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Abstract

Background: Several tools are available to identify miRNAs from deep-sequencing data, however, only a few of
them, like miRDeep, can identify novel miRNAs and are also available as a standalone application. Given the
difference between plant and animal miRNAs, particularly in terms of distribution of hairpin length and the nature
of complementarity with its duplex partner (or miRNA star), the underlying (statistical) features of miRDeep and
other tools, using similar features, are likely to get affected.

Results: The potential effects on features, such as minimum free energy, stability of secondary structures, excision
length, etc, were examined, and the parameters of those displaying sizable changes were estimated for plant
specific miRNAs. We found most of these features acquired a new set of values or distributions for plant specific
miRNAs. While the length of conserved positions (nucleus) in mature miRNAs were relatively longer in plants, the
difference in distribution of minimum free energy, between real and background hairpins, was marginal. However,
the choice of source (species) of background sequences was found to affect both the minimum free energy and
miRNA hairpin stability. The new parameters were tested on an lllumina dataset from maize seedlings, and the
results were compared with those obtained using default parameters. The newly parameterized model was found
to have much improved specificity and sensitivity over its default counterpart.

Conclusions: In summary, the present study reports behavior of few general and tool-specific statistical features for

improving the prediction accuracy of plant miRNAs from deep-sequencing data.

Background

MicroRNAs (miRNAs) are ~21 nucleotides long
sequences, which are endogenously generated both in
plants and animals. They are one of the key players in
gene regulation, typically inhibitory in nature, and act
either at the post-transcriptional level (by triggering tar-
get messenger RNA degradation) or at the translational
level (by inhibition of translation) (see review by [1]). In
plants, miRNA genes are initially transcribed as a primary
miRNA sequence (i.e., pri-miRNA), which folds into a
hairpin loop with small overhanging regions at both
ends. The pri-miRNAs are then processed into hairpin
sequences (i.e., precursor miRNA) by a riboendonuclease,
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named DICER. The DICER protein removes the loop
region from the hairpin, and the remaining duplex is
transported out of the nucleus, where the complementary
sequence (also called star) is removed to allow mature
miRNA to be ready for action [2].

Various tools have been developed to discover con-
served and/or novel miRNAs. Initially, the miRNAs have
been discovered by direct cloning and sequencing [3,4],
which suggested a high degree of sequence conservation
of miRNA across species [5]. With the availability of a
complete genome sequence, it is possible to use compu-
tational approaches to discover the miRNA homologs.
Recent progress in high-throughput sequencing further
enabled genome-wide discovery of miRNAs, including
novel miRNAs, and their expression profiling.

Over the past few years, several web-servers and
standalone applications, analyzing deep sequencing data
for miRNA discovery and/or expression profiling, have
been reported; the web-servers include miRCat [6],
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miRAnalyzer [7], miRTools [8], whereas the standalone
tools include miRDeep [9], miRExpress [10], MiroPipe-
line [11], etc. In addition to the above categories, there
have been few miRNA discovery studies, reported in
species, like Arabidopsis [12] rice [13], maize [14], and
human [15], largely carried out using in-house scripts.
There are two major limitations with these tools or pro-
tocols: 1) several of them use known miRNAs to identify
only the homologs present in deep-sequencing data,
thus limiting the scope of discovery of novel miRNAs,
despite the availability of complete genome sequence; 2)
several others are available as web-servers, which con-
strains the analysis in terms of upload/analysis time for
larger datasets and also by limitations in the choice of
reference genomes. In contrast, miRDeep does not have
these constraints. In addition, miRDeep scores the pre-
dictions, which makes it easier to pick the better candi-
dates from the rest [9].

The scoring used in miRDeep is based on computa-
tion of posterior probabilities of statistical features, like
minimum free energy (MFE), conservation of the core
region of mature miRNA, etc.. Some of these features
are commonly used by other tools/analyses (see Meth-
ods for details). The posterior probabilities are usually
computed based on parameters derived from a known
set of real and background precursors; the current para-
meter set used in miRDeep is from a nematode, C. ele-
gans, and reported to be effective for other animals as
well. However, there are major differences between the
properties of plant and animal miRNAs. For example,
the maximum length of plant miRNA precursors can be
about ~900 nt long; the extent of pairing and bulge size
of duplex (of mature and star) in plants is very different
from that of animals [2]. Therefore, the differences in
properties between plant and animal miRNAs can affect
the parameters required for statistical scoring used in
miRDeep.

In the current study we examined the key differences
between plant and animal miRNAs, and their effects on
general and miRDeep-specific statistical features, and
further estimated the plant specific parameters of these
features. With these new miRDeep parameters, we vali-
dated the prediction by applying it to a set of newly dis-
covered miRNA in maize seedlings. The results were
compared to that obtained using default miRDeep
parameters.

Results

Frequency distribution of Minimum Free Energies of plant
miRNA precursors

The frequency distribution of minimum free energies
(MFE or abs) of real plant and animal miRNA precur-
sors showed large differences: plant miRNA precursors
showed a broader distribution and a lower mean MFE
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compared to that of animals (Figure 1). An underlying
factor likely to be accountable for this difference is the
length of precursors. While the length of animal miRNA
precursors mostly lie in the range of 45-215 nt (mean =
~87 nt), those from plants show large heterogeneity,
lying in the range of 55-930 nt (mean = ~146 nt). An
examination of a relation between precursor length and
MEFE showed a linear relation between them, with the
standard deviation of MFE, interestingly, increasing with
length (Additional file 1: Figure 1). The effect of length
on MFE was also evident when the cumulative fre-
quency distribution (instead of mean) of MFE was
plotted (Figure 2A). The distributions were distinct for
precursors of different length. When these distributions
were compared with that of background precursors of
corresponding length (maize genome has been the
source of background precursors unless specified), they
were largely overlapping, except in the left tail region
(Figure 2A). This indicated that the minimum free
energy may not be a strong discriminant between real
and background precursors of plants.

In order to examine if the source (species) of precursor
sequences has any bias on the above observation, the
MEE distribution of real and background precursors
from four additional plant species (with complete gen-
ome sequence), namely sorghum (S. bicolor), rice
(O. sativa), Arabidopsis thaliana, and Medicago tranca-
tula, were compared. While the MFE distributions of
background precursors of sorghum and rice converged
to that of maize, the distributions of Arabidopsis and
Medicago were very distinct (Figure 2B). This led us to
speculate that differences possibly exists at the level of
monocots and dicots. For real precursors, although dif-
ferences did exist between distributions of monocot and
dicot species, however, these were statistically insignifi-
cant (at confidence level <0.05) (data not shown). These
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Figure 1 Frequency distribution of Minimum Free Energy of all
known miRNA precursors of plants and animals.
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Figure 2 Behavior of Minimum Free Energy distribution in plants. (A) Cumulative distribution of MFE of real and background precursors of
three different lengths: 95-105 nt, 180-190 nt, and 260-270 nt. The Bgr indicates background precursors (from maize genome). (B) Cumulative
distribution of MFE of background precursor of size 260-90 nt from five plant species. The source species does affect the nature of distribution,
and they tend to cluster into monocots and dicots. While the differences in distributions within the group were insignificant (at confidence level
<0.05), those from two groups were highly significant. (C) Same as in A, but the MFE has been normalized by its length. For clarity the
distribution of only two values of length have been shown. (D) Empirical distribution of log-odds score of MFE and its best fit theoretical
approximation by a modified sigmoid function. The probabilities for background precursors, used in computing log-odds, were average of that
of three monocots, namely Z mays, S. bicolor, and O. sativa.

observations imply that the miRDeep training, in a plant
species, is largely independent of the choice for the real
precursors, but sensitive for the background precursors.
This also affects the log-odds of MFE in dicots, as the
MEE distributions show large differences between real
and background (Additional file 2: Figure 1), as against
the monocots (Figure 2A).

The multiple distributions, characterizing MFE of
plant miRNA precursors (Figure 2A), posed practical
difficulties in employing them in a miRNA prediction
algorithm. Given the linear dependency between the
MFE and the length of precursors, normalization of
MEE by the length proved a better solution to the pro-
blem of multiple distributions. As shown in Figure 2C,
the cumulative frequency distributions, of precursors of
varying length, overlapped almost completely. For theo-
retical approximation of these distributions, ‘Gumbel’ or
‘Extreme-value’ distribution functions were the ideal
choice, as the MFE values are ‘minimum’ over all possi-
ble free energies. On fitting these functions, the sum of
errors, for the best fit curve, was within the allowable
limit of 10% (Additional file 3: Figure 1). However, the
quality of fit with empirical distributions in the left tail

region was poor (in Additional file 3: Figure 1, note the
region of the plot for normalized MFE values ranging
between -0.4 to -0.1). A better approximation of left tail
regions is desirable, as it has the potential to contribute
larger scores. As an alternative the log-odds scores were
directly computed from the two distributions, and were
approximated by a modified sigmoid function, which
fitted the left tail of curve very well (Figure 2D). The
new parameters are listed in Table 1.

Stability of secondary structure of plant miRNA
precursors

Another feature which distinguishes real precursors from
background precursors is the marked difference in second-
ary structure when the sequence of a candidate precursor
is shuffled (referred henceforth as stability). Bonnet et al.
[16] reported that MFE of real miRNA precursors signifi-
cantly differ from their shuffled counterparts. The miR-
Deep implements this feature through the use of a tool
RAND(old [16] to distinguish real and background precur-
sors by examining the stability of secondary structure on
shuffling. RANDfold first generates an ensemble of
shuffled sequences, either by mononucleotide or
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Table 1 List of miRDeep parameters estimated for plant specific miRNAs

Feature Original parameters of miRDeep Plant specific Dicot specific (if any)
(monocot)
MFE Known Cumulative (Dlslt_ritbtf/tiqn Function: Log-odds score: Log-odds
F(x)=e¢ o (%)= ——r score: f(x) = =
Lo(cation = 32; Scale =55 (b+e™) (b+e™)
Background Cumulative Dis,mbutio’n Function: a = 133%-12 a = 446e-4
F(x) =e e " b= 2778e-13 b = 9.125e-5
Location = 23; Scale = 4.8 Cc =45843 c = 26929
Stability (log-odds) Stable 16 137 063
Unstable -22 -3.624 -3.17
Nucleus conservation (log- Conserved 3 763
odds)
Non-conserved  -0.6 -1.17
Excision length 140 nt 300 nt
Paired Total >14 >15 nt
Unpaired Total NA <5nt
Consecutive NA <3 nt
unpaired
Bulge Total could be as high as 5 nt* <2nt
Maximum multiple hits of 5 20

deep-seq read

The cumulative distribution of MFE of known and background precursors, in miRDeep algorithm, are represented by Gumbel distribution functions, where F(x) is
the cumulative frequency of MFE less than or equal to variable x, and location is used for mean centering the distribution of MFE. On the other hand, in the
parameterized algorithm, log-odds of MFE were directly obtained from the distributions of real and background precursors, and then represented by a modified
sigmoid function where f(x) denotes log-odds of a given normalized MFE. “The size of bulge was estimated based on allowed difference between length of
mature and star sequences in miRDeep. The bulges often appear when one of the duplex sequences has additional bases than its counterpart.

dinucleotide shuffling, and computes the frequency
(p-value) of shuffled sequences exceeding MFE of the can-
didates in question. So a p-value of 0.01, for instance, sig-
nifies that only 1% of the shuffled sequences have similar or
better folding than the candidates. Typically, those candi-
dates with a p-value of up to 0.05 are categorized as stable.

For the real precursors, the RANDfold was run on a
sample of 500 precursors, sampled across all lengths,
which yielded ~0.98 of them as stable (Figure 3). Like
the MFE distribution, the length of miRNA precursor
may also affect the stability of structures. In order to
know how longer precursors behave, this program was
executed on precursors with length > 400 nt. There was
a slight, but statistically insignificant, decline in the fre-
quency of stable precursors (data not shown). On the
contrary, the frequency of stable background precursors
differed substantially for varying length. RANDfold was
run on background precursors of three distinct lengths-
100, 200, and 300 nt. As Figure 3 demonstrates, the
frequency of stable precursors varied considerably: the
frequency for 100 nt long background precursors was
slightly lower (0.8), the same declined drastically for
longer background precursors (ranging from 0.18-0.25).
Considering the excision length (details in later section),
the frequency for the ~300 nt long background precur-
sors was chosen as the parameter for statistical scoring
(Table 1).

We further examined whether the choice of source of
background precursors affected the stability. As in the
case of MFE, the stability of the precursors differs sub-
stantially between monocots and dicots (Additional file
4: Figure 1). The dicot background precursors were
found to have a higher fraction of stable structures (for
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Figure 3 Cumulative frequency of p-value of real and
background miRNA precursors. Three different lengths were
examined: 100, 200, and 300 nt. At a threshold of < 0.05, there was
small difference in frequencies for real and background of length
100 nt. However, with increase in length of background precursors,
the p-value declined drastically.
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example, 50-55% for 300 nt size range), as opposed to
their monocot counterparts (only 20-25% for the corre-
sponding length). Therefore, in dicots, the higher fre-
quency of stable background precursors will make the
distinction between real and background precursors
more blurred.

Core conservation in mature miRNAs of plants

The mature miRNAs generally show high conservation
within a family. Moreover, for a particular miRNA
family, conservation is also observed across species
within (plant or animal) kingdoms. Apart from nucleo-
tides, the conservation also shows positional pattern,
that is, certain positions within mature miRNAs are
consistently conserved even across miRNA families.
This may have some distant implications on the nature
of binding of miRNA to its target, as it is also position
specific. In animal miRNA families, positions 2-8 are
often regarded as the nucleus or core region, and the
same has been implemented in miRDeep algorithm.
However, given the better complementarity between
mature and star sequence in plants [2], we examined
the occurrence of any deviation in the positional conser-
vation profile. A dataset comprising 18 plant miRNA
families were randomly sampled, such that each family
had representatives from at least four species. Results
showed that the nucleus conservation pattern in plants
is quite different from that in animals (Figure 4). Con-
sidering 75% as the threshold for positional conservation
across species, two distinct conservation blocks were
identified: 2-13 and 16-19. For parameter estimation,
the frequency of conservation at position 2-12 was
found adequate; this choice was based on simulations
(data not shown) for finding the minimum length of
nucleus at which specificity of match of any miRNA
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Figure 4 Positional conservation in 18 plant miRNA families.
The height of a bar at any position indicates the number of families
in which said position was conserved.
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within its family is maximized. To compute the fre-
quency of conservation among real miRNAs, the com-
plete set of real miRNAs were split into two sets, 10%
was used as a test set and its conservation at specified
positions was checked in the remaining 90%. This was
repeated 10 times with disjointed test-sets. For back-
ground miRNAs, conservation was examined in a com-
plete set of real miRNAs. While the frequency of
conservation in real miRNA was 0.69, those for the
background was based on a pseudo-count of 1/3000
(= 0.0003) (see Table 1 for estimated parameters).

Precursor excision length

Several miRNA discovery tools, whether based on purely
computational approaches or deep sequencing data ana-
lysis, involve excision of genomic regions based on the
occurrence of an inverted repeat or mapping of sequen-
cing reads, respectively. These excised precursors are
subjected to secondary structure prediction to check for
imperfect fold-back or hairpin structures. Since the
length of plant miRNA precursors varies widely, from
50 to 900 nt (Figure 5), an appropriate choice of exci-
sion length becomes necessary. It will be inappropriate
to use the maximal length as excision length, because
too few real precursors of that length would be available
to estimate the parameters. Moreover, longer precursors
also tend to have large variations in MFE, which is likely
to decrease the prediction accuracy (Additional file 1:
Figure 1). Therefore, an optimal choice would ensure 1)
the majority of plant precursors get covered, and 2) ade-
quate sample size of real precursors (greater than 30) is
available for parameter estimation. Two of the optimal
lengths, 277 and 336, which cover 96 and 98 percent of

Frequency (logscale with base -2)

P R A L
0 100 200 300 400 500 600 700 800 900
Precursor length (bp)

Figure 5 Frequency distribution (density and cumulative) of
precursor length. Two of the possible thresholds which cover 96%
and 98% of the real precursors have been indicated by down-
arrows (|). At these lengths, a reasonable sample size of miRNAs

were available for estimation of parameters.
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sequences, respectively, were found to agree with the
above stated criteria (Table 1).

Other miscellaneous properties
Unlike animal miRNAs, plant miRNAs show better
complementarity with miRNA star. Based on the hair-
pins available in miRBase release-14, the miRNA-
miRNA* duplexes were found to have a maximum of 5
unpaired bases (however the majority have up to 3 mis-
matches), two consecutive unpaired bases, and bulge
size up to 1 (Table 1 and 2). For an accurate prediction
of plant specific miRNAs by any tool including miR-
Deep, these properties must be taken into account.
While computational structure prediction yields mini-
mum free energy structures according to the Turner
model [17], the way miRNA precursors fold in their cel-
lular context may differ from the one predicted by this
model. This could be more likely for longer miRNA pre-
cursors as they may have higher degrees of freedom in
which to be folded. Therefore, we examined how faith-
fully the software RNAfold predicted the secondary
structure of real plant precursors longer than the mean
length. We used RNAfold [18] to generate structures of
11 real plant miRNA precursors, of size in the range of
375-425 nt. The predicted structures were consistent
with the secondary structures reported in miRBase [19].
The probability distribution of mapping of reads to
the real and background precursors modeled by geo-
metric distribution in miRDeep, was assumed to be
same in plants, as the nature of mapping of reads to
mature-loop and star-region are likely to be the same in
both plants and animals. However, a minor difference
(in the distribution) cannot be ruled out due to the
longer loop region in plants.

Validation of predictions by miRDeep parameterized for
plant miRNAs

In order to validate if the above parameterization
improves miRDeep’s prediction accuracy for plant miR-
NAs, we selected recently discovered miRNAs in maize
as a reference set [14]. These miRNAs were not covered
by the training set (miRBase release 14) used in our
study. The reference set included about 150 miRNAs at
the whole genome scale, and a large fraction of them
were experimentally validated. In this study, we report

Table 2 Duplex (miRNA-miRNA*) associated parameters
in miRDeep compared to plants miRNAs

miRDeep Plants

Total unpaired Up to 8 (for 22nt long miRNA)  Up to 5

Consecutive unpaired Upto 8 Only 3
Total bulge Up to 5-6 1
Consecutive bases in bulge Up to 5-6 Nil
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the results for maize chromosome 5, which was reported
to have 23 miRNAs transcriptionally active in maize
seedlings [14]. The parameterized miRDeep predicted 17
candidates with log-odds score well above 0, and 16 of
them were found to overlap with the reference dataset
(Table 3). Out of the seven known miRNAs which were
missed out, discovery of six of them failed as these miR-
NAs were either located within coding sequences (CDS)
or showed high homology to CDS, thereby, reads corre-
sponding to such cases have been excluded from our
prediction. Although, this can be considered as a minor
methodological limitation that reduces sensitivity, keep-
ing this filter ON, helps minimize the false positives ori-
ginating from CDS.

The miRDeep algorithm with default parameters, on
the contrary, predicted only two candidates from chro-
mosome 5 at a log-odds score of >0, and both failed to
match known miRNAs. On a whole genome scale, it
predicted a total of sixteen candidates, out of which
only two overlapped with known miRNAs. When
checked for the presence of basic features typical to
plant miRNAs, we found the majority of them failed to
meet the desired metrics. Most of the discrepancies are
related to the number of mismatches in the duplex
region, the bulge size, non-specific homology, or precur-
sor length, etc. Therefore, the newly parameterized miR-
Deep consistently identified known miRNAs (from
chromosome 5, expressed in maize seedlings) with
higher specificity and sensitivity than the original
parameterization.

Discussion

The plant miRNAs differ from animal miRNAs in sev-
eral aspects, mainly in the hairpin length and in the nat-
ure of complementarity with the star sequence [2].
Although the length of mature sequences largely
remains the same, the length of the loop region differs
substantially in plants, owing to their recent evolution
[19]. These differences strongly influence the statistical
features used for their prediction.

The minimum free energy (MFE), a commonly used
measure for characterizing secondary structure of dif-
ferent types of RNA [20,21], is also being used for
characterization and/or prediction of miRNAs
[3,4,22-24]. For screening miRNA candidates, the
majority of previous studies have either used a fixed
MEFE threshold (for example, -18 kcal/mol) [13], or a
variable threshold [25]. The miRDeep, however,
involves comparison of (posterior probabilities of) MFE
of real and background hairpins, enabling a more
robust discrimination between them. This comparison
in plants, however, did not prove to be so straightfor-
ward, as diversity in miRNA hairpin length results in
multiple distributions of MFE.
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Table 3 Validation of miRNAs identified by parameterized miRDeep

miRNA Family miRNA name Confirmation by RACE Seedling RPM If identified by parameterized miRDeep Reads aligned Star (count)

miR156 zma-MIR156d 14111.2 v 5932 1
miR156 zma-MIR156l 1264591 v 1659 1
miR160 zma-MIR160b v 292,65 miRNA overlapping with CDS
miR162 zma-MIR162 v 2.74 poor abundance of reads
miR166 zma-MIR166d 3146 v 328 1
miR166 zma-MIR166k v 6.52 miRNA homologous to CDS
miR166 zma-MIR166m v 49.75 miRNA homologous to CDS
miR167 zma-MIR167b v 2860.25 v 17402 1
miR167 zma-MIR167¢ v 2872.95 v 72684 0
miR168 zma-MIR168a 10364.43 v 32179 1
miR169 zma-MIR169f 12344 v 3371 0
miR171 zma-MIR171f v 15483.87 v 78 1
miR171 zma-MIR17Tm 412 v 508 1
miR172 zma-MIR172b 13449 v 81 1
miR390 zma-MIR390b 222041 v 6504 1
miR394 zma-MIR3%4a v 446 MIRNA overlapping with CDS
miR396 zma-MIR396f 849.46 v 2503 1
miR396 zma-MIR396g 4323 miRNA homologous to CDS
miR397 zma-MIR397b 556.13 v 1628 1
miR399 zma-MIR399h 4323 v 129 1
miR399 zma-MIR399i 90.57 v 272 0
miR529 zma-MIR529 3592 v 1050 1
miR827 zma-MIR827 711.89 miRNA overlapping with CDS

Unclassified ? - 334 0

The candidates were compared against a recently discovered set of miRNAs, from chromosome 5 of maize, expressed in seedlings [14]. The data in third and
fourth columns are from [14], while those in last two columns are from current study. The cases missed out by parameterized miRDeep appeared mainly due to
a filter which discarded reads mapped to coding sequences (CDS). Even chance homology of a miRNA, either complete or at least in mature/star region, to any

CDS can result into the miRNA being unidentified. RPM: Reads Per Million.

Although, the effect of hairpin length on MFE in
plants has been reported earlier [25], these reports did
not give a systematic evaluation of potential impacts of
this relationship on prediction of plant miRNAs. In the
present study, we observed that the MFE distributions
become length-free by normalizing the MFE of precur-
sor with its length, which renders the MFE of hairpins,
of different length, comparable.

We further observed only minor differences between
the MFE distributions of real and background precur-
sors of comparable length. This suggested that MFE
alone may not be a good discriminator between real and
background miRNAs, and more weight should be placed
on other measures besides MFE. These findings however
do not hold for dicot species, as they do show substan-
tial differences between real and background, rendering
MEE a more important discriminating feature.

Differences between the secondary structures of candi-
date precursors and their shuffled counterparts is
another important feature exploited for miRNA predic-
tion [9]. The real precursors generally display substantial

difference in the nature of folding (as well as in MFE)
from their shuffled counterparts [16]. This difference is
quantified by the p-value, which is the fraction of
shuffled sequences with MFE lower than original pre-
cursors; a candidate with p-value <0.05 can be statisti-
cally considered as stable. Although, plant and animal
miRNA precursors, of the same length, are expected to
have a similar frequency of stable precursors, due to the
diversity in length of plant miRNA precursors, the para-
meter estimated for animals becomes inapplicable to
plants. In the latter case, while p-values of real precur-
sors remains almost the same even with increased
length, that of background precursors declined substan-
tially with length. These criteria become more effective
when it comes to predicting longer candidate precur-
sors, which is often the case with plants.

Furthermore, the conservation of mature miRNAs is
yet another important feature for miRNA discovery,
exploited by miRDeep and several other tools, where the
former takes into account the conservation in the
nucleus region of mature miRNAs [9]. The positions
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which constitute the nucleus in animals are 7-8 nt in
length, starting from position 2 [27-29], whereas in
plants, there is near-perfect complementarity all along
its length. We examined the nature of the positional
conservation pattern in plants, and found a relatively
longer conserved motif, wherein two conservation
blocks were apparent: positions 2-13, and 16-19, with
position 4 completely conserved. Implementation of
positional conservation pattern in plants has improved
the specificity of miRNA homolog prediction.

Since plant miRNA precursors show a relatively
broader distribution of length compared to animals, this
in turn, necessitates a different choice of excision length
(s) for candidate prediction. While Sunkar et al. [13]
considered 200 nt as a threshold at which 90% of the
real precursors in rice were covered, Jones-Rhoades et
al. [30] took a higher precursor length (500 nt) for pre-
diction in A. thalina/O. sativa. In another study by Adai
et al. [25], in A. thaliana again, the maximum precursor
size was set to 400 nt. Based on the distribution of
length of plant miRNA precursors from miRBase data-
base (release 14), length(s) which covered the maximum
number of miRNAs, and at the same time, had an ade-
quate number of precursors (30, for instance, which
have properties of a normally distributed population) for
parameter estimation, were chosen. We observed two
thresholds satisfying the above constraints, 276 and 336,
covering 96% and 98% of the population, respectively.

To show how much the new parameterization
improves the prediction accuracy, we used the miRDeep
with the default parameters to predict miRNA candi-
dates. Results suggested that a major fraction of miR-
NAs, predicted using the default parameters, did not
match with experimentally identified miRNAs. The
observed values of key features, such as number of total
mismatches, bulges, nucleus conservation, excision
length, etc., of the predicted candidates were atypical for
plant miRNAs. Moreover, shorter nucleus size in default
miRDeep led to identification of several false miRNA
homologs. However, prediction using new parameters
on the same dataset showed very high prediction accu-
racy, with good sensitivity and even better specificity.

Notably, any proposed improvement in plant miRNA
discovery must meet the criteria laid out for miRNA
annotation in plants [12,31]. Despite the parameter
adjustments in the miRDeep algorithm, the primary cri-
terion for miRNA annotation, namely precise excision
of mature miRNA from the stem of a stem-loop precur-
sor, is implemented faithfully. The parameterization
doesn’t interfere in miRDeep’s core method. Further,
two of the miRDeep’s statistical features, namely charac-
terization of stem-loop and mapping of reads onto
precursors, are enough to prevent a siRNA being mis-
classified as miRNA. Besides, there have been recent
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reports of few plant miRNAs being processed by riboen-
donucleases other than DCL1 [32], therefore, the predic-
tive methods should also be capable of their
identification. This however does not pose much pro-
blem to the tools based on deep-sequencing reads, as
their methods are guided primarily by the sequences.
So, a DCL3 processed miRNA, for instance, will be ana-
lyzed just like the DCL1 generated miRNAs, despite the
longer product size of the former. Furthermore, there
have been rare reports of multi-functional stem-loops
[12], which poses challenges to the tools available for
miRNA discovery. We are skeptical about the ability of
the current form of miRDeep algorithm to handle such
complexity.

This study also brings forward some issues that can be
studied in the future. Increasing the number of plant
genomes can allow researchers to further test whether
MEFE distributions of monocots and dicots truly differ
and if so, study the underlying mechanisms. Further-
more, improved genome annotation will also improve
the discovery of miRNAs missed out due to overlap
with an otherwise incorrectly annotated CDS. Other
desired advancements include modules for identification
of other kinds of sRNA and the ability to characterize
multi-functional stem-loops.

Methods

Known miRNA sequences

The sequences of precursor and mature miRNA of plant
and animal species were downloaded from miRBase
(release 14) [19] and pooled into respective sets. Addi-
tionally, plant specific miRNA sequences were also
extracted (as on April 15" 2010) from the ‘Plant
miRNA Database’ [33], which contains additional num-
bers of precursors, which are largely computationally
predicted.

This dataset was further processed to remove redun-
dancy, as in several instances, the precursor sequences
are almost identical except for a few changes in
nucleotides. Such sequences are likely to create bias
towards the over-represented members of a miRNA
family. This bias may affect some of the important
analysis such as cumulative distribution of MFE and
the effect of length on MFE. For obtaining non-redun-
dant sets, the precursors were first divided into indivi-
dual families and were then subjected to multiple
alignment. Based on the alignment, the highly similar
sequences were manually discarded, resulting in a set
of 1904 precursors out of 2034.

Generation of background sequences

A background miRNA precursor is one that exhibits
similar physical properties as that of real precursors,
however, they are never transcribed into a miRNA.
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Since it is known that plant miRNAs are transcribed lar-
gely from the intergenic region and coding sequences
are unlikely to contain any miRNA. Therefore, we used
protein-coding sequences of five different species
namely maize [34], sorghum, rice, Medicago, and Arabi-
dopsis (sequences of remaining four species were
obtained from [35]), for generation of background pre-
cursors (in the present study, maize was the default
choice for background sequences unless otherwise speci-
fied). We used de novo miRNA discovery program,
miRCheck [36], for identification of background
sequences, over a broad length range, with default para-
meter settings, except the excision length was increased
to 500 nt.

Statistical scoring in miRDeep
The miRDeep score is given by,

(1)

P(pre | data)
P(bgr | data)

score = log[

where P (pre|data) is posterior probability of a test
precursor being a ‘real precursor’ (pre) given the values
of multiple statistical features (data), and P (bgr|data) is
posterior probability of a test precursor being ‘back-
ground precursor’ (bgr) given the data.

When Eq. (1) is expanded using Bayes theorem,

(2)

P(data | pre)P(pre)
p(data | bgr)P(bgr)

score = log(

where P(data|pre) is conditional probability of obser-
ving data in real precursors, P(data|bgr) is conditional
probability of observing data in background precursors,
and P(pre) and P(bgr) are prior probabilities of real and
background precursors, respectively.

The data, for any precursor, is described by five statis-
tical features: 1) absolute value of minimum free energy
(abs), 2) stability of secondary structure against rando-
mized counterparts (rel), 3) signature (or pattern) of
mapping of reads to the precursor (sig), 4) sequence
conservation in the nucleus (or core) region of mature
miRNA (nuc), and 5) presence of at least one read map-
ping star region (star) of the precursor. Therefore, the
term P(data|pre), for instance, can be expanded into,

score(data | pre) = P(abs | pre)P(rel | pre)P(sig | pre)P(nuc | pre)P(star | pre). (3)

Out of these five probability distributions, P(abs|pre)
and P(sig|pre) are continuous distributions (takes any
value within specified range), while the remaining three
are discrete distributions (takes one of the values from a
set). The above also applies to the probability distribu-
tions for background (bgr) data. The cumulative
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frequency distribution of MFE, P(abs|pre) or P(abs|bgr),
shows gumbel (or extreme value) distribution, while that
of signature, P(sig|pre) or P(sig|bgr), shows geometric
distribution [9]. The stability (rel) takes either of the
two values: 0 if frequency of unstable is more than 5%,
otherwise 1. Similarly, if nucleus regions is non-con-
served at the specified positions, the value of nuc will be
0, otherwise 1. The value of star will be 0, if any read
fails to map with star region, otherwise 1.

The miRDeep essentially involves determination of
these probability distributions, mentioned in Eq. (3), for
known datasets of real (pre) and background (bgr) pre-
cursor/mature sequences. Here in current study, these
distributions will be estimated for plants miRNAs.

Frequency distribution of Minimum Free Energies

The frequency distribution of MFE, plotted in Figure 1,
was obtained from secondary structure prediction (by
RNAfold [18]) of all known animal and plant miRNA
precursors (available in miRBase release-14). To obtain
a relationship between precursor length and MFE (as in
Additional file 1: Figure 1), samples of plant precursors
of different lengths, with sample size 60 (however for
highest length, the sample size dropped to 21), each
sample being homogeneous in length with a variation of
5 nucleotides (however 10 for the samples having mem-
bers less than said sample size) were obtained. The MFE
was computed by RNAfold and mean MFE values were
plotted against the average precursor length of each
sample.

For comparison of distributions of MFE of back-
ground precursors from multiple plant species (shown
in Figure 2B), two-sample Kolmogorov-Smirnov tests
were conducted using ‘ks.test()” function of R statistical
package [37].

For theoretical approximation of distributions shown
in Additional file 3: Figure 1, the empirical distributions
of MFE of 47 real and 554 background precursors, of
length 260-290 nt, were fit with Gumbel distribution
function (minimum),

=

F(x)=1-¢"° ()

where b is a scaling factor. Since the fitting errors
were high so the log-odds were directly computed. The
MFE log-odds score, displayed in Figure 2D, were
obtained by

The log of ratio of conditional probabilities of MFE of
real and background precursors was computed for each
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of the bins, and were plotted. The frequency distribution
of MFE was obtained with bin-size = 0.01. The empiri-
cal distribution was modeled by a modified sigmoid
function [38]:

a

normalized _ MFE) = . . 6
f( ) (b + ec normallzed_MFE) ( )

where a, b, and ¢ are fitting parameters.

Core conservation in mature miRNAs

To study the positional conservation in mature miRNA
families of plants, we obtained all members of 18
miRNA families, sampled randomly. It was however
insured that each family must have representatives from
at least four species. Members of each miRNA family
were aligned using CLUSTALX [39] and a position with
> 0.9 conservation was marked conserved. Then posi-
tional conservation profile of all 18 families were
summed. That is, count of families conserved at each of
the positions, starting from 1 to 23, was obtained and
plotted. Since higher evolutionary divergence is likely
across families (than within family), therefore threshold
for defining a position as conserved was further relaxed,
that is, > 0.75 (Figure 4).

In order to obtain the frequency of nucleus conserva-
tion in real miRNAs, a strategy of 10-fold cross-valida-
tion was applied. That is, the complete set of known
mature miRNAs were first shuffled, and divided into
two fractions with ratio 9:1. The smaller fraction was
used as a ‘test set’ and its conservation (at positions 2-
12) was examined in sequences of larger fraction, and
the frequency of sequences from test-set hitting ‘train-
ing-set’ was recorded. This was repeated 10 times, and
an average of all ten frequencies was obtained. For back-
ground, the conservation of a large set of putative
mature sequences, against the training-set described
above, were examined in a similar way.

The log-odds of observing conserved (nuc = 1) and
non-conserved (nuc = 0) nucleus were

_ P(nuc =1|pre) | _
score(conserved nucleus) = log ( Plnuc =11bgr) |~ 7.63
and

score(non — conserved nucleus) = log( Plnuc = 0| pre) ): 1.17,

P(nuc =0 bgr)
respectively (Table 1).

Stability of secondary structures of miRNA precursors

For computing frequency of stable and unstable real
precursors, analysis was done on a sample of 500 plant
miRNA precursors of varying lengths. Each of them
were subjected to mononucleotide shuffling for 999
times, followed by computing p-value,
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p — value =

(N +1) @

where R is the number of shuffled sequences with
MEFE greater than that of original sequence, N is the
number of iterations.

For background precursors, the analysis was carried
on three samples of lengths: 100, 200, and 300 nt, each
sample having 100 sequences. They were subjected to
499 iterations.

The estimated log-odd scores for stable (re/ = 1) and

unstable (rel = 0) were given by,
_ P(rel=1]pre) \ _
score(stable) = log ( Pl =1 bgr) |~ 1.37 and

P(rel = 0] pre)

m ): 3.624 , respec-

score(unstable) = Zog(

tively (Table 1).

Running default and parameterized miRDeep on a sample
deep-sequencing data

The Illumina reads, generated from Maize seedlings
transcriptome, were downloaded from NCBI Gene
Expression Omnibus (ID: GSM448856) [40]. The reads,
already trimmed for adaptors, were 7.922 millions in
number.

The pre-processing of Illumina reads was done using
MiroPipeline [11], which involved low complexity fil-
tering, inclusion of reads without adaptor, and repla-
cing identical sequences with single representatives.
For mapping reads in miRDeep, the default choice of
mapper, namely mega-blast [41], was replaced with
one of faster mapper, namely SOAP-v2.2 [42]. Map-
ping was done onto unmasked Maize genome [43],
with repeated hits allowed, and the maximum number
of mismatches was set to 1. The hits were later filtered
for number of multiple best hits, a maximum of 20
was set as a threshold (so that reads repetitive in nat-
ure get excluded, at the same time those most likely
mapping to multiple members of a miRNA gene family
are considered), and then converted into miRDeep
compatible format. The hits with protein coding
sequences and with various types of non-coding RNA
(eg., rRNA, tRNA) were also filtered out [44,45]. The
excision length was set to a maximum of 300. In order
to speed up the mapping of filtered reads onto precur-
sors (default program: auto_blast.pl of miRDeep pack-
age), we used MiroPipeline (configured for using
seqmap as an alignment tool) [11]. The core program
(miRDeep.pl) was run with score threshold 0 and stabi-
lity check on. One of the miRDeep’s filtering criteria,
to exclude candidates with bifurcation in secondary
structure, was set off to improve sensitivity.
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The key syntactic changes for incorporating plant spe-
cific parameters in PERL scripts of miRDeep are listed
in Additional file 5.

Conclusions

The difference in properties of plant and animal miR-
NAs has large impact on the statistical features used for
miRNA prediction. The parameters used for animal
miRNA prediction cannot be used to predict plant miR-
NAs. Among the statistical features, the minimum free
energy was found to have marginal difference between
real and background in monocots. However dicots
showed a different behavior wherein MFE scoring is
potentially a key discriminator. The stability pattern in
plant miRNAs was different to animals, in particular
among the background sequences. The positional con-
servation profile was relatively longer in plants, so does
the associated frequencies. The new set of parameters
identified in this study will substantially improve our
capacity to predict plant miRNAs.

Additional material

Additional file 1: Figure 1. Mean MFE as a function of (precursor)
length. The vertical bars display the standard deviation. The best fit linear
curve has a slope of 0.48.

Additional file 2: Figure 1. Comparison of cumulative frequency
distributions of (length normalized) MFE of real and background
precursors from dicot species. These precursors are of length 260-290 nt.
Bgr: background.

Additional file 3: Figure 1. Best fit curve of Gumbel distribution
(minimum) for the cumulative distributions of MFE of real and
background precursors (length: 260-290 nt). Except for small range of
normalized MFE values, largely in middle, the corresponding curves do
not fit well.

Additional file 4: Figure 1. Cumulative frequency distribution of p-value
of background precursors of five species (size = 300 nt). Those from
dicot species have higher stability, this, rendering them less
distinguishable from the real precursors.

Additional file 5: Text. Key changes made in the syntax of miRDeep to
incorporate plant-specific parameters.
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