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Abstract

Background: Rust fungi are biotrophic basidiomycete plant pathogens that cause major diseases on plants and trees
world-wide, affecting agriculture and forestry. Their biotrophic nature precludes many established molecular genetic
manipulations and lines of research. The generation of genomic resources for these microbes is leading to novel insights
into biology such as interactions with the hosts and guiding directions for breakthrough research in plant pathology.

Results: To support gene discovery and gene model verification in the genome of the wheat leaf rust fungus,
Puccinia triticina (Pt), we have generated Expressed Sequence Tags (ESTs) by sampling several life cycle stages. We
focused on several spore stages and isolated haustorial structures from infected wheat, generating 17,684 ESTs. We
produced sequences from both the sexual (pycniospores, aeciospores and teliospores) and asexual (germinated
urediniospores) stages of the life cycle. From pycniospores and aeciospores, produced by infecting the alternate
host, meadow rue (Thalictrum speciosissimum), 4,869 and 1,292 reads were generated, respectively. We generated
3,703 ESTs from teliospores produced on the senescent primary wheat host. Finally, we generated 6,817 reads from
haustoria isolated from infected wheat as well as 1,003 sequences from germinated urediniospores. Along with
25,558 previously generated ESTs, we compiled a database of 13,328 non-redundant sequences (4,506 singlets and
8,822 contigs). Fungal genes were predicted using the EST version of the self-training GeneMarkS algorithm. To
refine the EST database, we compared EST sequences by BLASTN to a set of 454 pyrosequencing-generated
contigs and Sanger BAC-end sequences derived both from the Pt genome, and to ESTs and genome reads from
wheat. A collection of 6,308 fungal genes was identified and compared to sequences of the cereal rusts, Puccinia
graminis f. sp. tritici (Pgt) and stripe rust, P. striiformis f. sp. tritici (Pst), and poplar leaf rust Melampsora species, and
the corn smut fungus, Ustilago maydis (Um). While extensive homologies were found, many genes appeared novel
and species-specific; over 40% of genes did not match any known sequence in existing databases. Focusing on
spore stages, direct comparison to Um identified potential functional homologs, possibly allowing heterologous
functional analysis in that model fungus. Many potentially secreted protein genes were identified by similarity
searches against genes and proteins of Pgt and Melampsora spp., revealing apparent orthologs.

Conclusions: The current set of Pt unigenes contributes to gene discovery in this major cereal pathogen and will
be invaluable for gene model verification in the genome sequence.
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Background
Puccinia triticina (Pt) has a complex life cycle which
includes five different spore types and two hosts: wheat
(Triticum aestivum L.) and meadow rue (Thalictrum
speciosissimum L.). The latter plant is the so-called alter-
nate host on which the fungus completes its sexual stage
[1-3]. Sex is not essential and infection of and spread on
wheat through re-infection constitutes the asexual cycle.
The brown-coloured urediniospores from which the rust
got its name, are the asexual infectious propagules. They
are easily carried long distances by prevailing winds and
can lead to epidemics. Early processes in infection
include urediniospore attachment, germination and the
formation of a germtube. The tips of germtubes differ-
entiate into appressoria which develop over stomatal
lips and entry into the substomatal cavity is gained for-
cibly by turgor pressure. Within 24 hrs after spore ger-
mination, a haustorial mother cell is formed adjacent to
a plant cell within the cavity and cell wall penetration
takes place. Subsequent invagination of the host plasma-
lemma results in the first intimate contact. Thereafter, a
microscopically visible haustorial interface surrounding
the mature feeding structure, is produced, likely made
up of both fungal and host material [4]. This interface is
critical in governing protein and metabolite traffic [5,6]
since haustoria are thought to secrete a suite of proteins,
some of which are aimed at suppressing host defence
responses that may be triggered by the fungus when it
penetrates the plant cell wall or at establishing the feed-
ing interaction. In compatible interactions, the fungus
colonizes the plant and within 7 days can produce ure-
dinia (pustules) containing asexual urediniospores which
are released and give rise to new rounds of infection.
On senescing wheat plants, uredinia respond to cues
and switch to producing black teliospores. These are
survival propagules with a complex, multi-layered wall
and no vacuoles. They contain lipid droplets and glyco-
gen-like material [7,8]. Teliospores are primarily 2-celled
with each cell containing two haploid nuclei that have
paired, if not fused to form the diploid state [8]. They
often appear in low numbers on the lower parts of the
plant, including the stem. Under the proper conditions,
the teliospore germinates and a metabasidium forms,
generally from both cells, in which meiosis occurs and
on which four haploid basidiospores develop. A third
mitotic division occurs resulting in basidiospores having
two nuclei though being monokaryons, containing two
nuclei of the same type [9]. These basidiospores are
ephemeral and can be dispersed to infect the alternate
host. This infection occurs via direct penetration of the
plant epidermis and the subsequent production of
monokaryotic (M-) haustoria. These structures are
extensions of the intercellular hyphae which penetrate
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the plant cells in a manner reminiscent of that described
for the corn smut fungus, Ustilago maydis [10]. Neither
infection shows the morphological specialization seen
for the P. triticina dikaryotic (D-) haustorium [11].
Upon establishing a feeding relationship and presumably
suppressing alternate host defence responses, the mono-
karyotic hyphae yield specialized pycnia which generate
pycniospores embedded in nectar. Because they origi-
nated from haploid meiotic products, the pycniospores
represent different mating types and can cross-fertilize,
often through the action of insects attracted by the nec-
tar. After fertilization, that is, the fusion of one pycnios-
pore to a receptive hypha in the pycnium of a different
mating type followed by nuclear transfer, the newly
formed dikaryon undergoes developmental reprogram-
ming. The resultant mycelium traverses the leaf and
forms aecia on the underside in which dikaryotic aecios-
pores develop [7]. Aeciospores are dispersal propagules
which will infect the primary wheat host.

The generation of genomic resources for the cereal
rust fungi is gearing up. A draft genome sequence for
the related stem rust fungus, P. graminis f. sp. tritici
(Pgt) was released in 2007, a rough draft for Pt was
released in 2009, and genome sequences are being gen-
erated for the related wheat stripe rust fungus, P. strii-
formis f. sp. tritici (Pst; http://www.broadinstitute.org/
annotation/genome/puccinia_group/MultiHome.html).
The generation of Expressed Sequence Tags (ESTs) is
essential for proper gene prediction in genomes. Pre-
vious Pt EST libraries contributed to gene discovery and
stage-specific expression analyses [12-14]. Similar EST
collections were generated from other Puccinia species
[15-21]. However, all these studies were focused on ure-
diniospores and the wheat infection cycle. There is no
molecular data on genes involved in the sexual stages in
the rusts. Unique to this study, we surveyed three other
spore types representing the sexual stage: teliospores,
pycniospores and aeciospores. We found that each spore
type yielded rather specific EST sequences and that pyc-
niospores and teliospores in particular seemed to
express a unique set, when compared to all other
sampled stages.

In addition, we generated and analysed ESTs from two
sets of isolated haustoria and from the germinated ure-
diniospore stage. Haustoria ESTs included a large set of
unique sequences of unknown function. In total, over
17,000 new ESTs, of which many appeared spore-speci-
fic, were added to our existing collection of 25,558
sequences and compiled into a single unigene set. Sub-
sequently, fungal genes were predicted using bioinfor-
matic algorithms trained on Pgt sequences, and were
then compared to Pgt and model basidiomycete plant
pathogen, U. maydis genomic resources. Notably,
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comparison to U. maydis revealed interesting leads for
research into spore biology.

Results and Discussion

Life cycle stage-specific cDNA libraries

Three different sexual stage spore types - Minute
amounts of nectar, containing pycniospores of different
mating types, as well as dikaryotic aeciospores, were col-
lected from Thalictrum pycnia and aecia residing on the
upper and abaxial side of leaves, respectively. Both life
cycle stages were from the same isolate, but different
from race 1. Race 1 teliospores were induced on senes-
cing wheat and small amounts of dormant spores
cleanly dissected from telial pustules. From these three
stages, only nanogram-amounts of total RNA could be
obtained. From the aeciospore material, cDNA library
PT029 was constructed and the pycniospore RNA
resulted in library PT030. The RNA from the teliospores
produced cDNA library PT031.

Isolated haustoria -The haustorium is an important
structure involved in bidirectional traffic of proteins and
uptake of nutrients and ESTs might reveal expression of
genes involved in host defence suppression and fungal
feeding process. Moreover, haustoria are expected to pro-
duce effectors, some of which might have avirulence func-
tions as has been shown to occur in other systems [22-24].
We therefore isolated haustoria from heavily-infected
wheat leaves and produced two ¢cDNA libraries from two
different isolates: library designation PT033 (isolate
PRTUS3) and PTDH (isolate WBRS-97-3; see Methods).

Germtube - Rust isolate WBRS-97-3 was also used to
produce a ¢cDNA library from urediniospores germi-
nated over water, library designation PTDG, from which
bi-directional reads were generated.

Compilation of EST sequences and Pt gene finding

Table 1 summarizes the number of ESTs and derived
unigene sets generated from the aeciospore, pycnios-
pore, dormant teliospore, isolated haustoria and
germinated urediniospore libraries. The 17,684 newly-
generated sequences were pooled with 25,558 ESTs
from our previous study [14] and 81 previously reported
[13] to generate a non-redundant unigene set of 13,328
sequences (see Methods). The current study contributes
3,990 new, non-redundant unigene sequences to the
database.

Several of the cDNA libraries were generated from
RNA isolated from infected plants and would contain
host cDNA; other (bacterial) contaminants are also fairly
abundant when such approaches are used. Therefore, we
predicted the putative fungal genes using two
approaches, ab initio and comparative genomics; we
compared the results and now present a consolidated
prediction set of 6,308 genes.
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Ab initio gene prediction approach using the EST version
of GeneMarkS

The EST version of GeneMarkS, an extension of a self-
training method for gene calling [25], was used to derive
gene models in three steps (Figure 1). First, from 13,328
Pt unigenes, we selected 10,576 sequences longer than
300 nt. This set of sequences was used as an input to
GeneMarksS self-training to obtain an initial estimation
of the parameters for the underlying generalized hidden
Markov model (gHMM), particularly parameters of the
2™ order Markov chain model of a protein-coding
region. Thus, estimated parameters were used in Gene-
Mark.hmm [26] to generate the set of Pt gene predic-
tions. Notably, due to a likely presence of contaminant
sequences, the initial set of genes may include genes
from species other than P¢ and therefore the set of para-
meters might be biased.

Second, to further improve estimates of the HMM
parameters, we proceeded with validation of the auto-
matically derived training set. We used BLASTP to
search for homologs of predicted Pt proteins among
20,567 proteins encoded in the genome of Pgt. At a cut-
off e-value of 1e'?, this procedure identified a set of
2,093 Pt genes with Pgt homologs. This reduced set was
used as a refined Pt training set to derive parameters for
the 4™ order Markov model of a protein-coding region,
a critically important submodel of the gHMM.

Third, the improved gHMM was used to make gene
predictions in the same 10,576 Pt unigene sequences as
in step 1. Now a much smaller set of 7,681 predicted Pt
genes was produced. Figure 2 shows the comparison
between the results of analysis of EST fragments by the
2" and 4™ order models in terms of distribution of
numbers of predicted coding regions per single EST
fragment.

The 4™ order model was more specific; it omitted
3,579 genes identified by the 2" order model. A com-
parative G + C content analysis of the genes predicted
by the 2" and 4™ order models showed that the genes
predicted by the 4™ order model had a slightly higher G
+ C content than those predicted by the 2™ order
model (51% versus 48%). Notably, a number of genes
now absent from the predictions could be attributed to
contaminant sequences, possibly from the wheat host
(see Contaminants section below).

Also, we observed that the use of the 4™ order model
led to a significant increase, by 1,503, in the number of
fragments with no genes predicted. A total of 5,350 uni-
genes out of 10,576 analyzed unigenes longer than 300
nt, were identified as containing no fungal genes. Still,
these 5,350 unigenes did contain protein-coding
sequences. When we switched gene prediction model in
GeneMark.hmm to a generic 2" order heuristic model
specific for genomic DNA with a given G + C content
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Table 1 cDNA libraries produced and number of generated quality EST reads

b

cDNA lib  source designation *  # reads  unigenes singlets contigs predicted fungal €  stage-specific ¢
PT029 aeciospores pte 1292 208 (16%) 166 42 199 (95%) 100 (48%)
PT0O30 pycniospores ptp 4869 1252 (26%) 807 445 1116 (89%) 961 (77%)
PTO31 dormant teliospores ptt 3703 1165 (31%) 878 287 1041 (89%) 801 (69%)
PTO33 isolated haustoria ptih 4896 2886 (59%) 2620 266 307 (11%) 441 (15%)
PTDH isolated haustoria ptih n/a 1921 354 1567 1236 (64%) 1069 (56%)
PTDG germinated urediniospores ptg n/a 1003 83 920 740 (74%) 398 (40%)

2 life cycle stage-specific suffix, used at the end of all EST sequences: pte, Puccinia triticina aeciospores; ptp, pycniospores; ptt, teliospores; ptih, isolated haustoria;

ptg, germinated urediniospores.

® non redundant sequences obtained via CAP3 analysis of life cycle stage-specific EST set (as percent of reads generated), yielding singlets and contigs
€ number of unigenes predicted to be fungal (as percent of compiled unigenes for that stage).
4 number of unigenes not represented in other stages (as percent of all unigenes from this library).

[27], we identified 5,156 protein coding regions (Addi-
tional file 1). However, at e < 10>, BLASTP searches
revealed similarity to Pgt proteins for only 14 out of
these 5,156 predicted proteins and 19 had similarity to
proteins in the NCBI nr database. Of the 19 “non-Pgt“
proteins, at least 9 had similarity to proteins in plants,
human and E. coli thus indicating possible contaminants
(Additional file 2). The majority of the 5,156 predicted
protein coding regions (3,501 or 68%) had lengths of
less than 150 nt. It is likely that these EST sequences
represent 5, or 3’- UTRs and predicted short coding
regions are mere artifacts or represent very small
proteins.

Comparative genomics approach using BLASTN
As part of a Pt genome sequencing project (Cuomo,
Fellers, Szabo and Bakkeren), an initial set of short

genome sequences generated through ‘454 pyrosequen-
cing’ (see Methods) was available. The 13,328 EST uni-
gene sequences were compared by BLASTN to this
genome collection and 4,749 yielded significant matches
at e < 10, This number differed from the Pt unigene
set of 5,007 that we arrived at upon using GeneMarkS; a
BLASTN comparison showed the two sets had 3,448
unigenes in common. At this early stage of Pt genome
analysis it is uncertain how much coverage has been
obtained with the 454-genomic reads. In addition, 13
out of the 14 unigene sequences not called by Gene-
Mark.hmm but matching Pgt proteins by BLAST (see
above), had BLASTN hits to the Pt genomic reads. We
therefore assembled a final set of 6,308 putative Pt uni-
genes composed of the union of the two predicted sets.
Of these, 3,383 (54%) were contributed through this
new study and constitute over 85% of the total 3,990

Gene prediction with
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4th order model

Initial GeneMarksS training, deriving
2" grder Markov model

| ESTs with 1 or more genes predicted | |
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Gene prediction
using heuristic model

GeneTack [28] (see text).
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Figure 1 Flow chart of Pt EST sequence analysis. Gene prediction in the P. triticina EST sequences was done by the EST version of the
GeneMarkS program [25]. The initial 2" order model of protein coding regions were derived automatically; then from the set of predicted

genes we selected a reduced set of those that were likely to be fungal genes (see text) and more specific 4™ order model for fungal genes was
derived. Frameshift detection in ESTs with one or more genes predicted in the same strand were analyzed by the frameshift prediction program
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Figure 2 Estimating Pt gene prediction in the EST unigene set. Distribution of numbers of EST/unigene sequences with 0, 1, 2 ... genes

newly-added unigene sequences. The percentage of
called fungal sequences was even higher for individual
spore stages (89 - 95%; Table 1) indicating the expected
purity of collected spore samples.

Using the BLASTN algorithm, out of the total set of
13,328 EST unigenes, 6,095 did not match any
sequences in the surveyed databases although 1,452 still
matched the preliminary Pt genome reads in a BLASTN
search and 1,656 the more-inclusive predicted fungal
unigene set. Whether these sequences represent Pt-spe-
cific gene sequences or transcribed genome regions
where no genes have (yet) been predicted, remains to be
investigated. Although such sequences do not currently
contribute to gene discovery, they will be valuable for
the verification of gene models or transcribed regions in
the completed genome sequence.

Frameshift detection

Although one would expect to see just one continuous
protein-coding region per unigene, in the output of the
EST version of GeneMark$ with the Pt-specific 4™ order
model, we could identify up to nine predicted genes per
unigene and sometimes no genes (Figure 2). Multiple
predictions could be explained by the presence of
sequencing errors. To identify possible frameshifts
caused by sequencing errors or chimeric cDNA inserts, a
new frameshift prediction program GeneTack [28] was
applied to 3,851 EST's with several genes predicted in the
same strand. Separate genes with no detected frameshifts
were identified in 2,645 ESTs (69%) whereas a single

frameshift was predicted in 905 ESTs (24%). Protein-cod-
ing regions with several frameshifts were identified in the
remaining 301 ESTs (Additional file 3). Coding sequences
with a single predicted frameshift were conceptually
translated. This approach produced 805 sequences used
to validate the GeneTack frameshift predictions by a
BLASTP search against the Pgt proteome (20,567
sequences) and the NCBI non-redundant database
(8,924,078 sequences). At e < 107, database hits overlap-
ping the sites of predicted frameshifts confirmed 325 fra-
meshift predictions; in most cases the frameshift was
caused by misinterpretation of single-pass reads. When
inspection of sequencing electropherograms allowed, the
corresponding EST sequences were corrected.

Contaminants

Several cDNA libraries were constructed from host
infection stages. In order to not discard any potential
fungal sequences from our unigene set, we employed a
rather conservative strategy which most likely left in the
database a number of “contaminating” wheat host
sequences. To further understand the discrepancy
between the total set of 13,328 EST unigenes and the
6,308 predicted fungal unigenes, all unigenes were also
compared by BLASTN to a large collection of available
wheat EST sequences to identify possible host contami-
nants. Some 3,080 unigenes matched wheat ESTs at e <
107 and just over 3,300 had similarity to a 1x wheat
genome coverage of ‘454-generated’ sequences (http://
www.cerealsdb.uk.net/index.htm). Still, 42% of unigenes
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matching wheat sequences (1,392 unigenes) also
matched the preliminary Pt genomic reads. Since e-
values are related to the size of the database, care has to
be taken when directly comparing values obtained from
databases of significantly different sizes. Nevertheless, in
a smaller EST unigene set [14], we had also observed
unigenes that matched fungal and wheat sequences with
e-values in a similar range. Whether possibly horizontal
gene transfer during co-evolution is involved might be
solved once the genomes of both organisms are
available.

Some 7,020 sequences were not included in the ‘puta-
tive Pt fungal” set; they did not match the preliminary,
still partial Ptz genome reads. Of these 63% (4,439 uni-
genes) did not match any sequences in the databases
surveyed. However, 26 sequences matched Pgt proteins
at e < 10°, 2% matched sequences in the nr database,
11% matched wheat ESTs, 22% matched fungal and
oomycete ESTs in COGEME [29], and 30% matched
sequences in EST-other. Those sequences without data-
base matches (4,439 unigenes or 63%) were mainly
derived from one appressorial library ('pta’: 1,727 uni-
genes), from one specific germinated urediniospore
stage library PT002 ('ptg: 1,598 unigenes), and from a
wheat-infection stage library library PT009 (’pth’: 520
unigenes; [14]). What these three cDNA libraries had in
common was that cDNA inserts were generated by PCR
which can reduce tag size. When the size distribution of
these 4,439 unigene sequences was evaluated, almost
45% had lengths of less than 500 bp (compared to less
than 29% among all 13,328 unigenes). When a compre-
hensive Pt genome is available, these sequences will be
re-evaluated.

Annotation and classification of ESTs

The 13,328 Pt EST unigene sequences and the predicted
fungal subset were compared by TBLASTX or BLASTX
to various databases. Using a cut-off value of e < 107,
approximately 40% of the putative fungal subset of 6,308
unigenes matched NCBI’s nr, with a similar number
matching the UniProt database. The corresponding per-
centages were 27% for the fungal and oomycete-specific
EST database COGEME and almost 60% for dbEST
(Additional file 4). When the total 13,328-member uni-
gene set was compared to dbEST, roughly a third more
(2,147 unigenes for a total of 5,854 or 44%) matched,
but most of these (1,628 unigenes) scored with low sig-
nificance at e < 10°'°,

Preliminary annotation was achieved for 2,556 uni-
genes by choosing the most informative header arising
from the various database BLAST searches (at e < 107°)
which was not necessarily the most statistically signifi-
cant return; 2,286 (90%) were judged to be of fungal ori-
gin and 48 had similarity to ribosomal sequences of
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various rusts (Additional file 5). It is notoriously difficult
to assign genes to categories since the proteins they
encode can have multiple functions and/or be associated
with various aspects of their biology. However, to
achieve a better understanding of their role(s), we ana-
lysed all unigenes with the program ‘annot8r’ [30] which
assigned various GO (Gene Ontology), EC (Enzyme
Commission number) and/or KEGG (Kyoto Encyclope-
dia of Genes and Genomes) annotations to almost 1,500
unigenes.

Similarity searches to related fungi
To investigate relatedness of Pt sequences to those of its
closest known related rust fungus for which substantial
genomic resources have been developed, the initial
13,328-member Pt EST set as well as the 6,308-member
predicted fungal set were compared to various sets of
Pgt sequences using several algorithms. The set of 6,308
putative Pt unigenes matched fairly closely the numbers
obtained for the initial 13,328 unigenes, especially for
more conserved sequences (Table 2, 2" and 3™ col-
umn), indicating that the Pt gene finding using the Pgt-
trained GeneMark.hmm algorithm and the Pt genome
filter, had indeed generated a Pt-enriched set. The dis-
crepancy was larger when comparing to Pgt ESTs which
could indicate that the available Pgt genome is not com-
pletely covered and/or, more likely, the presence of
(host) contaminants in the available Pgt ESTs, such as
the haustorial-specific set which has not been sanitized
for fungal sequences. When predicted protein sequences
from the Pt ESTs obtained through the BLASTX algo-
rithm were compared to the predicted proteome from
Pgt (Table 2, 4™ column), the numbers were somewhat
lower than when compared to the complete translated
Pgt genome using TBLASTX. This could indicate that
the predicted Pgt proteome is a somewhat conservative
underestimate or that there are more conserved geno-
mic regions between the species that yield RNA and are
therefore transcribed but not necessarily translated or
might not be recognized by current computer models as
bona fide ORFs. For example, small secreted proteins
are often missed. The data in the TBLASTX column
reveal on average more matches than those in the
BLASTN column, especially in the higher-confidence
intervals, which suggests more conservation at the pro-
tein level between species and might be expected from
protein-coding cDNAs (ESTs). Of the 6,308 predicted
fungal unigenes, BLASTX results indicated 2,550 (40%)
had potential orthologs among the predicted Pgt pro-
teins (at e < 107°); among 4,749 unigenes that were
identified through BLASTN matches with Pz genomic
resources, this percentage was 55%.

The Pt unigene set was also compared to a set of 3,297
published, putative wheat stripe rust (Pst) ESTs from
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Table 2 Similarity searches of Pt unigene sequences to related fungal databases

Pgt ESTs Pgt proteins Pt genome Pst ESTs ¢ Mip proteins U. maydis ESTs U. maydis genome
Pgt genome *® b < € f 9
e_value BLASTN  TBLASTX BLASTX BLASTN  BLASTN TBLASTX BLASTX TBLASTX TBLASTX
< =-100 863 (867) 490 (490) 285 (285) (3426) 120 79 (70) 117 (117) 68 (68) 67 (67)
131 (131) 394 (394) (120)
-100 < X < 434 (442) 749 (751) 763 (763) (678) 151 253 (254) 434 (434) 277 (277) 249 (249)
-50 466 (466) 829 (829) (151)
-50 < x <-20 452 (481) 786 (815) 957 (958) (395) 21 377 (381) 795 (796) 533 (535) 487 (489)
879 (879) 971 (972) (213)
20 < x <5 513(612) 753 (849) 745 (764) (250) 270 473 (516) 758 (781) 629 (656) 656 (680)
878 (878) 832 (899) (292)
TOTAL 2262 2778 2750 (2770) (4749) 752 1182 2104 (2128) 1507 (1535) 1459 (1485)
(2402) (2905) (776) (1230)
2354 3026
(2354) (3094)

? the 6,308 most-likely Pt unigene subset (as well as the complete 13,328 Pt unigene sequences: numbers in parentheses) were compared to available Pgt ESTs
and genome sequences (upper and lower line in each cell, respectively), using the algorithms indicated.

® results comparing the 20,567 and 18,241 (excluding mostly TE-related) gene calls, were identical.

¢ early Pt genome Sanger and 454 sequences.

9 set of 3,297 published, most-likely P. striiformis f. sp. tritici EST sequences from NCBI dbEST [17,20,21].
€ set of 16,831 predicted proteins from the Melampsora laricis-populina genome (http://genome.jgi-psf.org/Mellp1/Mellp1.nome.html).
f predicted/valid transcripts (many matching ESTs, [43,56,57], Morrison et al. in preparation] and 364 additional EST unigenes not predicted in the Um genome at

MIPS.
9 MUMDB (http://mips.helmholtz-muenchen.de/genre/proj/ustilago).

comparable life cycle stages (urediniospores and haus-
toria, Table 2). At e < 107, roughly 20% of the Pt fungal
unigenes matched this Pst collection, whereas almost half
matched the Pgt resources (see above) which themselves
have an estimated genome coverage of approximately
92%. The current number of gene calls for Pgt is 20,567,
18,241 when disregarding many transposable element-
(TE) related calls, and will likely be similar for Pt (and
Pst). We have only compared a partial Pt gene set, based
on the EST unigenes, but, assuming we can extrapolate
the numbers, these surprisingly low percentages suggest
substantial species-specific gene complements and could
indicate considerable genome evolution. Indeed, even
though these rust fungi are considered to belong to the
same genus, they fall into well-separated phylogenetic
sub-clades [31]. Gene divergence could occur due to
strong selection of these biotrophs. By comparison, two
related biotrophic smut fungi from different genera, U.
maydis and Sporisorium reilianum, still share an average
74% amino acid identity among predicted proteins [32].
A closer look at the set of unigenes that matched Pt gen-
ome sequences but not Pgz resources (2,157 unigenes or
34%), revealed that 725 unigenes had representation in
the ‘in planta infection’ and ‘isolated haustoria’ cDNA
libraries (out of a pool of 1,344 generated unigenes
matching Pt genomic sequences), 719 in urediniospores
(out of 1,627), 374 in pycniospores (out of 1,101), 247 in
teliospores (out of 790) and less than 100 in other stages.
As a percentage of their respective pools (54%, 44%, 34%
and 31%), this suggests that genes expressed in these four
life cycle stages might be under different selection

pressures. Using this rough estimate, the highest discre-
pancy between Pt and Pgt is seen among genes expressed
during plant infection and it could be argued that many
of those represent virulence factors likely under selection
pressure as has been seen among poplar rust, Melamp-
sora species [33].

A particular focus of this study was to compare the Pt
unigenes to U. maydis genomic resources since this fun-
gus is the best-studied, closest-related model represent-
ing cereal-biotrophic basidiomycete interactions. We
have previously illustrated the possibility of using the U
maydis model system for performing functional analyses
of Pt genes [34]. A BLASTX search against the 6,846
predicted U. maydis proteins [35] yielded 1,535 matches
at e < 107, 907 (13% of the total L/m complement) with
significant similarity at e < 102° (Additional file 6).
Most matching Pt unigenes (1,506) were predicted ‘fun-
gal’ as might be expected from genes having orthologs
in basidiomycetes belonging to different genera (Table
2). Indeed, a large majority of 1,416 Pt-Um “pairs” (92%)
also matched Pgt proteins suggesting the existence of a
common set of proteins/functions among these basidio-
mycetes. However, 119 Pt-Um “pairs” (8%) did not
match Pgt proteins. In a complementary approach, the
complete set of 20,567 predicted Pgt proteins was com-
pared to the same set of Um proteins, yielding 5,624
matches of which 4,012 (59% of the total Um comple-
ment and 20% of the Pgt complement) revealed signifi-
cant similarities at e < 10°. Of these Pgt-Um “pairs”,
2,604 (46%) also matched Pt unigenes; this smaller per-
centage likely reflects the large comprehensive Pgt
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genome-predicted protein set compared to the Pt EST
subset. The identification of many homologs and the
existence of many Um gene deletion mutants or the
ease with which Um gene deletions can be obtained
[36], could allow for functional Pt gene analyses through
complementation in U. maydis [34].

Spore-specific unigenes

One unique aspect of this study is the generation of
ESTs from sexual spores from this macrocyclic, hetero-
cious cereal rust. Teliospores, pycniospores, aeciospores
and urediniospores were fresh and considered to be in a
‘dormant’ stage ready for dispersal, although the physio-
logic state of pycniospores in nectar is uncertain. The
non-redundant unigenes generated for each spore type
were filtered for putative fungal sequences (Table 1) and
the overlap between spore-specific transcripts was
assessed (Figure 3). Although it is unlikely that we
sampled the cDNA libraries to saturation, it was striking
that all four spore stages generated a large percentage of
seemingly unique sequences. RNA sequencing or micro-
array analyses will have to be performed to verify levels
of transcription, but the data presented here suggests
that these unique stages express sets of genes that are
needed for specific developmental programs. Tentative
annotations were assigned to 394 unigenes and are

Ptt

605
(87%)

(92%)

Ptp

Figure 3 Venn diagram depicting numbers of predicted
putative fungal Pt unigenes uniquely found in and shared
among spore stages. The sizes of the circles reflect the pool size
of unigenes for each stage: 369 Ptu (urediniospores), 697 Ptt
(teliospores), 88 Pte (aeciospores) and 911 Ptp (pycniospores). One
unigene was shared by all spore stages. All numbers reflect counts
in that particular section only.
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given in Additional file 7. Overall, each spore stage
seemed to express large numbers of genes involved
in metabolism, energy production and conversion, trans-
lation and protein turn-over (ubiquitin-related). Pycnio-
and teliospores seemed to have yielded a larger number
of ribosomal protein genes possibly related to more
active protein production. We noted also several trans-
porters (such as a hexose transporter in pycniospores, a
homolog of which was also identified in haustoria) and
several possible transcription factors, such as seven ring-
or Zn-finger containing proteins in pycniospores. Inter-
estingly, the urediniospore stage revealed the best anno-
tated set relative to the number of unigenes, followed by
pycniospores, then teliospores and a disproportionate
set was found for aeciospores. Whether this reflects lar-
ger sets of novel genes expressed in these latter stages,
remains to be discovered.

Several unigenes revealed interesting putative func-
tions, in particular among the ESTs from the pycnios-
pore library, a stage not yet covered in the literature.
PtContig7448 matched a pheromone transporter from
Cryptococcus neoformans, a human opportunistic basi-
diomycete pathogen, and was covered by sequences
from 4 different cDNA clones from only that cell type.
Contig7830 (one ¢cDNA clone) matched pheromone
receptor sequences in many fungi (e.g., the A2 phero-
mone receptor from Microbotryum violaceum, the
anther smut fungus) and was similar to a 357-amino
acid protein in Pgt. Pt and related rusts are thought to
possess bipolar mating systems (+ or -) [37] although
some might possess multiple-allelomorphic tetrapolar
systems similar to the higher mushrooms [38]. Because
pycniospores are haploid cells in which mating type has
segregated and are primed for mating to form the dikar-
yotic aeciospores, they are expected to express mating-
type specific genes. In rusts, no information on mating-
type genes has been published. It would be tremen-
dously valuable to uncover the molecular basis of the
mating system and reveal the structure of MAT loci in
cereal rusts. The revealed Pt pheromone receptor gene,
pra, could represent a component of the mating-type
locus. Contig7901 (one cDNA clone) has similarity to a
protein belonging to the oligopeptide OPT transporter
family found in many fungi and annotated as ‘sexual dif-
ferentiation process protein isp4’. The pycniospore stage
also revealed several genes involved in sterol biosynth-
esis with possible roles in mating (Contigs 7279, 7412,
7754 and 7777). In S. cerevisiae, (ergo-)sterols have been
shown to be involved in cell fusion during mating, for
example, sphingolipid and ergosterol biosynthetic
mutants fail to polarize proteins to the tip of the
deforming yeast cell ("shmoo”) and are therefore defi-
cient in mating [39,40]. However, another ergosterol
biosynthesis gene, Erg28 (Contig7716) and an oxysterol-
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binding protein (PT0318.P01.C21.ptt), were found in the
teliospores library, whereas a sterol O-acyltransferase
(Contigl07) had one representative EST in uredinios-
pores and one in germinated urediniospores. Among the
whole unigene set, a few Contigs, 7490 (2 ¢cDNA
clones), 7853 (9 ¢cDNA clones) and 7905 (2 ¢cDNA
clones), were obtained only from the pycniospore library
and were most similar to Pgt predicted protein
PGTG_01034.2, a carbon catabolite-derepressing protein
kinase. A comparative multiple sequence alignment of
DNA sequences in AlignX confirmed all three Pt uni-
genes were closely related but had four approximately
80 bp-stretches of DNA that were shared in different
combinations. Whether these represent unique genes or
are different splice products will be solved once the Pt
genome is available; however, the unique stretches did
not match predicted introns in various Pgt homologs of
which there were many (at least 3 at e = 0). We are
interested in developmental-specific kinases and intrigu-
ingly, these Pt contigs also bore great resemblance to
the catalytic subunit of cAMP-dependent protein kinase,
known to be involved in responsiveness to mating pher-
omone in several fungi [41,42].

Teliospores are survival propagules and are melanized
for protection. Contig7966 (one teliospores-specific cDNA
clone), matched a diphenol/urishiol (multi-copper) oxidase
or laccase (EC:1.10.3.2), an enzyme found in fungi and
plants which oxidizes different phenols and diamines and
is implicated in the production of melanin pigment.

Several unigenes had EST representation mainly in all
spore stages: Contigh605 (TAR1, regulation of mito-
chondrial gene expression), Contig8158 (a P450 mono-
oxygenase) and Contigs 279, 5253 and 7316 (no hits). It
is possible that certain genes are involved in general
spore-forming processes despite their very different
morphology and physiology.

Correlating elevated EST levels of spore-specific libraries
between P. triticina and U. maydis

Spore production is critical to the dispersal of rusts and
smuts; therefore, knowledge of the development and
biology of spores is essential to understanding disease
spread. Since spore development in these fungi requires
growth in the host plant, it is reasonable to assume that
their development is triggered in response to a signal(s)
received from the host. In this context, identifying genes
with elevated transcript levels in spores of both fungi
may lead to the discovery of common responses to
plant signals. Of the four Pt rust spore stages we gener-
ated ESTs from in this study, only teliospores have a
biological equivalent in the life cycle of Um (represented
by ESTs from the ‘dormant teliospore’ cDNA library
TDO [43]). Comparing expression among libraries of
these two species is complicated by variation in library
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preparation methods, notably the requirement to
include an amplification step to clone cDNAs from the
low levels of Pt teliospores, and the need to normalize
libraries being compared to correct for EST pool size.
With these limitations, we expected to find few com-
monly expressed genes. Additional file 6 shows that Pt
contig5874, a putative mitochondrial inner membrane
protein involved in protein import, has elevated num-
bers of ESTs in both teliospore derived libraries. Ele-
vated numbers of ESTs in Pt contig7329, a NADH-
ubiquinone oxidoreductase, originated from Pt pycnios-
pore and teliospore libraries. The similar um10989 (e =
10*) has elevated EST numbers in Um teliospore and
haploid cell libraries (Additional file 6). Pt pycniospores
and Um haploid cells are both descendents of basidios-
pores, the direct products of meiosis. The discovery of
these genes is interesting and they deserve further inves-
tigation. However, the fact that we found any commonly
expressed genes given the limitations in the analysis is
perhaps more important and supports a deeper analysis
of the teliospore transcriptome in these fungi.

Comparing libraries from other spore (cell) types that
are functionally equivalent between Pt and Um revealed
further similarities in elevated EST levels. Four Pt con-
tigs with elevated numbers in the pycniospore had
homologs with elevated numbers in Um haploid cells or
germinating teliospores. Two represent conserved
hypothetical proteins and the others represent cofilin,
an actin binding and severing protein, and a 26S protea-
some non-ATPase regulatory subunit (Additional file 8).
Six Pt contigs having elevated EST counts in the germi-
nated urediniospore stage had Um homologs with
higher number of ESTs, relative to the other stages, in
the functionally equivalent Um dikaryon (Additional file
8). It is notable that four of these were conserved
hypothetical proteins. These may represent functionally
conserved genes. The function of these genes can be
investigated in the tractable Um. Further expression
analysis is required to confirm these results, but finding
similarly high EST counts between similar cell types
supports the benefit of continuing these comparative
approaches in more depth using RNA sequencing
techniques.

Stage-specific unigenes

Figure 3 presented the overlap between predicted fungal,
spore-specific Pt unigenes. In Table 3, an inventory is
presented of the number of unigenes found uniquely in
these spore stages as well as during urediniospore ger-
mination and in isolated haustoria. When numbers per
stage are extrapolated relative to the largest number of
reads generated (represented by the ptg stage) as to
mimic equal sampling, pycniospores, teliospores and iso-
lated haustoria would yield the largest sets of unique
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Table 3 Stage-specific Pt unigene counts and
representation in Pgt

stage # unique predicted fungal P # matching Ith

unigenes ° homologs
counts normglized

ptp 961 9N 2246 563 (62%)
ptt 801 697 2259 374 (54%)
pte 100 88 818 47 (54%)
ptu 486 369 1131 152 (41%)
ptg 3308 811 811 475 (59%)
ptih 1283 973 2430 292 (30%)

@ number of non-redundant sequences obtained from the indicated specific
developmental stage only: ptp, pycniospores; ptt, teliospores; pte, aeciospores;
ptu, dormant urediniospores; ptg, germinated urediniospores; ptih, isolated
haustoria.

® number of unigenes predicted to be fungal.

€ number of predicted fungal unigenes for that stage was normalized using
quality reads in relation to the stage with the highest sampling, ptg (bold
type).

4 BLASTX search of Pgt genome-predicted proteins at e < 10”° (percent of
actual predicted fungal unigenes).

gene sequences with most in the latter. The smallest
and equal sets were found in aeciospores and germinat-
ing urediniospores; possibly, more common genes are
expressed in these stages. It can be argued that the
function of aeciospores and germinating urediniospores
is the same: infecting wheat. Interestingly, the largest set
of unique unigenes with the least similarity to Pgt pre-
dicted genes was found in isolated haustoria. This com-
parison strengthens the observation made earlier, that
haustoria likely express stage- and species-specific genes,
possibly representing virulence factors among which
could be effectors that have been under diversifying
selection [33].

Secretome-specific unigenes

The combined 13,328 unigene set was queried using
InterProScan to identify protein sequences predicted to
be secreted. To complement this, 11,638 proteins pre-
dicted from the partial Pt genome were queried using
the method by Joly et al. [33] to yield 758 potentially
secreted Pt proteins. Reciprocal BLAST searches were
performed to generate a list of P¢-specific, potentially
secreted proteins. This list was complemented by
searches against a subset of 1,699 potentially secreted
Pgt proteins derived similarly from the 20,567 genome-
predicted Pgt proteins, and additionally against collected
sets of various predicted “secretome” proteins: 689
assembled EST sequences from various poplar leaf rust
fungi, Melampsora spp. (S + category in [33]), 28 identi-
fied flax rust, Melampsora lini haustoria-specific
secreted proteins [23], 100 bean rust, Uromyces fabae,
secretome proteins [44], and 386 described secreted pro-
teins in U. maydis [45]. Additional file 9 shows which Pt
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unigenes are predicted to be secreted or are similar by
BLAST searches to predicted secreted proteins in other
(related) rust or basidiomycete plant biotrophic fungi.
The representation of the ESTs among the various
c¢DNA libraries is indicated, representing expression in
the respective life cycle stages. Striking were the large
groupings revealed; a given Pt unigene would match var-
ious different sequences, up to 27 Pgt proteins in the
case of Contig75, with various e-values. These are likely
family members of related secreted proteins, some of
which seem to belong to clusters (such as PGTG_8431
to PGTG_8436, and PGTG_04883 to PGTG04887).
Although many such groups were found matching Pgt,
large poplar rust groups were also evident, and often a
Pt unigene would match similar large groups in both
organisms; sometimes they would match uniquely in
poplar rust. A TBLASTX search of 583 Pt unigenes pre-
dicted to be secreted (based on the searches mentioned
above) against the complete Pt unigene set ('self-
BLAST’) yielded related Pt groups which in general cor-
related well with the Pgt and poplar rust groups (Addi-
tional file 9, ‘Pt secr prots self-BLAST’ tab).

In general, larger, expanded families tended to have
related sequences in all other rusts, including the bean
rust (which is only represented by a small partial EST
set). This suggests that such families originate from a
more-conserved protein(s) in a common ancestor and
likely evolved paralogous family members in the various
species. Among the Pt unigenes coding for SSPs that
seemed to be Puccinia-specific (Pt and Pgt), the families
tended to be smaller. Figure 4A illustrates an example
of a family of proteins that is rather conserved among
the various rusts, including the bean rust. We started
from Pt contig5547, a tentative metallothionein, repre-
sented by 5 ESTs from the haustorial stage, with 13
matches in poplar rust and 9 in stem rust. In this com-
parison, small clades contained mainly paralogous Pucci-
nia or Melampsora proteins, but there was an overall
similarity suggesting the existence of an ancient ‘found-
ing’ gene member. Figure 4B shows an example of Puc-
cinia-specific SSPs that likely evolved paralogs after
speciation. This preliminary Pt unigene data set merits
close scrutiny on a molecular phylogenetic level once all
genomes have been completed and proper protein calls
are available.

Overall, 2,421 predicted fungal unigenes, of which
1,344 matched Pt genomic 454 reads, had at least one
EST generated from plant-infected material, represented
by the stages pth, pti or ptih. Of the 1,402 unigenes
representing isolated haustoria, 337 did not match any
sequence in various databases including Pgt proteins,
but of these, still 196 were predicted to be fungal and
157 matched Pt genomic reads. These could represent
species-specific genes that are potentially preferentially
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analyses were conducted in MEGA4 [55].

using the Maximum Parsimony method (Close-Neighbor-Interchange algorithm, gaps and missing data were eliminated from the dataset).
Bootstrap consensus tree (1000 replicates) with values at the nodes. SSPs indicated with an asterisk were used as outgroups. Phylogenetic

expressed in haustoria, among which could be effectors.
Transcript profiling or gene-specific quantitative PCR
will be needed to verify whether these genes are
expressed uniquely or at elevated levels during plant
infection and hence might play important roles.

Conclusions

The Pt EST sequences generated, collected and analysed
in the current study, enriched by sampling spore stages
not covered in other studies, will provide essential infor-
mation for proper gene calling and annotation of the Pt
genome currently being assembled. For the first time, all
spore stages from a macrocyclic cereal rust fungus, except
for basidiospores, have been investigated for expressed
genes through this EST approach. Many obtained unigene
sequences from the various spore stages seemed specific
suggesting radically different developmental gene sets are
involved. Unfortunately, many could not be annotated due
to lack of similar sequences in the various databases. Com-
paring potential spore-specific gene sequences between Pt

and the model basidiomycete plant biotroph U. maydis,
seems feasible and has yielded some interesting candidates
for follow-up studies.

Although substantial homology exists between the Pt
unigene sequences and near-comprehensive genomic
resources from the related stem rust fungus, P. graminis
f. sp. tritici, many genes seem to have diverged substan-
tially from those from the putative common ancestor
and many others appear to be species specific. A preli-
minary comparative sequence analysis of several BAC
clones harbouring large Pt genomic inserts with the syn-
tenic regions in Pgt, seems to corroborate this (JF and
GB, unpublished). Future comprehensive comparisons
once the genomes of several cereal rust species are
available will shed light on the molecular evolution of
their genes and genomes.

The generated ESTs have also been invaluable in gener-
ating molecular markers. The current gene sequences
have been used to reveal SSRs (Simple Sequence Repeats
or microsatellites) which were used in genetic diversity
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studies [46], and the variation among compiled contigs,
potentially being derived from two parental nuclei in case
of the dikaryotic material or the 4 different isolates used,
revealed SNPs (Single Nucleotide Polymorphisms) which
are being used to saturate a Pt genetic map (unpublished).

The computational prediction of a comprehensive
secretome for Pt is one of the goals once the genome
sequence is completed. Many secreted proteins will
function in general fungal development such as cell wall
biogenesis, but a significant subset will be crucial to
support the biotrophic life style and hence will be con-
sidered virulence factors. Some will function in generat-
ing and maintaining the matrix surrounding haustoria
and possibly hyphae roaming the plant tissue and con-
tribute to feeding, but others, effectors among them, will
be needed to subdue the host defence machinery. It is
anticipated that many of the effectors will represent the
many avirulence gene products that trigger resistance in
the numerous wheat cultivars. Unravelling this comple-
ment is crucial in revealing old and new interactions
which will aid in breeding durable resistance in our cer-
eal crops.

Methods

Fungal strains and plant materials

To produce teliospores, Pt racel (BBBD; [47]) was
inoculated on susceptible wheat (Triticum aestivum L.)
cultivar Thatcher and the infection was allowed to pro-
ceed for months until senescence of the plants was
induced by reducing watering and temperature. Dor-
mant teliospores were then dissected from senescent
wheat stalks with a fine scalpel; this material was used
to generate cDNA library PT031. Aeciospores and pyc-
niospores were collected from the alternate host, mea-
dow rue or Thalictrum speciosissimum, infected with
germinating and basidiospores-producing telial mate-
rial (isolate 99193) in the greenhouse (Y. Anikster and
T. Eilam). Pycnial nectar with spores was collected and
dried in a lyophilizer for 24 h; this material was used
to construct cDNA library PT030. Aeciospores were
dissected from infected T. speciosissimum leaves result-
ing in ¢cDNA library PT029. Haustoria were isolated
from susceptible wheat, cv. Wichita, heavily-infected
with Pt urediniospores from isolate PRTUS6 (race
PBJL; [48]), using conA-loaded columns essentially as
described [49]; this material generated cDNA library
PT033 (J. Fellers). The latter method was also
employed to isolate haustoria from wheat cv. Vuka
heavily infected with isolate WBRS-97-3 (material for
c¢DNA library PTDH, M. Dickinson). The same isolate
was also used to generate urediniospores which were
then germinated over water for 8 hours and then col-
lected as described [14] yielding material for cDNA
library PTDG (M. Dickinson).
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Isolation of total RNA and c¢DNA library construction

Dissected teliospores, haustorial preparations and germi-
nated urediniospores were ground to a fine powder in
liquid nitrogen using a mortar and pestle. The minute
amounts of aeciospore and pycniospore material were
ground in Eppendorf tubes with sterile sand. Total RNA
was extracted in a solution of phenol-guanidine isothio-
cyanate (TRI Reagent, Molecular Research Center, Inc.,
Cincinnati, OH) according to instructions provided by
the manufacturer. Due to the very small sample sizes,
only 0.05 pg of total RNA could be obtained from the
pycnio-, and aeciospores, and 1 pg from the teliospores.
From these materials, cDNA libraries were constructed
from total RNA using the SMART c¢DNA library kit
(Clontech) according to the manufacturer’s instructions
with minor changes. The cycle number of LD PCR for
c¢DNA synthesis was adapted; 26 cycles for pycnio- and
teliospores, and 2 times 26 cycles (using an aliquot of
the first amplification for the next 26 cycles) for aecios-
pores. The cDNA PCR products were digested with Sfil,
then with proteinase K, and subsequently size-fractio-
nated on 1% agarose gels in 0.5xTBE (45 mM Tris, pH
7.0, 45 mM boric acid, 1 mM EDTA). Fragments larger
than 600 bp were excised and purified with the Qia-
Quick Gel Extraction Kit (Qiagen, Mississauga, ON).
DNA fractions were ligated directionally into vector
pDNR-LIB and transformed into E. coli DH10B/r. Total
RNA from haustorial and germinated urediniospore
material was converted to cDNA using oligo-dT primers
containing a Xhol site and Reverse Transcriptase (ZAP
cDNA synthesis kit from Strategene which contains
StrataScript™ Reverse Transcriptase). After adding
EcoRI linkers to blunted 5’-ends, cDNA was cloned into
vector lambda-zap; conversion of the library resulted in
c¢DNA clones in pBluescript SK- in E. coli DH10B/r.
RNA isolation and construction of cDNA library PT033
(isolated haustoria) was according to Li et al. [50].

DNA sequencing

DNA sequencing of the cDNA clones from the telios-
pore -, aeciospore -, pycniospore - and isolated haustoria
(PT033) stages was performed at the Michael Smith
Genome Sciences Centre (Vancouver, BC, Canada).
Clones were picked on a Genetix Q-Pix into 384-well
plates containing 80 pL 2x YT medium with 7.5% gly-
cerol and plasmids were isolated from 96-well plate cul-
tures using a modified alkaline lysis method. Inserts
representing the 3’-end of the mRNA were sequenced
using the standard M13 forward primer (F: 5’-
GTAAAACGACGGCCAG, or B21/C21: 5-TGTAAA
ACGACGGCCAGT), the T7 promoter primer (B7/C7:
5-AATACGACTCACTATAG) or primer TB (5’-(T)23
A/C/G) used to overcome stuttering and slippage during
sequencing due to long polyT stretches. Inserts
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representing the 5’-end of the mRNA were sequenced
using M13 reverse primers (BR/CR: 5-CAGGAAA-
CAGCTATGAC, or R/CPTR: 5-AACAGCTATGAC-
CATG@). The BigDye Terminator Cycle Sequence
chemistry was used for all reactions (Applied Biosys-
tems, Foster City, CA). Sequences were run on the
ABI3700 platform (Applied Biosystems). The isolated
haustoria (PTDH) and germinated urediniospores
(PTDG) cDNA sequences contributed by M. Dickinson
were end-sequenced by Syngenta UK and run through
the Stackpack program, which aligns identical sequences
to give a non-redundant output. The sequences were
also “trimmed” to remove any contaminating vector
sequences that may interfere with database searching.

ESTs database analysis

Generated ESTs were trimmed via the Consed suite of
programs [51], including the ‘Cross-Match’ algorithm
[52] using the UniVec database (http://www.ncbi.nlm.
nih.gov/VecScreen/UniVec.html) to remove vector
sequences and low quality reads. Sequences shorter than
50 bp were discarded and all were visually inspected. The
resulting quality sequences, including the previously gen-
erated Pt ESTs [14] and a small set of unigene sequences
from infected wheat material predicted to be fungal [13],
were assembled into a non-redundant unigene set via the
CAP3 assembly program [53]. Databases for the various
comparisons were comprised of publicly available and
assembled sequences from wheat where care was taken
to include only sequences derived from “clean”, unin-
fected material, and from various fungi and oomycetes
such as the COGEME db, http://cogeme.ex.ac.uk/[54].
More specific collections were from the closely related
Pgt genomic resources, such as the 20,567 predicted pro-
tein sequences or the 18,241 when disregarding many
TE-related protein calls (release Jan 2010) and over
80,000 ESTs [19]; http://www.broadinstitute.org/annota-
tion/genome/puccinia_group/MultiHome.html), as well
as 30,000 Pt genomic BAC clone end-reads and initial
pyrosequencing (454)-generated Pt genome fragments
(http://www.ebi.ac.uk/ena/data/view/Taxon:208348). A
collection of 3,297 putative fungal Pst EST sequences was
collected from NCBI dbEST [17,20,21]. Mlp genomic
resources were collected from JGI (http://genome.jgi-psf.
org/Mellpl/Mellpl.home.html). U. maydis genomic
resources were retrieved from the Munich Information
Center for Protein Sequences (MIPS), MUMDB (http://
mips.helmholtz-muenchen.de/genre/proj/ustilago).

Accession numbers
The 17,684 new Pt EST sequences presented in this arti-
cle can be retrieved from dbEST at NCBI (http://www.
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ncbi.nlm.nih.gov/sites/entrez?db=nucest) under acces-
sion numbers GR487994 to GR505442 and GR911120
to GR911355. Contig (assembled) unigene sequences are
available from the Transcriptome Shotgun Assembly
Sequence Database, TSA, at NCBI (http://www.ncbi.
nlm.nih.gov/Genbank/TSA.html). Accession numbers
are also given in Additional file 5.

Additional material

Additional file 1: Number of gene predictions on each Pt EST/
unigene sequence in the set not previously called by the Pgt-
trained 4™ order model.

Additional file 2: BLASTP analysis of predictions in “zero” set,
against proteins predicted from the Pgt genome and the NCBI non-
redundant database.

Additional file 3: Statistics of frameshifts predicted by GeneTack in
Pt ESTs with genes called in the same strand by GeneMarkS with
the 4™ order model (supporting Figure 2).

Additional file 4: Similarity searches of Pt unigene sequences to
various databases. This table shows the number of unigenes matching
the various databases within certain ranges of e-values.

Additional file 5: Annotation results. This table holds the most-likely
annotation of 2,551 unigenes based on searches against several
databases. Source of the EST and number of independent sequences
from various stages is indicated as are the unigene sequence match to
the preliminary Pt genome 454 reads, the prediction by GeneMark and
the closest homolog found among the predicted Pgt proteins. GO-
annotations are also given according to cellular location, function or
process, as well as EC and KEGG annotations (as produced by annot8r).

Additional file 6: Pt unigene sequences matching U. maydis ESTs.
The file shows possible homologs between the two species and their
representation over the various cDNA libraries (life cycle stages).

Additional file 7: Pt non-redundant unigene sequences specific for
and shared between spore stages as presented in the Venn
diagram (supporting Figure 3) with annotation results.

Additional file 8: Pt unigenes whose EST counts in the various
spore stages correlate with EST counts of U. maydis homologs in
equivalent cell types/spore stages.

Additional file 9: Pt unigenes were compared to sets of known or
predicted (small) secreted proteins (SSPs). This file reveals families of
likely paralogous proteins and their matches to orthologous and
homeologous predicted SSPs in various in rust fungi and U. maydis. It
includes representation of ESTs over the sampled stages.

Additional file 10: ClustalW alignment of two families of predicted
(small) secreted proteins (SSPs). The alignment was used for the
construction of the phylograms in Figure 4.
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