, inhibits metastatic tumor antigen 1 and regulates its
functions. Cancer Res 2009, 69: 5639-5642.

49. Itsara A, Cooper GM, Baker C, Girirajan S, Li J, Absher D, Krauss RM,
Myers RM, Ridker PM, Chasman DI, et al: Population analysis of large copy
number variants and hotspots of human genetic disease. Am J Hum
Genet 2009, 84: 148-161.

50. Firth HV, Richards SM, Bevan AP, Clayton S, Corpas M, Rajan D, Van
Vooren S, Moreau Y, Pettett RM, Carter NP: DECIPHER: Database of
Chromosomal Imbalance and Phenotype in Humans Using Ensembl
Resources. Am J Hum Genet 2009, 84: 524-533.

51. Deng S, Calin GA, Croce CM, Coukos G, Zhang L: Mechanisms of
microRNA deregulation in human cancer. Cell Cycle 2008, 7: 2643-2646.

52. Di Leva G, Croce CM: Roles of small RNAs in tumor formation. Trends Mol
Med 2010, 16: 257-267.

53. Ruan K, Fang X, Ouyang G: MicroRNAs: novel regulators in the hallmarks
of human cancer. Cancer Lett 2009, 285: 116-126.

54. Kozlowski P, Jasinska AJ, Kwiatkowski DJ: New applications and
developments in the use of multiplex ligation-dependent probe
amplification. Electrophoresis 2008, 29: 4627-4636.

55. Kozlowski P, Roberts P, Dabora S, Franz D, Bissler J, Northrup H, Au KS,
Lazarus R, Domanska-Pakiela D, Kotulska K, et al: Identification of 54 large
deletions/duplications in TSC1 and TSC2 using MLPA, and genotype-
phenotype correlations. Hum Genet 2007, 121: 389-400.

56. Marcinkowska M, Wong KK, Kwiatkowski DJ, Kozlowski P: Design and
generation of MLPA probe sets for combined copy number and small-
mutation analysis of human genes: EGFR as an example.
ScientificWorldJournal 2010, 10: 2003-2018.

57. Taylor J, Schenck I, Blankenberg D, Nekrutenko A: Using galaxy to perform
large-scale interactive data analyses. Curr Protoc Bioinformatics 2007,
Chapter 10: Unit 10 15.

58. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S,
Rice A, Kamphorst AO, Landthaler M, et al: A mammalian microRNA
expression atlas based on small RNA library sequencing. Cell 2007, 129:
1401-1414.

59. Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C, Ambros VR,
Israel MA: Characterization of microRNA expression levels and their
biological correlates in human cancer cell lines. Cancer Res 2007, 67:
2456-2468.

60. Lee EJ, Baek M, Gusev Y, Brackett DJ, Nuovo GJ, Schmittgen TD: Systematic
evaluation of microRNA processing patterns in tissues, cell lines, and
tumors. RNA 2008, 14: 35-42.

61. Barrett T, Edgar R: Gene expression omnibus: microarray data storage,
submission, retrieval, and analysis. Methods Enzymol 2006, 411: 352-369.

62. Agresti A: A Survey of Exact Inference for Contingency Tables. Statist Sci
1992, 7: 131-153.

doi:10.1186/1471-2164-12-183
Cite this article as: Marcinkowska et al.: Copy number variation of
microRNA genes in the human genome. BMC Genomics 2011 12:183.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Marcinkowska et al. BMC Genomics 2011, 12:183
http://www.biomedcentral.com/1471-2164/12/183

Page 9 of 9

http://www.ncbi.nlm.nih.gov/pubmed/18694566?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18694566?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19210773?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19210773?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19289845?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19289845?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19823682?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19823682?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19823682?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19915715?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19915715?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18663744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18663744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18663744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18663744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18451220?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18451220?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18636290?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18636290?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18636290?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19206004?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19206004?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18641027?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18641027?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18641027?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18641027?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19584269?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19584269?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19584269?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19166990?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19166990?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19344873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19344873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19344873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18719391?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18719391?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20493775?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19464788?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19464788?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19053154?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19053154?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19053154?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17287951?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17287951?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17287951?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20953551?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20953551?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20953551?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17604727?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17604727?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17363563?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17363563?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18025253?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18025253?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18025253?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16939800?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16939800?dopt=Abstract

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and Discussion
	Conclusions
	Methods
	Acknowledgements
	Author details
	Authors' contributions
	References

