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Abstract

Background: Identifying the regions associated with protein function is a singularly important task in the post-
genomic era. Biological studies often identify functional enzyme residues by amino acid sequences, particularly
when related structural information is unavailable. In some cases of protein superfamilies, functional residues are
difficult to detect by current alignment tools or evolutionary strategies when phylogenetic relationships do not
parallel their protein functions. The solution proposed in this study is Feature Amplified Voting Algorithm with
Three-profile alignment (FAVAT). The core concept of FAVAT is to reveal the desired features of a target enzyme or
protein by voting on three different property groups aligned by three-profile alignment method. Functional
residues of a target protein can then be retrieved by FAVAT analysis. In this study, the amidohydrolase superfamily
was an interesting case for verifying the proposed approach because it contains divergent enzymes and proteins.

Results: The FAVAT was used to identify critical residues of mammalian imidase, a member of the amidohydrolase

superfamily. Members of this superfamily were first classified by their functional properties and sources of original
organisms. After FAVAT analysis, candidate residues were identified and compared to a bacterial hydantoinase in

also identified.

protein families.

which the crystal structure (1GKQ) has been fully elucidated. One modified lysine, three histidines and one
aspartate were found to participate in the coordination of metal ions in the active site. The FAVAT analysis also
redressed the misrecognition of metal coordinator Asp57 by the multiple sequence alignment (MSA) method.
Several other amino acid residues known to be related to the function or structure of mammalian imidase were

Conclusions: The FAVAT is shown to predict functionally important amino acids in amidohydrolase superfamily.
This strategy effectively identifies functionally important residues by analyzing the discrepancy between the
sequence and functional properties of related proteins in a superfamily, and it should be applicable to other

Background
(The software is freely available for download from
reference [1]).

Retrieving useful functional/structural information
from a set of amino acid sequences is essential in
experimental biological studies. Desired information is
often obtainable by analyzing the sequence
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conservations, functional correlations and related
structures that belong to a protein/enzyme family or
superfamily. An enzyme superfamily is defined as a
group of proteins that share the same structural scaf-
fold and that undergo fundamentally similar chemical
reactions [2]. Earlier studies [3-5] adopted various
pair-wise alignment and multiple sequence alignment
(MSA) methods to detect the conserved residues that
reveal functional roles in a set of sequences. Classical
sequence comparison tools such as FASTA [6],
BLAST [3], CLUSTALW [7], T-COFFEE [8] and
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MUSCLE [9] can detect similarities in aligned
sequences and identify the conserved positions. These
positions are essential for further functional analysis.
Hierarchical analysis [10-12] is often used to select
the most desirable pattern of an alignment. Some pro-
tein groups with dissimilar sequences but substantial
structural fold similarity (hereinafter referred to as
remote homologues) have similar or related biochem-
ical functions [13]. These proteins can be classified
into the same superfamily according to their biologi-
cal properties. Due to their low overall similarity,
using alignment methods alone may not reveal the
amino acid residues that reflect their physicochemical
properties.

In addition to alignment methods, the most com-
mon strategy for predicting functional residues from
sequences is motif-based sequence analysis [14-17].
However, the motif-based approach often obtains
excessive false positives, which limits its use for ana-
lyzing a protein superfamily. Phylogenomic techniques
such as the evolutionary trace method of identifying
functionally important residues [18] use evolutionary
information to improve accuracy and are particularly
useful for large-scale analyses. This method automati-
cally relates the results back to a given structure and
identifies key features structurally clustered around
substrate and dimmer interfaces [19-22]. This tool is
useful for analyzing protein or enzyme superfamilies
and for extracting functional information from
enzyme families or superfamilies when the phyloge-
netic tree or dendrogram approximates a functional
distribution.

This study employs a voting concept to search for
functional key residues in an enzyme superfamily. Vot-
ing or voting-like concepts are widely used in comput-
ing algorithms for various purposes. In computational
biological applications, voting concepts are often inte-
grated with neural networks for protein clustering and
structure prediction [23]. Some theoretical analyses
[24-29] indicate that comparing three sequences is bet-
ter than comparing two sequences because it increases
the alignment power needed to distinguish significant
matches. Likewise, aligning three groups provides more
information than aligning two groups does. Therefore,
we developed a Feature Amplified Voting Algorithm
with Three-profile alignment (FAVAT) according to the
observed sequence similarity and biochemical properties
of proteins in the amidohydrolase superfamily. The
FAVAT identifies the key residues by calculating a score
for each residue in a rat imidase. The functional resi-
dues of a rat imidase were identified and further con-
firmed by experimental references and available
structural information.
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Results and discussion

Case study: Imidase-related proteins in amidohydrolase
superfamily

In this study, rat imidase was the target sequence, and
DRPs (Group II proteins) were classified into ~A pro-
teins. Bacterial hydantoinases (Group III enzymes) were
classified as A proteins. Although Dihydroorotase, allan-
toinase and other amidohydrolases (Group IV) were also
classified as A proteins, they differ from the Group II
enzymes in their functional correlation to target
sequence (rat imidase). Following the above classifica-
tion, the clustered sequences were subjected to FAVAT
analysis, and two sets of scores were obtained for each
residue of the target sequence. In the experiments,
Groups II, III and IV were aligned using the MUSCLE
tool adopted by the National Center for Biotechnology
Information (NCBI) for protein database alignment.

Voting scores of imidase by FAVAT analysis

Figure 1 shows the FAVAT analysis results. The T-score
suggests the importance of each residue of the target
sequence (rat imidase) after accumulating the total vot-
ing scores (V-scores), each V-score is calculated from
the target sequence, an A protein sequence and a ~A
protein sequence. For each rat imidase residue, two sets
of T-scores were obtained from the Group II-Group III
votes and the Group II-Group IV votes. Ten amino
acids (Ala34, His67, His69, Alal34, Lys159, His248,
Met297, Arg302, Asp326 and His459) were further ana-
lyzed after merging the two sets of the higher T-scores
over 60. Table 1 summarizes the amino acid residues
selected by FAVAT and MSA analyses and their corre-
sponding locations in two proteins with known crystal
structures [PDB:1GKQ, PDB:1KCX].

Comparison of FAVAT and MSA results

Biologists often use MSA to conjecture important resi-
dues of proteins or enzymes of interest among their
related sequences. Figure 2 shows the MSA fragments
of rat imidase, hamster dihydroorotase domain, yeast
allantoinase and Bacillus sp. D-hydantoinase. The MSA
analyses revealed that one aspartate and four histidines
were highly conserved. The results in Fig. 2 are consis-
tent with data published previously [30-32].

In their studies [30-32], residues Asp57, His59, His61,
His183 and His239 were hypothesized to be critical
amino acids for the metal coordinators and function of
D-hydantoinase of Thermus sp. Notably, the study [33]
reported that a crystal structure of hydantoinase
(1GKQ), in which a carboxyl-lysine is responsible for
metal binding and is important for enzyme activity, was
not revealed by MSA analysis. Another residue, Asp57,
which was incorrectly identified as a metal coordinator
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Figure 1 Total voting scores (T-scores) of rat imidase by FAVAT analysis The scores
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were obtained by voting algorithm as described in

Methods. The first row is the rat imidase sequence. The scores in the second and third rows are accumulated V-scores (T-score) for the Group -
Group Ill and Group II-Group IV votes, respectively. Amino acid residues are marked in red if both votes resulted in T-scores over 60. The T-scores
over 60 for Group II-Group IIl and Group II-Group IV votes appear in green and blue, respectively. The boxed residues indicate the residues

corresponding to metal coordination in bacterial hydantoinase (1GKQ).

Table 1 Functional annotations of the residues in rat imidase selected by FAVAT

FAVAT score

FAVAT selected

Corresponding residues

Corresponding residues

MSA predicted

Functional annotation base

ranking residues in 1GKQ' in 1KcX' residues? on 1GKQ
1 His248 His239 Lys254 His239 Metal coordinate
2 His69 His61 Tyr75 His61 Metal coordinate
3 Arg302 Arg292 Ser308 Conformation
4 Lys159 Lys150 (Kcx) GIn165 Metal coordinate
5 Met297 Met287 Thr303 Conformation
6 His67 His59 Asn73 His59 Metal coordinate
7 Asp326 Asp315 Gly332 Metal coordinate
8 Ala134 Ala126 Asp139 Secondary structure core

residue

9 Ala34 Arg30 GIn44 Quaternary structure
10 His459 Trp448 Met465 Quaternary structure

'GKQ and 1KCX are the structure IDs of D-hydantoinase and collapsin response mediator proteins (CRMPs), respectively.
2MSA result according to the manuscript [66].
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Frame 1 Frame 2 Frame 3
248
DHP NGDL IVHVMS
DHO RQSV  PHHLFL
DAL LPKA PVHIVH
HYD NGDV  VVHVSC

Figure 2 Results of MSA analysis A multiple sequence alignment
of imidase (DHP), dihydroorotase (DHO), allantoinase (DAL) and D-
hydantoinase (HYD) was performed using CLUSTALW. The
conserved amino acid residues among the four enzymes are shown
in bold type and enclosed in rectangles.

in a previous study that applied MSA method as the
corresponding residue in 1GKQ, revealed no involve-
ment in metal coordination. Table 1 shows that, in the
current study, FAVAT successfully identified all known
important residues in rat imidase. The Lys159, His67,
His69, His248 and Asp326, which correspond to Lys150,
His59, His61, His239 and Asp315 in hydantoinase
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(1GKQ), are metal ion coordinators (boxed amino acids
in Fig. 3).

The corresponding locations of FAVAT-selected residues
in 1GKQ and 1KCX

The possible functions of imidase amino acids selected
by FAVAT were further analyzed using 1GKQ and
1KCX, which are known structures of imidase related
proteins. The former is the crystal structure of a D-
hydantoinase that represents an A protein (Group III) in
FAVAT analysis. The latter is the crystal structure of a
dihydropyrimidinase-related protein (CRMP1) that
represents a ~A protein (Group II) in FAVAT analysis.
Figure 3 shows their corresponding sequences and sec-
ondary structures. The similar B/o. core structures were
observed in the wiring diagrams of 1GKQ and 1KCX.
The significant difference in these structures is that
1GKQ forms a typical (B/a)g domain, but 1IKCX does
not. The FAVAT-selected amino acids may reflect both
the structure feature and metal requirement that are
responsible for the different functions of the A and
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Figure 3 Corresponding locations of FAVAT-selected residues in the wiring diagrams of 1KCX and 1GKQ The secondary structures are
those of CRMP-1 (1KCX, red font) and D-hydantoinase (1GKQ, blue font), respectively. The sequences are for D-hydantoinase (hydlgkg), rat
imidase (rat_imidase) and rat CRMP1 protein (rat_crmp1). The top ten residues obtained by FAVAT analysis are highlighted in yellow. Residue
His183, which was not among the top ten residues selected by FAVAT, is boxed in red. Residues indicated by dotted lines were those reported
for metal coordination of hydantoinase.
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P
Trp448

by blue font. Residue His183 (yellow font) was not identified in this study.
binding site of 1GKQ. The corresponding amino acids identified by FAVAT

/
Arg30
Asp315
is59
HisG 1 . His239
-9 Zn
Zn e His183
Kex150
g Ala126

(b)

Figure 4 Corresponding locations of amino acid residues identified by FAVAT in 1GKQ (a) The top ten residues selected by FAVAT on the
topology of 1GKQ. Carboxylated lysine residue (Kcx150), His59, His61, His239 and Asp315 that were involved in metal coordination are indicated

(a)

Other selected residues are indicated by red font. (b) The metal
are highlighted.

~A proteins. The corresponding locations of Ala34 and
His459 in 1GKQ (Arg30 and Trp448 in the N-terminal
and C-terminal B-Sheet, respectively) and in 1KCX
(GIn44 and Met465 in the N-terminal and C-terminal
B-Sheet, respectively) were domains in which they

interact with another monomer to form a quaternary
structure in both hydantoinase and CRMP1 [34,35].
Residues His67, His69, Alal34, Lys159, His248 and
Asp326 (His59, His61, Alal26, Kcx150, His239 and
Asp315 in 1GKQ; His73, Tyr75, Aspl139, Glnl65,
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Lys254 and Gly332 in 1KCX) are located in the B/a
core region.

Figure 4a is a topological view of the corresponding
FAVAT-selected amino acids in 1GKQ. Thermus sp. D-
hydantoinase (1GKQ) contains two divalent metal ions
in active site (Fig. 4b). The central binuclear zinc center
is bridged by the carboxylated lysine residue (Kcx150)
and a hydroxide ion. Residues His59, His61, His183,
His239 and Asp315 correspond to the active site zinc
ion (Fig. 4b). The corresponding residues were con-
served in other members of the amidohydrolase super-
family [36,37]. However, in CRMP1, four of the five
corresponding residues are diverse [38]. These residues
were all identified by FAVAT analysis. Other candidates
recognized by FAVAT analysis, Ala134, Arg302, Ala34,
Met297 and His459, were also found to reside in posi-
tions critical to protein function. The corresponding
residue of Alal34 in 1GKQ (Alal26), was located near
the active site (Fig. 4b). Residues Arg302 and Met297
(Arg292 and Met287 in 1GKQ, respectively) were
located at the helix-loop domain outside the (3/a)g cata-
lytic domain. This implies that they may be important
for maintaining structure or stabilizing the protein con-
formation (Fig. 4a). These preliminary findings merit
further detailed study.

Although the metal coordinators of imide-hydrolyzing
enzymes in this case study were dispersed sequentially,
almost all the known metal coordinators in 1GKQ were
identified by FAVAT except His 183 (His 192 for rat
imidase). This residue is conserved in CRMP1 but lacks
metal and amidohydrolytic activity. The role of this his-
tidine needs further study. The major difference
between bacterial hydantoinase and mammalian imidase
is their metal content. The former contains two metal
ions while the later contains only one metal ion [39,40].
Fewer metal coordinators may be needed for mamma-
lian imidase, and residue His 192 may not be required
as a coordinator of metal ions in rat imidase. A mam-
malian imidase was crystallized recently [41]. The differ-
ence between mammalian imidase and non-mammalian
imidase is expected to be clarified in the near future.

Conclusions

The FAVAT was developed to predict functionally
important amino acids in mammalian imidase. A T-
score was given to each residue of the target enzyme by
analyzing imidase-related proteins in the amidohydrolase
superfamily on the basis of their sequence-function rela-
tionships. Of the ten top T-score amino acids selected,
six (His67, His69, Lys159, His192, His248 and Asp326)
corresponded to metal coordination in D-hydantoinase.
The other four amino acids corresponded with positions
that were structurally important for forming quaternary
structures and secondary structures in 1GKQ. Residue
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Asp57, which was misrecognized as a metal coordinator
in previous MSA analyses, was correctly recognized by
FAVAT. This study showed that analyzing the discre-
pancy between the sequence and functional properties
of related proteins in a superfamily is an effective
method of identifying functionally important residues.
This strategy should be applicable to other protein
families, and the authors expect to employ this strategy
for analyzing critical residues of viruses in future works.

Methods

Imidase and sequence clustering in the amidohydrolase
superfamily

Hydantoinase activity was first reported in plants and
animals [42,43] to hydrolyze hydantoin derivatives that
are not known as physiological metabolites. This enzy-
matic activity is useful for preparing optically pure
amino acids that are precursors for various antibiotics
[44]. Due to its industrial application, several hydantoi-
nases have been studied and purified from microorgan-
isms [45,46]. A dihydropyrimidinase (5, 6-
dihydropyrimidine amidohydrolase) partially purified
from animal livers was shown to hydrolyze the physiolo-
gical substrate dihydropyrimidine [47]. A detailed study
of a homogenous imide-hydrolyzing enzyme, imidase,
which was purified from rat, pig or fish livers [48-51],
revealed that it catalyzes a wide spectrum of substrates,
including dihydropyrimidines, hydantoins and other imi-
des [52]. Despite the substrate spectra of hydantoinase
highly similar to imidase, these imide-hydrolyzing
enzymes from bacterial and mammalian sources report-
edly have relatively low sequence similarity. Some mam-
mals, flies and C. elegans, reveal proteins with high
sequence similarity to dihydropyrimidinase (or imidase).
These dihydropyrimidinase-related proteins (DRPs) may
be involved in cancer and neuron cells development, but
possess no imidase activity [53-55]. Additionally, other
enzymes revealed by the studies in evolution of the
metabolic pathway are also known to use mechanisms
similar to those observed in imidase [56,57]. These
enzymes include dihydroorotase, allantoinase, urease
and amidohydrolases, which originate in mammals,
plants and fungi [58]. All use distinct substrates that
contain similar imide functional groups.

All of the above enzymes can be classified into the
amidohydrolase superfamily according to their proper-
ties and structures [59]. In this superfamily, some pro-
teins have similar sequences but divergent functions
whereas others have similar functions but low sequence
similarity. This phenomenon strongly suggests that only
a few critical amino acid residues in this superfamily are
needed for specific protein functions. Proteins in the
amidohydrolase superfamily can be grouped according
to their sequence similarity and biochemical properties,
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and an effective strategy for analyzing these proteins
may yield valuable information.

A string search containing the rat imidase sequence
(Accession No.: NP_113893) yielded 156 protein
sequences of amidohydrolase superfamily were obtained
from the PIR database [60]. According to their sequence
similarity and functional properties, sequences were
further clustered into the following five groups
(Table 2): I. imidase (imide-hydrolyzing enzyme from
mammal); II. sequence-related proteins (dihydropyrimidi-
nase-related proteins with 50% or higher sequence similar-
ity to mammalian imidase but without imidase activity);
III. functionally identical enzymes (hydantoinase, or the
imide-hydrolyzing enzyme from bacteria with 30-40%
sequence similarity to mammalian imidase); IV. function-
ally-related enzymes (dihydroorotase, allantoinase, urease
and amidohydrolase with 25-48% sequence similarity to
mammalian imidase); and V. putative sequences (gene
products with unknown function) with 30% or higher
sequence similarity to mammalian imidase.

Observation and assumption

Table 2 shows the significant findings of the compari-
sons of sequence identity and functional properties of
the imidase-related proteins in the amidohydrolase
superfamily. Sequence-related proteins (Group II) had
no imidase activity even though the overall similarity of
sequences in this group was higher than 50% [61]. This
phenomenon implicated that key amino acid residues
for imidase activity have been altered or removed from
Group II proteins. In contrast, functionally identical
and functionally related enzymes (Group III and Group
IV, respectively) had lower sequence identity, but they
basically catalyzed the same reaction. For these
enzymes, few conserved residues should be needed to
provide a similar imidase function. The above observa-
tion implies a principle for classifying the sequence or
the functional divergent enzymes in a superfamily,
which may help to develop a feature amplified voting

Table 2 Grouping of imidase related proteins’
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algorithm for identifying key residues in a target pro-
tein. Biologists generally select a sequence of interest as
a target and perform BLAST analysis to recover related
protein sequences. By definition, a specific function or
property (e.g., substrate specificity) of a sequence of
interest can be used to cluster the related sequences
into different groups. For example, if property A is used
to classify these sequences, sequences with property A
should be classified into group A. Otherwise, the
sequence should be classified into group ~A. Based on
the classification of these three groups, a critical
assumption can be made. When the target sequence,
the A sequence and the ~A sequence belong to a pro-
tein superfamily, the conserved residues of the target
sequence and the A sequence should correlate to prop-
erty A. However, the non-conserved residues of the tar-
get sequence and ~A sequence should also reflect the
negative correlation in property A. The intersection of
the residues provides important functional clues. Thus,
important residues can be found by comparing these
three property groups. Therefore, the three-profile
alignment method was developed to optimize the align-
ment of three groups so that key residues are then
revealed by voting algorithm. Figure 5 shows the
FAVAT flowchart that was developed to retrieve useful
information for these distinct groups. Analysis of the
imidase-related sequences in Table 2 indicated that,
within this superfamily, the degree of sequence similar-
ity did not necessarily reflect the similarity in biochem-
ical properties. This provides a good opportunity to
develop a novel method for extracting functional resi-
dues of a target enzyme. In this work, FAVAT was
used to examine each residue in mammalian imidase by
comparing other sequences in the amidohydrolase
superfamily. Given the limited structural information
about mammalian imidase, the analytical results of this
study should provide important clues for enzymologists
to perform further in-depth biochemical analyses of
these results.

Group Member number Sequence identity Imidase Activity
. Imidase (target enzyme) 5 98-100% Yes
II. Sequence related proteins? 43 50-80% No
lll. Functionally identical enzymes® 16 30-40% Yes
IV. Functionally related enzymes* 63 25-48% Yes
V. Putative proteins’ 29 30-60% Unknown

'Proteins are grouped according to properties related to the target enzyme (rat imidase).

2Sequence-related proteins, referred to as dihydropyrimidinase related proteins (DRPs), with no imidase activity.
3Functionally identical enzymes, referred to as bacterial imide-hydrolyzing enzyme or hydantoinase, in which substrate spectrums were virtually identical to that

of the target enzyme.

“Functionally-related enzymes, including dihydroorotase, allantoinase, and urease. Each enzyme catalyzes its own distinct substrate that contains an imide

functional group.
> Putative proteins are referred to as gene products with unknown function.
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Target sequence

—

Property A protein sequences

—
——————————
—————————
1

Property ~A protein sequences

\

Three-Profile Alignment by DP

Voting each combination of triple sequence

Target sequence | —
# Property A ith protein [—————
Property ~A jth protein [ —

|

Next Vote

Obtaining voting score at each residues site
corresponding to target sequence by using the voting
algorithm based on substitution scoring matrix

y

Voting score accumulating

Total scores of each residues site correspond to target
sequence

Figure 5 Flowchart of FAVAT In this study, rat imidase was first aligned simultaneously to A proteins and ~A proteins to obtain voting scores
(V-scores) by voting algorithm based on BLOSUM62 substitution matrix. The V-scores for each vote were accumulated at the corresponding
residues in the target sequence and used to obtain a total score (T-score).

Algorithm

The FAVAT was performed in two steps. The first step
was to align the target enzyme, functionally identical
enzymes (A proteins) and sequence-related proteins (~A
proteins) using three-profile alignment. The three-pro-
file alignment algorithm, which is based on the dynamic
programming three-way alignment approach [62,63],
was designed to align three profiles in a space. As in the
FAVAT pre-process, each profile can be generated by
multiple sequence alignment tools such as T-COFFEE,
HMMER [64] and MUSCLE.

Let Py, P, and P; be three profiles, and Py;, Py; and Psy
refer to the ith, jth and kth positions in Py, P, and Ps,
respectively, starting from 1. The symbol “-” denotes a
“gap” in the alignment. Scores for the alignment of two
columns are denoted by Sp(a, B). The scoring pair pro-
files P;-P, are defined as follows:

n

i (Wa X W, XM[H((M) ][Tz(h,j)])

Spy, (i j) = 4=Lb=L ,
mxn

where Spi, is the score at the ith andjth columns on
P; and P,, respectively. The P; has m sequences, and P,
has n sequences. The W, and W, are the sequence
weights for sequence 4 in P; and sequence b in P,,
respectively. The residue at ith column for sequence a
in P, is denoted by ry(,;. The M is the value of the sub-
stitute matrix for ry(,; and ry; ;). Many substitution
matrices, such as BLOSUM, have been proposed to
improve alignment accuracy [65]. Similarly, the defini-
tions of scoring pair profiles P;-P; and P,-P; are similar
to those of pair profile P;-P,. Gap penalties are deter-
mined by gap opening (GOP) and gap extension (GEP)
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Figure 6 Dynamic programming recursions for three-profile alignment with affine gap costs Scores for the alignment of two residue
positions are denoted by Sp(e, B). The GOP and GEP are gap opening and gap extension penalties, respectively. In affine gap costs, GOP and

ifi=0,j=0andk=10

Dand k=10

ifi=0,j>0and k=0
ifi=0,j=0andk >0
ifi=0,7>0andk >0

ifi>0,j>0andk >0

scores. The best score of the alignments with prefixes
Py;, Pyj and P is denoted by S(i, j, k) if the residues
(P1;, Pyj, P3p) are aligned; G(i, j, k) is the best score given
that (Py;, Py, -) is the last column of the partial align-
ment, and H(i, j, k) is the best score given that the last
column is of the form (Py;, -, -). E(i, j, k), F(i, j, k), 1(i, J,
k) and J(i, j, k) are defined analogously. These quantities
clearly satisfy the recursions summarized in Fig. 6.

The next step after the alignment is to determine
whether amino acid residues critical for imidase activity
exist in target and A proteins but are absent in ~A pro-
teins. In the second step, a voting score (V-score) is

given based on the previous assumption, and the V-
scores are then summed in each comparison. In this
step, a substitution matrix (BLOSUMS62) is used to give
V-score when each sequence of property A and ~A is
compared to the target sequence. The V-score is calcu-
lated as follows:

Vitap) = Mltis A — Mt ~Appl,

where V(5 is the V-score at the kth residues on tar-
get sequence, sequence a4 in A proteins and sequence b
in ~A proteins. The A and ~A proteins have m and #
sequences, respectively. The #; is the kth residue of the
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Target sequence A L E D N

Functionally Identical or Related Enzymes (property A proteins) H L E P L

Sequence-related Proteins (~A proteins) 1 1 P D 1

Score 1 0 6 7 0

(b)

Figure 7 Score setting and scoring example (a) Substitution matrix for BLOSUM62. In this study, the BLOSUM 62 substitution matrix was used
to obtain V-scores for the voting algorithm. (b) Example of FAVAT scoring. When three-profile alignment was performed in the target sequence,
the voting scores for A proteins and ~A proteins corresponded with the BLOSUM62 substitution matrix. For example, residues for target
sequence, an A protein and a ~A protein were A, H and L, respectively. The V-score is -2 (A to H in BLOSUM62) - (-1) (A to L in BLOSUM62) = -1.

target sequence. The A(a,k) and ~A(b,k) are the kth resi-
dues on sequence a in A proteins and on sequence b in
~A proteins, respectively. The M([ty, A, x] is the value
of the substitution matrix for z; and A, . Figure 7
shows the V-score calculation. The BLOSUMS62 substi-
tution matrix is generally used for protein or nucleic
acid sequence alignment. In the proposed algorithm,
each V-score is given and accumulated to a total score

(T-Score) until all sequences of property A and ~A are
compared. The T-Score is calculated as follows:

m
ni=2,
a=1

where T} is the T-Score at the kth residue on target
sequence. The T-Score at each residue position is

n

Z | Vi(ap)r

b=1

_>Target
LVEDGVVRAL

>A protein 1
LVKHGEKIVAI
>A protein 2
KIVEGGRIVETI

>~A protein 1
YITENGIIQQV
>~A protein 2
YTENGIIQOQYV

Sum of
Voting scores

428]-8 -8 0[-22/0-1614 4

G Column 1
LL-Y=4 - (-1)=5
LL-Y=4- (=5

- LKY=2- (D=3
LKY=-2-(1)=-3

- Total =4 Max = 28, Min =-22
Final = (4-(-22))/(28-(-22))*100 = 52

G

G

0

Final scores

T-score for this position is zero.

521002828 44 0441272 520

Figure 8 FAVAT scoring example For the first position of the target sequence, four V-scores were calculated for L-L-Y, L-LY, L-K-Y and L-K-Y,
respectively. The T-score at each position is the sum of four V-scores, and the T-score (total score) for the first position of the target sequence is
4. After the normalization function, the final T-score is 52. When any gap existed at the position in one of three groups such as column 11, the
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obtained by adding m x n V-scores. The normalization
function is used to transform all T-scores into a range
from 0 to 100 in FAVAT. The normalization function is
as follows:

7 _ T = Min(T)
"7 Max(T) - Min(T)

x 100,

where Max(T) and Min(T) are the maximum and
minimum scores of all T-scores, respectively. The details
of the FAVAT algorithm are shown below, and Fig. 8
presents an example of V-Score and T-Score calcula-
tions using FAVAT.

Algorithm FAVAT (t, P, Q);

Input: Target sequence ¢, a set of proteins P without
property A, a set of proteins Q with property A. P has p
sequences and Q has g sequences.

Ouput: The scores correspond to the residues of ¢
(high T-scores indicate potentially critical residues)

Begin

1 /*Step1: Do three-profile alignment by dynamic pro-
gramming method among ¢, the proteins P, and the pro-
teins Q. The length of the resulting alignments is m1,,,,,.
t[k] indicates the k-th residue of £.*/

2 fork <- 1 tom,,,,do

3 ift[k] <> ‘-‘ then

4 [*T-score [k] indicates the potential importance of
the k-th residue of ¢. */

5 T-scorelk] <- 0

6 max <- -c

7 min <- o

8 fori <- 1 topdo

9 forj <- 1 togdo

10 /*X and Y are used to store the k-th residue of this
i-th protein in P and this j-th protein in Q, respectively.
*/

11 (X,Y) = (Pld], Q[j], k-th)

12 /*Step 2: Find V-score[k] based on the BLOSUMG62
substitution matrix.*/

13 V-score[k]<-BLOSUMB®2(¢[k], Y)

14 V-score[k]<-V-score[k] + (-1) x BLOSUM®62(¢[k], X)

15 T-scorelk] <- T-scorelk] + V-scorelk]

16 max <- MAX (max, T-score[k])

17 min <- MIN (min, T-score[k])

18 end if

19 fork <- 1 tom,, ,do

20 T-scorelk] = (T-score[k] — min/max — min) x 100
/*normalization*/

End

The novel feature of the FAVAT algorithm is its use
of the sequence and functional properties among target
sequence, ~A proteins and A proteins. When voting for
reliable critical residue candidates, three relations are
considered: the relation between target sequence and A
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proteins, the relation between target sequence and ~A
proteins and the relation between A proteins and ~A
proteins. To accurately identify the key residues, some
useful alignment tools with physicochemical properties,
such as T-COFFEE and HMMER, can be employed in
the FAVAT pre-process to align A and ~A proteins
separately (profiles). The appropriate alignments of A
and ~A proteins can enhance the accuracy of the result-
ing alignment to the target sequence, A and ~A proteins
by three-profile alignment. The most important residues
can then be found accurately from the resulting align-
ment using FAVAT. The FAVAT algorithm was
designed to account for the importance of alignment-
based voting skill by V-score function. The time com-
plexity of FAVAT is O(m,z,’), and m,,,,, is the length
of the resulting alignment by three-profile alignment.
To reduce the time complexity of three-profile align-
ment method, this study developed a parallel version
implemented by the MPICH library. The time complex-
ity for the parallel version is O(m,,,.,>/p), where p is the
number of processors. After the voting process, the resi-
due candidates obtain high T-scores. The uncritical can-
didates can be eliminated by advanced research.
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