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Abstract

Background: Transcription factor (TF)-DNA binding loci are explored by analyzing massive
datasets generated with application of Chromatin Immuno-Precipitation (ChIP)-based high-
throughput sequencing technologies. These datasets suffer from a bias in the information about
binding loci availability, sample incompleteness and diverse sources of technical and biological
noises. Therefore adequate mathematical models of ChIP-based high-throughput assay(s) and
statistical tools are required for a robust identification of specific and reliable TF binding sites
(TFBS), a precise characterization of TFBS avidity distribution and a plausible estimation the total
number of specific TFBS for a given TF in the genome for a given cell type.

Results: We developed an exploratory mixture probabilistic model for a specific and non-specific
transcription factor-DNA (TF-DNA) binding. Within ChiP-seq data sets, the statistics of specific
and non-specific DNA-protein binding is defined by a mixture of sample size-dependent skewed
functions described by Kolmogorov-Waring (K-W) function (Kuznetsov, 2003) and exponential
function, respectively. Using available Chip-seq data for eleven TFs, essential for self-maintenance
and differentiation of mouse embryonic stem cells (SC) (Nanog, Oct4, sox2, KLf4, STAT3, E2F1,
Tcfcp211, ZFX, n-Myc, c-Myc and Essrb) reported in Chen et al (2008), we estimated (i) the
specificity and the sensitivity of the ChiP-seq binding assays and (ii) the number of specific but not
identified in the current experiments binding sites (BSs) in the genome of mouse embryonic stem
cells. Motif finding analysis applied to the identified c-Myc TFBSs supports our results and allowed
us to predict many novel c-Myc target genes.

Conclusion: We provide a novel methodology of estimating the specificity and the sensitivity of
TF-DNA binding in massively paralleled ChIP sequencing (ChIP-seq) binding assay. Goodness-of fit
analysis of K-W functions suggests that a large fraction of low- and moderate- avidity TFBSs cannot
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be identified by the ChIP-based methods. Thus the task to identify the binding sensitivity of a TF
cannot be technically resolved yet by current ChIP-seq, compared to former experimental
techniques. Considering our improvement in measuring the sensitivity and the specificity of the TFs
obtained from the ChIP-seq data, the models of transcriptional regulatory networks in embryonic
cells and other cell types derived from the given ChIp-seq data should be carefully revised.

Background
Identification of transcription regulatory elements in the
genome is an important problem of molecular systems
biology and statistical genomic studies. Among those
elements, transcription factor binding sites (TFBSs),
short and specific DNA loci targeted by transcription
factors (TFs), are considered as basic regulatory elements
of gene functional activity and reflect the corresponding
protein-DNA interactions in a cell. TFs are the largest set
of regulatory proteins in mammalian cells. According to
NCBI RefSeq database, about 10% of all known proteins
of mammals, including humans, are TFs.

A TFBS serves as a target for a transcription factor which
binds to this specific binding site (BS) directly or via
other proteins and regulates gene transcription. In a
mammalian genome the number of direct and indirect
BSs for a given TF could be ranged from several hundreds
to hundred thousand [1-8]. However, these values have
not been directly measured and the theoretical estimates
provide lowly confident values.

The interactions between the molecules of a given TF and
corresponding TFBSs in the genome could be considered
in the terms of TF-DNA binding events (BEs) which
reflect the events of binding in the assay. Any of such
events might be specific and non-specific in the context
of a direct physical binding of the TF to a TFBS. The
intensity (and the corresponding probability) of an
occurrence of a given BE in a given genome locus can be
characterized by the level of relative avidity (RA) of the
TF-DNA binding- an integrative quantitative character-
istic of availability of a DNA locus (e.g. TFBS and its
flanking region) for a given protein (e.g. TF) binding [9].

The population distribution function of RA (i.e. the
distribution function of RA for a given set (population)
of BE) for a given TF can reveal functional attributes of
the TFBSs and the mechanisms of the TF-DNA interac-
tion on the genomic scale. However, at the level of single
cells or cell samples the distribution function of RA for
any TF is unknown, since many technical problems of
direct counting of specific protein molecules bound
DNA have not been solved yet. Instead, the relative
avidity of TF-DNA binding in an average genome within
a given cell sample can be quantified by an estimate of

the number of TF molecules bound to a given locus
averaging across the given cell sample. However,
quantitative detection of TFs bound to specific loci is a
great challenge. A simpler task is a pull-down of short
DNA fragments directly or indirectly bound with the
molecules of a given TF. Such TF-DNA complexes can be
detected in Chromatin Immuno-Precipitation (ChIP)
ChIP-based genome-wide sequencing experiments
[3,4,6-8].

In a typical genome-scale ChIP experiment ~108 cells are
used and the transcription factors are cross-linked to
their DNA using chemical cross linkers. After the
genomic DNA is isolated and fragmented by ultrasound
sonication, an antibody specific to the TF of interest is
used to isolate each TF molecule and the DNA fragment
which it is bound to. Cloning the whole pool of such
fragments and sequencing them (for example, in a serial
analysis of chromatin occupancy (SACO) [10], ChIP-
paired end tag (ChIP-PET) [7], sequence tag analysis of
genome enrichment (STAGE) [1]) provides the data for a
large-scale identification of TFBSs.

However, the experimental information, obtained from
SACO, ChIP-PET and STAGE experiments, about statis-
tical properties of TF binding at specific physical BSs
(and moreover biological functions of the BSs) in a given
cell type, at a given environment is highly noisy and
essentially incomplete. Only pulled-down TF-DNA
complexes containing DNA fragments with maximal
relative binding avidity could be reliably detected.

Recently, a new generation of sequencing technology,
massively parallel sequencing (MPS), has been estab-
lished [2,5] MPS can sequence many millions of
fragments in a single experiment. Combining ChIP and
MPS (ChIP-seq) provides a genome wide view on TFBSs.
In particular, ChIP-seq method can accurately detect
moderate/high avidity TFBSs at a resolution (up to several
base pairs) higher than for any previous ChIP method
[2,5]. In detail, during a ChIP-seq experiment, TF-
Immuno-precipitated DNA fragments (sequence reads)
are directly sequenced in series of 25-36 bp reads, and
dozenmillions of such short reads are thenmapped to the
reference genome. After mapping of unique DNA
fragments (enriched by DNA bound by TF molecules)
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onto the genome, the DNA fragment sequences, extended
further up to ~200 bp, are clustered by their overlapping
sub-sequences and mapped onto the genome. The
number of DNA fragment sequence overlaps is further
represented in the analysis as overlap signal with peaks.
Each DNA fragment cluster is usually quantified by its
highest overlap peak, i.e. by the cluster's internal region
with the largest number of overlapping extended ChIP-
seq DNA fragment sequences. (Figure 1) The number of
overlapping DNA fragments in a given cluster can be
observed as the RA value of the given TF-DNA BS.
Technically, TF binding avidity in specific DNA loci could
be measured on the genome scale using peak search
procedure on the mapped overlap signal. A number of
software tools have been proposed to perform this search
in the genome, and thus to find genomic regions
containing the TF-abundant DNA loci and to identify in
each locus specific TF-bound DNA sequences.

One of the crucial problems with ChIP-based genome-wide
assays, including ChIP-seq, is a statistically reliable identi-
fication of biologically meaningful phenomena (e.g. all
specific and functionally important binding loci) from the
large amounts of generated experimental data. In this
context reliable, specific and sensitive mapping of protein-
DNA interactions is still essentially dependent on subjective
rules of pre-processing and filtration of the DNA fragment
sequences, the statistical criteria used to identify specific
binding loci and the real TFBSs. As a result, some basic
definitions, datasets, statistical models and estimates have
been revised after original publications [2,5,9,11-13].

A large unexplained “technical” noise component in the
experimental measurements and its non-uniform location
in the genome are serious limitations for the specificity of
the current ChIP-based methods [7,9,11-13]. Comparison
of ChIP-seq data sets analysing the same TF, under similar
conditions and the same cell type but using different
experimental platforms (ChIP-chip, ChIP-PET and ChIP-
seq) revealed a reasonable consistency between themapped
datasets only for high and moderate avidity ChIP-defined
binding loci. These loci, however, represent only a small
fraction of all binding loci observed in the course of the
entire ChIP-seq experiment. Therefore genomic localization
and biological roles of other reliable but less reactive TF-
binding loci (low avidity BSs) cannot be identified from the
assays [9,11,12,14]. To analyse statistical properties of the
low-, moderate- and high-avidity binding loci for a given
ChIP-seq data set we need to develop a probabilistic model
which would allow us to answer three important open
questions.

How many ‘hidden’ TF-specific BSs with moderate and
low avidity are present in the noise-rich subset of ChIP-
seq data?

How many “true negative” specific BSs which should be
included in consideration are not present in the given
ChIP-seq dataset?

How many specific BSs of a given TF exist in the genome?

To answer these questions an analytical model(s) of
ChIP-seq TF-DNA binding experiments should be
focused on analysis of specificity and sensitivity of
protein-DNA binding.

To do this a simple exploratory probabilistic model of
TF-DNA binding events was developed and implemen-
ted. It allowed us to facilitate noise filtering of ChIP-seq
datasets and predicting, for a given TF, the number of
specific TF-DNA binding loci in the entire genome. We
applied the proposed analytical approach to the dis-
tributions of binding avidity of the TFBS of eleven TFs
which are essential for maintaining and differentiation
mouse embryonic stem cells.

Results
Natural variation of binding availability of the TFBS for
TFs and critical threshold of TF binding specificity
TFs bind to short high affinity DNA response elements
(motifs) mostly in putative promoter region of a gene
and modify gene activity. However this model of TF-
DNA binding is too simple and the phenomenon
remains poorly understood, although many models of
TF-DNA binding have been reported [9,13,15-17]. For
example, well-known TF c-Myc exhibits very diverse and
complex patterns of DNA binding activity [12]. C-Myc
binding region in gene promoter region could often
contain multiple copies of a few c-Myc E-box sequences.
Such TFBS clusters could be found in low-, moderate-
and high- avidity ChIP-seq binding loci of the mouse
embryonic stem cell (EC) -related genes (see below).

The E-box is a high affinity response/binding element of
DNA which able to discriminate c-Myc among other
different TFs. c-Myc forming heterodimers with its
binding partners (MAX, MIZ1) and other DNA-specific
proteins (e.g. MIZ1, Sp1, NEY) using “canonical” E box
5'-CACGTG-3', which represents the consensus or other
at least five “non-canonical” E-boxes (CATGTG,
CATGCG, CACGCG, CACGAG, CAACGTG), and addi-
tional one (CGCGAG) which we report in this work (see
below). The E-box motifs are present in putative
promoter regions of at least 4000 genes [12]; however,
how a given response element can discriminate among
all these different transcription factors is currently
unclear. Moreover, several types of non-canonical E-
boxes could bind c-Myc-MAX complex strongly than
canonical [18]. In this respect, several mechanisms of
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variability of c-Myc-Max-DNA binding avidity have been
proposed (and, in some instances, experimentally sub-
stantiated) [12,17,18]. For instance, flanking sequences,
chromatin structure, methylation status, and relative
position within the promoter or interaction with
adjacent regulatory elements might contribute to selec-
tion of a particular complex [17].

We assume here that transcription factor (TF)-DNA
binding avidity in a given TFBS defined in ChIP-seq

experiment could be considered as useful integrative
characteristic of availability of the TFBS for a given TF.
Naturally, TF-DNA binding avidity could be quantified
by the number of TF molecules binding a given specific
locus including specific binding element(s) and its
flanking regions. However, the number of TF molecules
bound DNA cannot be directly inferred from ChIP-seq
experiment. ChIP-seq detects the amount of specific
DNA fragments directly and indirectly bound by the
protein-antibody complexes. Mapping the extended

Figure 1
A random sampling model of determination of TF binding avidity potential on the genome defined in a ChIP-
seq experiment. Sequencing TFBS-enriched DNA fragments can be assayed to determine the specific clusters of DNA
sequences bound by TF protein. Results are strongly depended from the number of read (sample size). A: Small sample size. B:
Large sample size. Blue horizontal stake: specific DNA fragment; white horizontal stake: non-specific DNA fragment forming
non-specific (false-positive) clusters. C: BS1-BS6 are binding loci presented in the given cells: blue vertical stakes are relative
binding avidity in the loci; BS6 might be modified (epigenetically) and suppressed BS (a stake with triangle basis) and therefore it
might be not detected in ChIp-seq assay. BS1 and BS4 might be not detected in the assay due to sample size limit. D: A scheme
of the random Markov process of binding-dissociation of TF-DNA realized on the genome scale. The graph illustrates concept
of birth-death random process model utilized in this work (see Methods).
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DNA fragments on the genome, an appropriate cluster-
ing of overlapping fragments and filtering of the clusters
result in an identification of putative TFBSs. Thus the
integrative relative avidity of TFBS in ChIP-seq experi-
ment could be quantified by the number of overlapping
DNA fragments in the cluster loci. When this number is
equal to or larger then a specificity threshold, t, such
significant DNA loci (specific BEs) could be used to
construct and analyze of statistically reliable part of the
empirical frequency distribution representing relatively
high-avidity binding loci of specific TF-DNA binding. In
particular, we used this part of the distribution for
estimation of the number of reliably detected specific
TFBSs (called N S2 , see Definitions & Methods).

In the datasets [15], which we used in our study, the
specificity threshold was calculated using three different
methods. The first method implements a model of
normalization of observed binding peak height values in
a ChIP-seq experiment against peak height values in the
corresponding negative control experiment (anti-GFP
[15]). However, the control data provided many strong
peaks which are often found in specific genomic regions
like satellite repeats creating an unpredictable bias in
identification of specificity threshold. We found also a
fraction of loci in which negative control and experi-
mental set binding signals (peaks heights) are highly
correlated and the fraction of locus in which the peaks in
control dataset were higher than in the experimental set.

After removing non-random false peaks, a relatively
small reduction of the number of the nonspecific DNA
fragments even among the smallest peaks (1, 2,..., 7)
about 15-25% of total sequence read could be excluded.
However, many millions DNA fragments within low-
and moderate- abundant peaks of are present in the data
sets (data not shown). These findings suggest that the
number and the variation of DNA fragments of the
negative control experiment do not allow us to explain
the source(s) of the major fraction of non-specific DNA
sequences and their clusters occurred in a specific ChIP-
seq experiment.

The second method implements a model of random
occurrence of DNA fragment clusters in the genome. The
model assumes that each genomic position has the same
probability of producing a ChIP-seq DNA fragment
(sequence read) and the probability of finding by chance
m DNA fragments in a ChIP-seq experiment within the
same genomic region taken from a genome of size g. The
probability calculations were made, using a Monte-Carlo
simulation, by randomly extracting 200 bp DNA frag-
ments from reference mouse genome (mm8) and
estimating the expected numbers of non-specific overlap
peaks with various height values. Then the frequency

distribution of the number of random ChIP-seq DNA
fragments in a cluster overlap (peak heights) was
constructed and the threshold value at the given
specificity level for the original empirical frequency
distribution of the peak height value was defined. The
binding loci reported in [15] has been limited to the
locis with specificity threshold value defined by the
model described above, which was considered as the
random background noise mode [15].

The third approach based on qPCR validation data with
correction of threshold value for a limited number of
ChIP-seq DNA loci has been used [15]. ChiP-seq data
analyses showed that in all cases the simple model (with
a random uniform distribution of DNA fragments
locations in the genome) produces too optimistic
specificity threshold values in comparison with the
values defined by q-PCR method [15]. For example, for
TF Nanog the model overlap peak value 7 is predicted as
a cutoff at FDR<0.95 [15]. At this cut-off value 32773
putative ChIP-seq BSs were predicted as “true” (or
specific) TFBS. However, the analysis of 37 ChIP-seq
defined BSs using ChIP-qPCR suggested the specificity
threshold value equal to 11 (at specificity level 98%). At
this specificity threshold value, only ~30% (10343/
32773) of DNA fragment clusters could belong to “true”
BSs. Additionally, the numbers of singletons (single
unique ChIP-seq DNA sequences occurring only once
per a single unique locus) generated in the computa-
tional simulation were systematically larger than
observed ones (for example, Figure 2A). Inversely,
predicted numbers of random clusters with low- and
moderate- avidity loci (e.g. with overlap peak heights 2-
10) might be systematically underrepresented in ChIP-
qPCR data.

ChIP-qPCR is often used to determine in vitro whether a
given ChIP-seq DNA fragment cluster belongs to a
specific TFBS and, subsequently, to estimate the specifi-
city threshold for the original ChIP-seq dataset by
extrapolation. However, due to the limited number of
loci which could be used in ChIP-qPCR, a sub-optimal
design of ChIP-qPCR experiment might contain a bias in
estimating the ChIP-seq BE specificity threshold. In this
section we shall give an answer to the question: how to
optimize a design of ChIP-qPCR experiments to mini-
mize the sample size bias?

On Figure 3 we present the results of our analysis of 94
ChIP-seq loci containing 224 distinct DNA fragments
from Esrrb TF ChIP-seq library selected by the authors of
[15] for their validation of computational model
estimate (t = 6). Figure 3 shows that ChIP-qPCR
experiment was designed on the studied affinity value
range based on a uniform distribution function of the
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number of TF-DNA BEs per locus. To search for a more
realistic frequency distribution representing Chip-seq
data, 224 random samples of the 94 ChIP-seq loci were
chosen without replacement from the same ChIP-seq
library. On Figure 3 the mean values and standard
deviations (SD) of the number of BEs (peak heights)
over these 224 samples are plotted. This figure shows
that the observed frequency distribution of mean peak
height is a skewed Pareto-like function. In comparison to
the uniform distribution, our frequency distribution is
significantly overrepresented by the BS with overlap peak
values less than 13 and is significantly underrepresented
by the with overlap peak values greater than 15. This

result suggests that a sub-optimal design of a qPCR
validation study can provide a false positive increment in
the estimation of the number of q-PCR-confirmed
specific ChIP-seq loci and thus it can erroneously predict
a larger specificity value than it can be deduced from the
whole ChIP-seq dataset. If so, the actual specificity
threshold values of ChiP-seq experiments might be larger
than it was reported in [15]. Respectively, the real
number of specific TFBSs at the threshold value given by
qPCR test could be smaller than it is expected from
results of the test. In the next sections we will present an
alternative computational method which uses all avail-
able Chip-seq data and estimates the specificity of Chip-

Figure 2
Observed and predicted statistics of TF–DNA BEs. A: Fitting and back extrapolation analysis for complete dataset.
Decomposition of mixture model (1) for Nanog TF-DNA BEs is provided based on curve-fitting analysis of the model. Close
circle: number of loci of ChIP-seq extended DNA cluster overlaps from 1 to 8 BEs. Open circle: number of loci of ChIP-seq
extended DNA cluster overlaps from 9 to 73 (included) BEs. Noise-like (close circles) data fits well be exponential function
with exponent parameter s = 1.05 ± 0.055 (p < 0.0001, t-test). The reliable set of TF BS (at >8 BEs) are equally well fitted by
the left-side truncated GDP function (at k = 1.81 ± 0.15 (p < 0.001, t-test) and b = 8.00 ± 1.335 (p < 0.001, t-test)) as well as by
K-W function (θ = 0.999, a = 6.618, b = 8.29; Table 3). Extrapolation curve predicts the number of Nanog TFBSs in the noise-
enriched binding site fraction of the empirical distribution. B: Nanog TF-DNA BEs, C: Esrrb TF-DNA BEs and D: c-Myc TF-
DNA BEs. B, C and D: K-W model fitting on the observed and extrapolated of double-truncated GDP data to calculate p0.
Vertical dotted lines are representing qPCR-defined threshold and the threshold defined based on best-fit double-truncated
GDP function. Triangle symbols show the observed over represented number of TFBSs in compare to best-fit GDP function.
N0, N1 and N2 are the numbers of non-detected, potentially detected and high specific (reliable) TFBSs, respectively. More
detail information about parameter values of GDP and K-W models presents in Additional File 3, 4, 5.
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seq assay without (i) assumptions regarding physical
distribution non-specific Chip-seq DNA clusters (noise
BEs) and (ii) the need for a validation of the results in
ChIP-q-PCR assay.

A mixed model of the sample-size dependent frequency
distributions of binding events could be used to estimate
the number of low/moderate- and large- avidity binding
loci
A simple visual inspection of the available empirical
frequency distributions of TF-DNA binding plot in log-
log scale (Figure 2, Additional files 1, 2) allows us to
suggest that a mixture of at least two distinct skewed
sample-size - dependent frequency distributions of
binding avidity is present in the data. Statistical analysis
of ChIP-based [9,11-15,19] has showed that the left part
of the empirical distribution is reach with the noise
resulted from relatively low avidity BE and the right side
of the distribution is represented by relatively high-
avidity TF- DNA binding (Figure 2, Additional files 1, 2).
Also we found that the tails of the empirical distribu-
tions of TF-DNA binding avidity exhibit monotonically-
skewed shape with a greater abundance of low avidity
and more gaps among the high-avidity loci. Low- and
moderate- avidity TFBSs are highly-abundant in the
mouse and other mammalian genomes and could play
biologically meaningful functional roles.

The specificity threshold of the distribution of the
number of TF-bound DNA loci, t, is the parameter
which separates lowly reliable and highly reliable-
binding loci at a given specificity level (6).

For quantitative analysis of ChIP-seq data based on the
model (1) it should be important to estimate the
specificity threshold, t, as well as the number of high-
avidity specific loci N S2 , at avidity m ≥ t, and the
number of specific loci N S1 having low/moderate
avidity less than t (m <t). To do that, we use the fitting
and back-extrapolation method (see Methods). We illus-
trate our method with the analysis of the ChIP-seq
Nanog TF-DNA binding data as an example (Figure 2A
&2B).

We demonstrated that the exponential distribution func-
tion fits well to the background noise of the empirical
distribution of TF-DNA binding, while the truncated GDP
function (2) fits well to long tail of the empirical
distribution (Figure 2A). Specifically, this noise-like
part of the distribution can be fitted well with an
exponential function with exponent parameter d = 1.05 ±
0.055 (p < 0.0001, t-test) (Figure 2A). Table 2 and
Additional File 3 (Table 1) provide the estimated
parameter values and detailed characteristics of statistical
tests.

Table 1: Comparative analysis of TF binding specificity estimated based on three methods. Specificity threshold estimates by the
uniform noise model [15], by ChIP -qPCR [15] and by the best-fit GDP function. The uniform random model-based estimations of the
threshold values defined at FDR <5%. TF binding specificity threshold t was estimated based on the best-fit double truncated GDP
function. The last two columns of the table shows that GDP-model could improve the specificity estimates providing by the Poisson
model and ChIP-q-PCR assay.

TF Unique
mapped
fragments, M*

Noise threshold
by Poisson
model*

# q-PCR
experiments*

Noise 3-fold
enrich
threshold
by qPCR*, q

Specificity
threshold
by GDP, t

N S2
at t

N2
at q*

N S2
at q

Specificity
by qPCR, %

GDP-
predicted
specificity
at q

Essrb 3609843 5 94 12 12 21646 21646 21600 94 99

Nanog 8424102 7 37 11 11 10343 10343 10213 97 98

oct4 4911144 6 47 8 11 1697 3761 2942 95 78

Sox2 4821446 6 48 8 13 2082 4526 5196 97 85

E2F1 8787961 6 48 9 16 13741 20699 21122 100 98

Tcfcp2I1 8449181 6 47 9 17 16293 26910 27912 97 96

ZFX 3844429 5 52 9 11 7161 10338 10966 100 94

Klf4 3807970 5 47 8 10 7433 10875 12122 97 88

c-Myc 6637404 7 48 9 12 1980 3422 2632 100 77

n-Myc 4823212 6 46 8 13 3214 7182 8780 97 78

STAT3 5351116 6 48 8 11 1229 2546 1983 97 78
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The most noise-affected data points are located at the left
side of the empirical histogram (from 1 to 8 BEs), where
the data was accurately fitted by the exponential function
using Sigma-Plot software (Figure 2A). The values of the
exponential function at data points from 0 to 9 were
fitted (solid line on Figure 2A) and for larger values were
estimated by the best-fit exponential function (extra-
polating onto the right). At the specificity threshold (t =
11) identified from the analysis of ChiP-q-PCR data, the
admixture of non-specific BS (originating from the tail of
the exponential function) consists of ~2% of the reliable
subset (Sp = 98%, respectively). Importantly, at the
predicted specificity level (Sp = 97%) our best-fit mixture
model predicts the same specificity threshold (t = 11).

Subtraction of the exponential function values from the
observed frequency distribution values allowed us to
restore the “noise-free” frequency distribution function

for overlap peak value 9 and larger (Figure 2A &2B). This
reconstructed double-truncated frequency distribution
could be considered as a reliable segment of the empirical
specific binding avidity distribution. After parameterisa-
tion of the GDP function we can extrapolate the best-fit
GDP to smaller overlap peak values (8 and smaller).
Figure 2A shows that the truncated GDP function fits
well to the right-tail of the empirical frequency distribu-
tion of TF specific binding in the interval of peak values
larger than 11. This part of the empirical distribution
characterises the more reliable fraction of TF-DNA
binding loci corresponding to high-avidity level BSs
and represented in ChIP-seq experiment by number of
overlapping DNA fragments (peak values) up to the
maximal observed number of overlaps.

The GDP function, after parameterization in this inter-
val, can be used to predict the values of the function for

Figure 3
Suboptimal design of the ChIP-qPCR experiment. Statistics of BEs in Esrrb TF ChIP-seq data is following to skewed
distribution. Difference in the frequency distributions of BEs for peaks used in qPCR and in random samples chosen from Esrrb
TF ChIP-seq library at peak values >11 available for this dataset. In Chen et al [15], to determine the specificity, the peak height
critical threshold were determined by 3-fold enriched qPCR signal/noise criteria.

BMC Genomics 2010, 11(Suppl 1):S12 http://www.biomedcentral.com/1471-2164/11/S1/S12

Page 8 of 27
(page number not for citation purposes)



smaller number of peak values: 8,7,6,...,1. At the thresh-
old 11 Sp= 97%, and the number of GDP-estimated
specific BSs equals 10213 versus 10343 BSs observed in
Nanog ChIP-Seq assay (Table 1). The number of
observed unique ChIP-seq DNA fragments, M2, repre-
senting these BSs (N

2
), equals 299830; GDP estimates

297493 ChIP-seq DNA fragments. Interestingly, the last
number represents only 3.5% of the total number of the
unique DNA fragments of the ChIP-seq Nanog library.
Similar results we obtained for other TF libraries
(Table 1). These results suggest that the major fraction
of ChIP-seq DNA fragments maps to moderate and low
avidity loci specific TFBSs and to background non-
specific DNA loci.

Only part of original ChIP-seq sequence datasets is
available [15]. The analyzed BEs were limited in the
dataset to the loci conforming to the specificity threshold
value defined by the random model of uniform
distribution of background signals reported in [15].
Using these data sets, the smallest threshold of the most
reliable and the most specific BEs (providing the best
goodness-of fit statistical criteria, according to [20]), was
used to calculate the GDP-defined specificity cut-off
value. In these cases, the right tail of the available
truncated empirical distribution was used to estimate the
parameters of the truncated GDP function.

We calculated the specificity threshold values (8) starting
from ChIP-qPCR-defined specificity threshold followed
by minimizing the distance between the truncated GDP
probability function and the observed frequency dis-
tribution. Figure 2 and Additional Files 1, 2 show that
the truncated GDP function fits well the right-tail GDP
function corresponding to the fraction of reliable and
highly specific BEs. Moreover, due to the high accuracy
of parameterization of the mixture GDP function and the

exponential function, our curve-fitting of ChIP-seq data
allows us to predict the GDP function for the noise-
enriched BEs, located on the histogram in the left part in
the empirical avidity distribution function. Figure 2C
and Additional File 1 show the truncated frequency
distribution of Esrrb TF-DNA binding (overlap peak cut-
off value 12) and the best-fit GDP function extrapolated
to the noise-enriched part of the distribution are
presented. The best fit GDP function with parameters
k = 2.40 ± 0.0778, b = 10.42 ± 0.6828 allows us to
extrapolate the best-fit curve and to predict the number
of Esrrb TFBSs the in the noise-enriched binding sites.

Figure 2D contains the results of curve-fitting analysis for
the c-Myc ChIP-seq library. It shows that the best-fit GDP
function, by extrapolation, could provide an estimation
of specific BEs in the highly noisy region of the
distribution (the left part of the distribution. Thus,
based on these findings, the empirical frequency
distribution of TF BEs could be separated into the
right-side and left-side regions, relatively to the critical
cut-off value, t, discriminating the reliable and strongly-
specific BSs from the less reliable noise-rich and low/
moderate avidity BSs.

The analysis of fitting the avidity curve with GDP
could improve the specificity threshold obtained
from ChIP-q-PCR
Figure 2D shows that at the given level of specificity (sp >
97%) the best-fit GDP function can predict a similar or
larger binding specificity threshold, t, than the one
obtained from ChIP-q-PCR data. Suboptimal design of
the ChIP-qPCR experiment possibly (Figure 3) supports
this suggestion. Table 1 and Additional file 2 show that
in some Chip-seq libraries the frequency values at qPCR-
defined specificity thresholds and the values around
them systematically deviate from the GDP extrapolation

Table 2: TGDP function parameters for the eleven TF libraries. Non-linear regression module of SigmaPlot program was used to
estimate parameters of GDP function. More details regarding binding statistics and TGDP function parameters are presented in
Definitions, Methods and Additional files.

TF GDP-defined
specificity
threshold t

N S2
at t

J k ± SE b ± SE # GDP-predicted
seq., MS2

#Observed
seq. at GDP specificity

threshold t, M2

MS2 /M2

Esrrb 12 21646 338 2.40 ± 0.077 10.42 ± 0.682 570938 551406 1.04
Nanog 11 10343 312 1.81 ± 0.156 8.00 ± 1.33 297493 299830 0.99
Oct4 11 1697 195 3.00 ± 0.494 7.66 ± 2.910 34153 30637 1.11
sox2 13 2082 206 2.35 ± 0.225 3.03 ± 1.432 49976 44023 1.14
E2f1 16 13741 399 3.55 ± 0.006 46.24 ± 0.340 553688 517826 1.07
Tcfcp2I1 17 16293 382 1.50 ± 0.077 9.28 ± 1.227 771652 839103 0.92
Zfx 11 7161 197 2.90 ± 0.162 3.73 ± 0.778 129813 123943 1.05
Klf4 10 7433 184 4.83 ± 0.335 11.16 ± 1.421 112898 107891 1.05
c-Myc 12 1980 132 2.94 ± 0.742 16.24 ± 7.298 47030 44402 1.06
n-Myc 13 3214 119 2.81 ± 0.228 4.01 ± 1.306 68725 65302 1.05
STAT 3 11 1229 173 4.02 ± 0.650 16.19 ± 4.248 24209 22635 1.07
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curves. For six TFs (Oct4, sox2, Klf4, c-Myc, n-Myc,
STAT3) the specificity predicted by our model at the
qPCR-defined critical threshold values was much smaller
(cutting off specificity at 78%, 85%, 88%, 77%, 78%,
78%, respectively) than it was found in qPCR-ChIP
experiments (Table 1). In these cases our model allows
us to select more reliable critical threshold values (at a
larger overlap peak height) following a single confidence
criterion (e.g. specificity cut-off at 94%). For the other
four TF ChIP-seq libraries,(Essrb, E2F1, Tcfcp211, ZFX)
out of 11 studied TFs specificity thresholds were defined
by the both methods at a similar specificity cut-off
(94%) (Table 1). In particular, for c-Myc BEs, at
specificity level >0.95, reported in Supplementary File
of [15], for qPCR-ChIP our model predicts t = 12 instead
t = 9 (determined by qPCR-ChIP experiment with Sp =
100% based on 47 qPCR experiments). We could suggest
that in these cases “optimistic” specificity estimates
could be obtained due to a sub-optimal design of
qPCR-ChIP experiments (see discussion of Figure 3)
and/or unreliable detection of the peak values for a given
range of overlap peak signal enriched by non-specific
BSs.

Estimation of the number of ChIP-seq DNA fragments in
predicted specific low- and moderate- avidity binding loci
Parameter a of our mixture model (1) was estimated as
the fraction of specific DNA fragments in the specific TF-
DNA binding loci in the ChIP-seq experiment. The value
of this parameter we calculated by extrapolation of the
best-fit GDP function or the best fit K-W function to low-
and moderate- values of peak heights on the empirical
histogram of binding avidity. (7). (see Table 3). The

estimated values of parameter a show that estimated
specific DNA fragments is much smaller than a fraction
of non specific background DNA fragments. This
parameter varies significantly across the libraries. (table
2S of Additional file 4). We suggest that parameter a can
be considered as an important parameter characterising
an enrichment of the library with sDNA fragments
bound to the specific lociBEs. These parameters can
serve as targets for further optimization of ChIP-based
TF-DNA biding assays.

Fitting-Extrapolation method for K-W function
and estimation of parameters p0 and Ntot

In this section we will answer the question: how many
physically specific BSs of a given TF exist in the
mammalian genome? We used the theoretical result
obtained in the previous section to estimate the
parameters a, b and θ of K-W function and thus, to
estimate p0. Practically, for all ChIP-seq datasets we
could fit the K-W probability function to the GDP
function values after fitting the truncated GDP to a high-
confidence segment of the empirical frequency distribu-
tion of TF-DNA binding. This segment of the empirical
distribution is assigned by the number of ChIP-seq DNA
fragments, called M2, which form N2 clusters. The
number of these clusters was counted for the peak
height values ranged between specificity threshold level t
and maximum value of peak height J, where the
specificity Sp is defined by the formula (8).

The detailed description of the algorithm of estimation
of the parameters of skewed distribution function
functions like GDP and K-W was reported in [20].

Table 3: Best fit K-W function estimations: specific components of probabilistic TF-DNA binding model

TF θ a b MS a NS po Ntot N2 Se, % N2/Ntot * 100%

Esrrb 1 13.1 15.87 916615 0.25 114171 0.2 142713 21646 80 15

Nanog 0.999 6.618 8.292 414084 0.05 40891 0.2 51114 10343 80 20

Oct4 0.988 5.681 8.32 84810 0.02 19160 0.32 28176 3761 68 13

Sox2 0.99 1.844 4.023 208548 0.04 67633 0.54 147028 4526 46 3

E2f1 0.99 34.569 36.837 668875 0.08 37302 0.06 39682 20699 94 52

Tcfcp2I1 1 7.817 9.198 1118336 0.13 67894 0.15 79875 26910 85 34

Zfx 0.985 2.224 4.833 655223 0.17 236320 0.54 513739 10338 46 2

Klf4 0.985 8.055 12.26 416960 0.11 117698 0.34 178330 10875 66 6

c-Myc 0.999 13.1 16.35 70735 0.01 8393 0.15 9874 3422 85 35

n-Myc 0.988 2.6 5.11 365150 0.08 120891 0.5 241782 7182 50 3

STAT 3 0.99 12.931 16.408 48016 0.01 8177 0.21 10350 2546 79 25

BMC Genomics 2010, 11(Suppl 1):S12 http://www.biomedcentral.com/1471-2164/11/S1/S12

Page 10 of 27
(page number not for citation purposes)



Using this algorithm, we found that for ChIP-seq data
the GDP function exhibits a fairly accurate approxima-
tion of K-W function throughout the entire range of BEs
(Additional file 5), We used the properties for fitting K-
W function based on the extrapolated data estimated
from the best-fit truncated GDP function values. The
estimated parameters of K-W function, we used to
estimate the probability of non-detected BEs (p0 at m =
0) by the formula (28) and Ntot, as follows:

N N ptot S= −/( )1 0

and estimate the number non-observed TFBSs

N N p pS0 0 01= −/( ).

Using p0 (28), we could estimate TF-DNA binding
sensitivity

Se p= −( ) %1 1000

Kolmogorov-Waring Function predicts a large number of
TFBSs with low- and moderate- binding avidity
GDP can be considered as a good empirical approxima-
tion of the K-W function (see Methods). Granted this
property, we used fitting and back-extrapolation method
to get an accurate estimate of three parameters of K-W
function. Figure 2C-D Table 3 shows that all empirical
distributions of binding avidity are fitted well by the K-
W function. Using the estimated parameters of K-W
function (see Methods), we can predict the fraction of
specific BSs which have not been detected in the ChIP-
seq experiments (po) (28). For example, the parameters
of the probabilistic model for Nanog TF data were
estimated as θ = 0.997; a = 5.870; b = 7.465, and thus,
from (28), we have p0 = 0.22. For Oct4 data: θ = 0.998;
a = 5.681; b = 8.32, thus by (28) we have po = 0.32.
Interestingly, for all TF binding data the parameter
θ λ μ= ∗ ∗

2 2/ of the K-W function equals to or slightly
smaller than 1. This result suggests that for TF-DNA
binding-dissociation processes the rate of preferential
dissociation equals to or little bit larger than the rate of
preferential binding.

Using our parameterization algorithm we can estimate
the total number of specific BSs in the mouse genome for
a given TF. This estimate equals ~6.67 104 BSs for Nanog
and ~2.82 104 BSs for Oct4. Table 3 shows the estimates
for other TFs.

Reliable data points in the right-tail region of the
empirical frequency distribution (starting from our
best-fit GDP-defined cut-off peak value; region N2 on
Figure 2B, C, D) and the best-fit predicted GDP data

points of the noise-rich (left size) region of the
distribution (region N1, Figure 2B, Additional file 2)
were combined together. K-W function fitting was used
to estimate the fraction of non-detected BEs, p0, and the
total number of TFBSs, Ntot (Ntot= N0+ N1 + N2). For
example, for the Nanog dataset, at threshold 11,
1.02*104 reliable BSs were predicted by the GDP and
K-W. Additionally, K-W function predicts in total 51114
Nanog BSs in the genome of E14 cells, where 10223
(20% of Ntot) were non-observed BSs (N0) in the library;
30678 (60% of Ntot) specific BSs where predicted in the
noise-rich BE set (N1) and 10213 (20% of Ntot) were
predicted in the reliable specific BE set (N2), respectively
(Figure 4). The estimates of the parameters of GDP and
K-W functions and Ntot for c-Myc, Esrrb and other TF data
are given in Table 3 and, partially, in Figure 4.

Figure 4 and Table 3 shows that the fraction of non-
detected BSs (p0) varies among different TF ChIP-seq
libraries from 6% (E2F1) to 54% (ZfX) of the total
number of BSs predicted in the genome of mouse ESC
E14. The total number of predicted BS ranges from 9874
(c-Myc) and 10320 (STAT3) to 178330 (Klf4) and
513739 (ZfX). The total number of c-Myc TFBS predicted
in the genome mouse ESC is similar to the predicted
number of c-Myc TFBS predicted in human B-lympho-
cytes [12]. Note, later estimate derived based on the data
analysis and modelling ChIP-PET data. Figure 4 shows
also that reliable and specific BEs form the smallest
fraction of the BSs with one exception (E2F1, 52%; Table
3), while the number of low- and moderate- avidity
TFBSs for other ten TFs contain the most abundant
subsets of Ntot. The non-observed fraction of TF BS is
estimated as the largest for Sox2, ZfX and n-Myc. Thus,
these results strongly suggest that the sensitivity of ChIP-
Seq technique is still low and has to be improved
essentially.

Significant number of putative low- and moderate- avidity
TF binding loci are admixed to the noise-rich binding loci
and might be functionally important
According to the prediction of the GDP and K-W models,
the number of low- and moderate- avidity TFBSs should
monotonously increase when the number of unique
overlapping ChIP-seq DNA fragments in a binding locus
becomes smaller. To validate this prediction, we used
motif-discovery program nminfer (see Methods section)
to identify c-Myc binding motifs/E-boxes in the ChIP-seq
binding loci. As a training set we used the loci with c-
Myc-DNA binding specificity cut-off values defined by
GDP model at ≥12 sequences per locus representing high
avidity loci. We found Position Weight Matrix (PWMs)
which contains ‘canonical’ E-box CACGTG ‘non-canoni-
cal’ E-boxes including CACGCG, CGCGAG and CACATG
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[18] and a novel non-canonical E-box CGCGAG which is
found in our study (Figure 5A). All four non-canonical
motifs were scanned for exact matches in the mouse
genome (mm8) using SeqMap software [21]. The total
numbers of matches of CACGTG, CACGCG, CGCGAG
and CACATG in the mouse genome were 262,133,
83,490, 41,394 and 2,451,550, respectively. E-box
CACATG sequence is highly frequently occurred in
non-genic low-complexity regions of the mouse genome
associated with repeats elements or promiscuous gen-
ome regions. To minimize false-positive or bias in the
results, we excluded the E-box CACATG from our
validation and prediction analyses. Then we studied
the localization of the E-boxes CACGTG, CACGCG,
CGCGAG within ChIP-seq binding loci. To do that we
construct the frequency distribution of the E-box
sequences around the central nucleotide of ChIP-seq-
defined c-Myc biding loci (Figure 5B). To identify the

region of the E-box localization within binding loci, we
narrowed the scan region with ± 150 bp (300 bp) and ±
250 bp (500 bp) around the center of c-Myc binding
locus (Figure 5B).

In total, 6437 ChIP-seq c-Myc binding loci with the peak
values 7 and higher were found. We found that the
number of ChIP-seq loci containing the E-boxes in ± 150
bp region is 3527 (Additional files 6A and 7A) and in ±
250 bp region is 3948 (Additional files 6B and 7B),
respectively. These results suggest that c-Myc binding loci
are strongly enriched with E-box sequences: we found
that 55% (3527/6437) loci of the ± 150 bp region
(Additional file 7A) and 61% (3948/6437) loci of ± 250
bp region (additional file 7B) are E-box-positive. Each of
these regions exhibits at least one copy of the three
specific c-Myc E-boxes or (CACGTG, CACGCG and
CGCGAG).

Figure 4
Three segments in the range of TF-DNA BEs count for 11 TFs of mouse E14 embryonic cells.
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Figure 5
Validation of ChIP-seq defined c-Myc binding loci based on motif finding analysis. A: PWM of c-Myc TFBSs defined
with NestedMICA program trained with 12 peak height or higher value defined in ChIP-seq experiment. B: Distribution of E-
box sequences in ± 1 kb from the centre of ChIP-seq defined binding loci. C: Frequency distribution of the number of ChIP-seq
overlapped DNA fragments (peak height). ◊: All ChIP-seq c-Myc bound loci for observed peak heights. o: E-boxes positive loci
found in vicinity ± 250 bp. ∇: E-boxes positive loci found in vicinity ± 150 bp. D: Venn diagram of co-occurrence of E-boxes in
± 150 bp of c-Myc binding loci (left side). Pair of Kappa correlation coefficient of co-occurrence of E-boxes in c-Myc binding
loci (right side).
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Figure 5C shows the frequency distribution of the peak
height representing c-Myc-DNA binding avidity starting
with peak value 7. On the Y-axis, we present the numbers
of ChIP-seq c-Myc binding loci at the given peak height
value, the number of ChiP-seq binding loci containing E
box in the ± 150 bp region of centre of locus, and the
number of Chip-seq binding loci containing E-boxes in
the ± 150 bp region of centre of locus.

Each frequency distribution on Figure 5C shows a similar
trend to increase number of binding loci when the peak
height decreases. For example in ± 150 bp regions
(Additional file 7A), the number of the binding loci
containing E-boxes with overlap peak values 7, 8, 9, 10,
11 and 12 were 721, 539, 378, 266, 209, and 159,
respectively. The low- and moderate- avidity BSs with
peak values from 7 to 11 include the major fraction
(~60% (2113/3527)) of the binding loci containing E-
boxes found in the ChIP-seq library. We also observed
that the number of binding loci containing only one of
three E-box sequences increases when the binding
avidity decreases (not presented). These trends are in
agreement with predictions of our model of TFBS
binding (Figure 2, Additional Files 1, 2).

It has been shown that relatively high avidity TFBSs
could be preferentially located nearby transcription start
site (TSS) of the target genes and overlap with CpG
Island [15]. It is also true for a large number of low- and
moderate- avidity c-Myc BSs in the genome of human B-
cells [12]. We observed that for mouse EC c-Myc ChIP-
seq data [15], E-box-positive Chip-seq binding loci are
also often localized in the putative promoter regions of
target genes. We found that 50.9% (3277/6437) c-Myc
binding loci with peak height 7 and larger are localized
within ± 1 kb TSS region of 3966 RefSeq genes (mm8)
(Additional file 8). We count also the number of c-Myc
binding loci containing E-boxes and being around ± 1 kb
of TSS. 68% (2223/3277) of c-Myc binding loci around ±
1 kb of TSS contain at least one E-box in ± 150 bp
around the centre of c-Myc binding loci while 32%
(1054/3277) of c-Myc binding loci have no E-boxes
(Table 1 in Additional file 8A). When we extend the
region from ± 150 bp to be ± 250 bp around the centre
of c-Myc binding loci, percent of c-Myc binding loci
around ± 1 kb of TSS contain at least one E-box increase
to 76% (2493/3277) and percent of c-Myc binding loci
without E-boxes leave 24%(784/3277). These results
easily demonstrate strong association of the E-box-
positive binding loci with gene target promoter regions.
Perhaps, the most of c-Myc target genes in mouse EC cell
genome should be considered as direct gene targets,
because alternative E-boxes (for instance, CACATG) also
found in the c-Myc binding loci with high frequency.

Interestingly, 28-30% of c-Myc binding loci containing at
least one E-box sequence exhibit low- or moderate-
avidity (peak height 7-8) c-Myc binding (Table B
Additional file 8B). These results support the prediction
of our probabilistic model (K-W) that, in low- or
moderate- avidity binding could be considered as true
c-Myc binding sites. However information about con-
served motifs and other regulatory regions are required
for indentifying putative true binding sites in low- or
moderate- avidity of binding. By our analysis, E-boxes
positive binding loci often overlapped with CpG island
region(s) which are co-occurred with c-Myc BSs [12]. The
loci with peak height >8 are overlapped with CpG Island
in 82% (1305/1598) cases (+/-150 region in Table B in
Additional file 8); E-box-positive relatively low- and
moderate- binding avidity (7-8 peak heights) loci are
also overlapped with CpG Islands of the putative gene
targets in 75% (469/625) cases. The genes having this
moderate avidity BS might be considered as strong
candidates for further bioinformatics analysis and
experimental validation.

c-Myc Binding loci could be represented by multiple
copies of E-box sequences
We found that binding loci could be represented by
multiple copies of E-box sequences: 3527 binding loci of
± 150 bp regions are represented by 5546 E-box
sequences (mean. 1.57 (5546/3527) E-boxes per locus)
(Additional file 9A), and 3948 binding loci of ± 250 bp
regions are represented by 7182 E-box sequences (mean
1.82 (7182/3948) E-boxes per locus) (Additional file
9B).

Figure 5D shows that the E-boxes often co localized in
the ChIP-seq c-Myc binding loci. For instance, Venn
diagram on left panel of Figure 5D demonstrates that in
± 150 bp around a centre of binding locus 19% of E-box
CACGTG sequence (363/1895) and 25% (363/1476) of
E box CACGCG sequence are co -localized in the same
binding locus. Kappa correlation coefficient, which
measures co-occurrence of the events (StatXact 5; Cytel
Software Co), equals 0.66 (p < E-230). Similar values of
the correlation coefficient we found between two other
E-box pairs, which are presented on the right panel of
Figure 5D. Similar results we obtained when 250-nt
vicinity around a centre of c-Myc binding locus was
analyzed (not presented).

A case-study of multiple occurrence of c-Myc E-boxes in
ChIP-seq –defined promoter regions of embryonic SC-
related genes
It was shown that the TFBS found in ChIP-seq and ChIP-
PET study of c-Myc have a potential to stimulate
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embryonic SC-specific gene expression [12,15]. In this
section, we shall consider the examples of association
between binding avidity level and potential relation of
nearby genes with stem-cell specific activity.

Figure 6A presents a genomic map of c-Myc E-boxes
distribution in the WEE1 homolog 1 (Wee1) gene region.
ChIP-seq c-Myc binding locus (pointed by blue arrow)
should be considered as high-avidity TFBS due to peak
height = 76. This binding locus contains E-box sequences

of two canonical E-box CACGTG presented on Figure 6A.
Wee1 was reported to be an important component of
hESC cell cycle regulation pathway [22] and might be co-
regulated with c-Myc [23]. In Figure 6B, a genomic region
of Nucleoplasmin 3 (Npm3), a chromatin re-modelling
protein responsible for the unique chromatin structure
and replicative capacity of ES cells [24], is presented. A BS
with moderate-avidity (height peak = 10), of c-Myc is
located in the region nearby the first intron. The locus
contains five E-box sequences: one canonical and three

Figure 6
Multiple occurrence of c-Myc E-boxes in promoter region around transcription start site (TSS) of c-Myc target
genes identified in ChIP-seq experiment. A: WEE 1 homolog 1(Wee1). The high-avidity (height peak = 76) c-Myc binding
sites (pointed by blue arrow) in strong promoter region of Wee1 gene is supported with two canonical E-box CACGTG. The
binding locus and E-boxes are overlapped with CpG Island which might be bound by c-Myc. B: Nucleoplasmin 3 (Npm3). The
moderate-avidity (height peak = 10) as in the previous case the ChIP-seq c-Myc binding locus is located in the first intron
promoter region. The locus is supported with five E-boxes: one canonical and three non-canonical E-boxes in first intron and
another canonical E-box in second exon. In addition, this binding region and the E-boxes are located in CpG Island. C: FK506
binding protein 5 (Fkbp5). Two relatively low avidity c-Myc binding sites identified in ChIP-seq experiment confirmed with E-
boxes. First ChIP-seq loci in upstream gene region has relatively low avidity biding site (height peak = 7) supported with
canonical E-box CACGTG. The second ChIP-seq loci located in first intron and it is also relatively low avidity peak (height
peak = 7) which is supported with two non-canonical E-boxes CACGCG and two non-canonical E-boxes CGCGAG. The last
locus overlaps with CpG Island which suggests that this locus might be functional.
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non-canonical E-boxes in the first intron and another
canonical E-box in the second exon. In addition, this BS
and the E-boxes overlap with a CpG island. Figure 6C
shows c-Myc low avidity BS within FKBP5 (FK506
binding protein 5) promoter region. Two relatively low
avidity c-Myc BSs contain c-Myc E-boxes. First BS located
in the upstream region of the gene has a relatively low
avidity (overlap peak value 7) and contains a canonical E-
box CACGTG. The second BS located in the first intron
also has relatively low avidity (overlap peak value 7) and
contains two non-canonical E-boxes CACGCG and two
non-canonical E-boxes CGCGAG. The last BS overlaps
with a CpG Island which suggests that this locus might be
related to the regulation of the transcription of the gene.

FK506 binding protein 5 (FKBP5) belongs to the family
of immuneglobulins named for their ability to bind
immunosuppressive drugs, also known as peptidyl-
prolyl cis-trans isomerases, and also with chaperones
(involved in protein folding) [25]. FK506 also plays an
important role in cancer tumors growth and chemore-
sistance through regulating signal transduction of the
NF-kappaB pathway [25]. The expression and activity of
NF-kappaB is comparatively low in undifferentiated
embryonic cells ES cells, but increases during differentia-
tion of the ES cells [26]. Due to this finding we could
suggest that c-Myc binds to the low avidity BSs in the
promoter region of FKBP5 and, through a modification
of expression level of this gene, can provide a regulation
of NF-kappaB pathway in mouse ES cell. Interestingly,
high, moderate, and relatively low avidity c-Myc BSs in
the promoter regions of Wee1, Npm3, and Fkbp5 genes
have their binding association scores correlating with
ChIP-seq c-Myc binding avidity. Binding association
score estimates the genomic distance between a BS and a
gene TSS [15]. Additional file 10 contains the data
demonstrating that Wee1 could be under promoter
regulating activity of Oct4, c-Myc, and n-Myc, while
Npm3 could be under promoter activity of c-Myc only.
However, although Fkbp5 shows a moderate binding
association score with c-Myc and STAT3, Fkbp5 expres-
sion is strongly associated with Nanog and n-Myc
promoter activity. These results suggest that all three
genes could be under the transcriptional control of c-Myc
and, additionally, that Wee1 and Fkbp5 could be
associated with ES-cell specific expression.

Discussion
In this work, we studied statistical characteristics of
protein-DNA binding events for the eleven stem cell-
related transcription factors bound in the genome of
mouse embryonic stem cells E14 and detected by ChIP-
seq assay [15]. Several methods for ChIP-seq data
analysis have been recently developed [11,13,27].

However, an appropriate mathematical model of TF-
DNA binding in ChIP-seq binding assay and statistical
evaluation of the sensitivity of the methods has been not
developed. Several approaches to quantitative identifica-
tion of individual TF-bound loci have been recently
developed(peak finder algorithms [7,9,11-13,27]), how-
ever overall binding events for specific DNA loci
including low- and moderate- avidity TFBS at the
genome scale have been out of systematic consideration.

Our previous analysis of different ChIP-base TF-DNA
binding datasets [9] suggested that the mixture prob-
ability distribution model (1) could reflect a common
property of TF-DNA binding events in different cells in
different experimental conditions. This model allowed
us to estimate the specificity of ChIP-based TF-DNA
binding events for several TFs. In the present study, we
develop a mathematical model of TF-DNA binding-
dissociation events in both TF-specific and TF-in specific
genomic loci and use this model to estimate a number of
essential parameters of statistical distributions observed
in ChIP-seq assays. We include in our consideration the
binding events of TFs in the entire range of their avidity
to their binding loci from very high to very low. We
focused on several practically important parameters
closely related to analysis of the empirical TF-DNA
binding distributions: t, Se, Sp, p0, and Ntot (Figure 3,
Table 3). Interestingly, for all TF binding data, the
parameter θ λ μ= ∗ ∗

2 2/ of the K-W function equals to or
slightly smaller than 1. It suggests that the Waring
probability function could be used as good approxima-
tion of K-W function for analysis of empirical frequency
distributions of ChIP-seq binding. Another interesting
finding: for TF-DNA binding-dissociation process in the
mouse genome the rate of preferential dissociation
equals to or little bit larger than the rate of preferential
binding.

We found that the parameters of the mixture distribution
are sensitive to 1) the sample size (number of non-
redundant sequence tag reads) M, 2) the proportion of
nonspecific sequence reads in the sample, 3) the
sampling model and 4) the analytical models and the
computational algorithm used for the parameterization
of the distribution of TF-DNA BEs. We have demon-
strated that skewed shape and sample size-dependence is
a common property of a specific TF-DNA binding
distributions [7,9,11,12]. Similar results we obtain here
for 11 ChIP-seq samples derive from mouse embryonic
SCs. Strongly positive values of parameter b in the GDP
model describing TF-DNA binding in specific loci were
found in all TF libraries (Table 2, Additional file 2
(Figure 2S)). Parameter J of the truncated GDP function
reflects the maximal observed number of BEs of the GDP
model. This parameter positively correlates with the
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sample size M [9,28]. These results agree with previous
findings in ChIP-PET TF-DNA binding assay [9,12,13].

The values of observed and computationally predicted
parameters of the statistical distribution k are found very
close to each other for all ChIP-seq TF libraries (Table 2,
Additional File 1, 2, 3, 4, 5). Using 11 available ChIP-seq
TF-DNA binding datasets, we revisited and improved the
estimates of the levels of sensitivity and specificity of the
TF-DNA BEs.

Our mixture probabilistic model allows us to estimate the
specificity cut-off value for ChIP-seq library and also
estimates the fraction of specific TF-DNA binding loci for
TFs in a ChIP-seq data. Our probabilistic model estimates
also the specificity threshold, which value often is close or
more stronger than estimates by ChIP-qPCR assay. Table
2 shows that for all 11 library our model (1) models
provides >94% specificity. Thus, we conclude that the
basic concept of mixture skewed scale-dependent dis-
tribution, originally developed for ChIP-PET data analysis
[9,12], can be applicable to ChIP-seq data.

We conclude that a model of random occurrence of DNA
fragment clusters in the genome is not appropriate for
quantitative determination of critical threshold of bind-
ing specificity in Chip-based genome-wide binding
analyses, including ChIp-seq. This conclusion is in
agreement with recent computational simulations of
the frequency distributions of TF-DNA BEs in Chip-Seq
data [13], where local background noise for Stat1 TF
ChIP-seq data [5] was modelled.

We developed a simulation model of unbiased identi-
fication of specificity of ‘problematic’ ChIP-seq loci. The
method could be used to optimize the experimental
design of ChIP-q-PCR experiments.

Experimental data, as it is demonstrated in this work, has
noise- enriched BEs accumulated mainly below the
specificity threshold values (Figure 2, Additional File 2).

Our probabilistic model shows that at the conventional
specificity threshold % (> 95%), the fraction of high-
avidity specific sequences and TF binding loci containing
these sequences are surprisingly low in all studied
libraries. These results suggest that the major fraction
of true binding sites could not be detected by the ChIP-
seq method without additional experimental validation
and rigorous bioinformatics and extensive statistical
analysis of data.

According to our model prediction, the number of low-
and moderate- avidity TFBSs should monotonously
increase when the number of unique overlapping

ChIP-seq DNA fragments in a binding locus becomes
smaller. To validate these predictions, we used motif-
discovery program nminfer to identify a position
weighted matrix (PWM) of c-Myc motifs in the ChIP-
seq binding loci. Our bioinformatics and statistical
analyses revealed that the moderate avidity BSs with
peak values 7 to 11 include the major fraction (~60%
(2113/3527)) of the E-box-containing TFBSs found in
the ChIP-seq library. We also observed that the number
of BSs, containing each of the three major c-Myc E-box
sequences and their combinations, monotonously
increases when the binding avidity decreases (Figure
5C). All these trends are in agreement with predictions of
our model of TFBS binding (Figure 2, Additional Files 1,
2). Thus, in combination with motif-finding techniques
(and/or experimental validation assay ChIP-qPCR) our
modelling approach allowed us to identify the loci of
many thousands of novel BSs with characterized with
low- and moderate- avidity of TF. Moreover, the number
of undetected low- and moderate- avidity specific TFBSs
was estimated, which addresses common problem of
sensitivity of a given ChIP-seq assay for a given TF in
cells under given experimental conditions. We show that
although ChIP-seq is a powerful technique still it
produces essentially incomplete information about the
low- and moderate- avidity TF- DNA binding events in
the complex (e.g. mammalian) genomes.

Our mathematical modelling of the mixture strong and
weak TF-DNA binding and sequence analysis of genome-
wide binding data suggests that integration of these
approaches could help to reveal many new target genes
for c-Myc and for other studied TFs. For instance, best-fit
K-W function predicts in total 51114 Nanog BSs in the
genome of E14 cells: 20% of these 51114 Nanog BSs
were non-observed in the ChIP-seq library and 60% of
the BSs were predicted by the model in the noise-rich BE
set. These model-based and data-driven predictions of
Nanog BSs could be validated in case study experiments.
A functional significance of such low- and moderate-
avidity BSs for putative target genes might be investi-
gated in a near future.

The most important thing that our results suggest that
low- and moderate- affinity BSs could have biologically
meaningful functional roles. However, biological role of
the enormous number of the moderate- and low- avidity
BSs for TF is unknown. We speculate that these bindings
could be used in the nucleus to storage large number
diverse TFs and their cofactors at quasi-stationary and
thermodynamically-defined states at vicinity of double-
stranded DNA. Such weak, unstable and multiple
protein-DNA bindings might be use by a cell for
recruitment and redistribution of specific TF molecules
along the double strand DNA depending from external
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and internal regulatory signals. We also speculate that
the strength of TF-DNA binding-dissociation could be
significantly modulated by cooperative interactions
among TFs and DNA-binding signals.

For all studied TF library a relatively large fraction of low
to moderate binding loci was not detected at all (Table 3).
So the estimation of p0, by K-W model, is an informative
measure of the incompleteness of experimental data.
ChiP-Seq- derived frequency of DNA-TF BEs can be fitted
well with truncated K-W probability function and thus,
allows us to estimate all specific TFBSs (Ns1+Ns2) which
could be found in the library and also to estimate the total
number of TFBSs (Ntot) entire genome.

However, father analysis of sensitivity and robustness of
estimates and extrapolations of the probabilistic model
of TF-DNA binding model and analysis more complete
and large ChIP-seq datasets might be important for
robust and accurate parameterization of our models and
its applications.

Conclusion
We proposed a probabilistic model of TF-DNA binding
process at the genome level and based on the model we
developed a computational method which allows us to
‘de-noise’ ChIP-seq datasets and to estimate the specifi-
city and the sensitivity of ChIP-seq assays.

Goodness-of fit analysis of GDP and K-W functions
suggests that the sensitivity problem has not yet been
technically resolved by the ChIP-based methods, includ-
ing ChIP-seq. TFBS motif finding analysis supports our
results. Due to the proposed improvements in the
sensitivity and the specificity of ChIP-seq assay, func-
tional roles of an extremely large number of low/
moderate avidity TF binding loci in the mammalian
genomes can now be investigated. After these studies the
models of transcriptional regulatory network in embryo-
nic cells and other cell types should be carefully revised.

The numbers of the low/moderate- and high- avidity
specific TF BSs are estimated here for all the studied data
sets. We suggest that many low- and moderate- avidity
BSs have biologically meaningful functional roles. Since
in the previous studies only high avidity TF BSs could be
reliably detected by ChIP-seq assays, identification of
other binding sites and elucidation their functional role
in genome is a great imperative goal for biotechnology,
computational biology and functional genomics.

It is likely that our approach could also be applied to the
analysis of high-resolution ChIP-based generated pro-
files of chromatin chemical modifications [29,30] in

mammalian genomes. Our work provides a theoretical
framework for a comprehensive computational predic-
tion and a robust experimental identification of TFBSs
(and other ChIP-seq data) when low- and moderate-
avidity sequences are over-represented in ChIP-derived
sequence samples.

Methods
ChIP-seq data sets
We used ChIP-seq datasets (ChIP-seq libraries) gener-
ated by Solexa sequencing for eleven TFs (Nanog, Oct4,
sox2, KLf4, STAT3, E2F1, Tcfcp211, ZFX, n-Myc, c-Myc
and Essrb). These TFs are considered as essential TFs for
the maintenance of the pluripotency in mammalian
stem cells and were studied using murine E14 embryonic
stem cells cultured under feeder-free conditions as
described in Chen et al [15]. The mapped ChIP-seq
datasets were downloaded from T2G GIS DB (http://t2g.
bii.a-star.edu.sg; see also NIH GEO ID:GSE 11431).The
extended ChIP-seq DNA fragments were clustered and
the number of overlapping fragments were summed at
each locus and used to construct empirical frequency
distribution of TF-DNA binding. Some statistical addi-
tional characteristics of the libraries are presented in
Table 1 and Table 2 and Additional files 4, 5.

Motif finding and target gene counting
To validate predictions of our TF-DNA binding model
and to extend the sensitivity of ChIP-seq derived
sequences clustered the loci with low- and moderate-
binding avidity, we used genome coordinates of the
available extended ChIP-seq fragments and provided
computational identification of TFBSs by using motif-
discovery program nminfer from NestedMICA http://
www.sanger.ac.uk/Software/analysis/nmica/[31]. c-Myc
TF ChIP-seq data [15] were used to illustrate our
approach NestedMICA program was used to identify
position weighted matrixes (PWMs) E-boxes and con-
sensus sequence motifs of c-Myc TF into genome-
mapped ChIP-seq DNA fragments. The sequences of
strongly specific BEs with height 12 and higher (peak12
+) were used as a training set for motif discovery. The
training set sequences were downloaded from mouse
genome (UCSC mm8 after repeat masked by capital Ns).
The test set is peak regions (± 200 bp around centre of
the cluster peaks) with height 7 and higher (peak7+),
which have been not used in the training set.

The PWM found from training set were computationally
scanned on the test set by nmscan program at score
threshold-3.0. The motifs found from in test set were
used to scan and count number of each motif found in
the mouse genome (mm8).
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Empirical frequency distribution of the avidity of TF-DNA
binding
To quantify the avidity of TF-DNA binding in a given
locus, Chen et al. [16] extended the distinct fragments by
200 bps and clustered these fragments that were over-
lapping by at least 4 bps. In ChIP-seq experiment, “a
binding signal” for a given binding locus has been
represented the number of the DNA fragments formed
by these 5-end “extended and overlapped” DNA frag-
ments [15]. For Chip-seq experiment, this number could
the considered as the TF-DNA binding event (BE)
representing TF-DNA “binding avidity” averaged across
genome BSs of hundred millions cells.

We define a list of uniquely mapped ChIP-seq DNA
sequences observed in a given ChIP-seq experiment as
the Chip-seq library. To quantify the data of an
individual ChIP-seq library, we defined the size of the
library, M, as the total number of distinct ChIP-seq reads
uniquely mapped onto a reference genome. Let m denote
the number of the BEs counted by a peak-finding
program (e.g. T2G) in a DNA fragment cluster overlap
of ChIP-seq library. The single DNA fragment mapped
on the genome is also included. m = 1, 2, 3,..., mmax,
where mmax = J denotes the maximum value of m. Let n
(m, M) denote the average number of genome loci in
which the BEs found in a given ChIP-seq data exactly m
times in the library of a size M. Due to sample size,
experimental errors and biological variation across many
cells and environmental conditions, observed n is the
function averaged across the cells and conditions and
this function increases when M becomes larger. Thus, n
only approximates a true number of TFs bound to
genomic loci with BE value m. However, n=n(m, M) after
an appropriate normalization could be used for statis-
tical analysis of relative binding avidity of ChIP-seq
binding loci.

Let denote N n m M
m

J= =∑ ( , )
1

the total number of

distinct loci counted in the ChIP-seq library. Then

M mn m Mnm

J= =∑ ( , )
1

and we could call M also as the

“DNA sequence mass”. The empirical frequency distribu-
tion of the number of DNA fragments in the locus within

the ChIP-seq dataset ( P X m p n Nm m( ) : /= = = ) might

be considered as the empirical probability function of
TF-DNA binding avidity. Such histogram is an essential
starting point for further statistical analysis of data and
planning of validations studies [7,9,13].

An empirical probabilistic model
We assume that the probability distribution function of
TF-DNA binding avidity in ChIP-seq experiments could

be modeled as a mixture of two probability distribution
functions

P X m sP X m s P X ms ns( ) ( ) ( ) ( ),= = = + − =1 (1)

where Ps is the probability distribution function of
specific binding Pns is the probability function of non-
specific binding. The later function might be more
complex and represent the technical background noise
and natural biological noise determinate by large
number of non-specific “low avidity” TF-DNA binding
events. Parameter s is the relative frequency of specific
bindings in (1). 0<s<1. m = 0, 1, 2,... The model (1)
could be approximated by the following empirical
probability distribution function:

P X m P X m P X ms ns( ) ( ) ( ) ( )= = = + − =α α1 (2)

where Ps is the empirical probability distribution
function of specific binding, Pns is the empirical
probability of non-specific binding. The parameter a
could be estimated as the fraction of the extended DNA
fragments uniquely mapped on the genome and
belonged to the true loci having specific TFBS. 0 <a <
1. Figure 2 shows the examples of non-normalized
empirical frequency distribution of TF BEs (e.g. Nanog
TF-DNA data) which after normalization to 1 can
modeled by (2).

Due to sequence read sampling, the frequency distribu-
tion (1) is considered as scale-dependent and skewed
functions [20,32], i.e. when the sample size, M, increas-
ing, the shapes of the noise and specific frequency
distribution functions are changed correspondently with
library size. We model the non-specific avidity distribu-
tion function Pns in (1) by an exponential function
distribution with continuous exponent parameter as a
decay function of sample size M [9,11].

The effect of a limited sample size, complex background
noise, critical cut-off values, and the specificity and
sensitivity of ChIP-seq assays
If one has prior knowledge of the sets of all TFBSs and of
all sequences not bound by a given TF in the genome,
then conventional calculation of the specificity and
sensitivity of genome-wide TF BEs is straightforward.
However, in the absence of such knowledge, one needs to
rely on statistical analysis of data-driven physical models
and computational estimates using available highly-noisy
and incomplete DNA fragment samples [9,12].

A significant amount of non-specific genomic DNA
fragments (background noise) is always present in the
inmmunoprecipitated DNA material of any ChIP-
derived dataset [9,12]. Some non-specific DNA might
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be easily filtered out after computer mapping of the DNA
fragments on the genome. In larger library, the number
TF specific loci could be increased. However, background
(or noise) genomic DNA fragments could non-uniformly
located in the genome and thus false clustered should be
occurred in any region of the empirical frequency
distribution [7,9,12,13,15].

The following basic statistical tasks are becoming
imperative: (i) specificity of the library, i.e. to identify
statistically significant TFBSs and count their number at
the given confidence level, t, of BEs; (ii) power of the
library, i.e., to identify “true” specific BEs which are
present in the noise-enriched subset of relatively low
read counts (0<m<t) in the library and (iii) sensitivity of
the detection, i.e. the number of “lost” BSs which are
available for TF binding in the given cells at the given
condition, but were not detected due to a limit of the TF
library size and the technical implementation.

We analyze these problems via probabilistic modelling,
goodness-of-fit analysis and computational modelling of
non-specific and specific BEs loci for a given TF in the
ChIP-seq library. This analysis is used to quantify avidity
of binding events of eleven TFs studied in the genome of
mouse stem cells.

For a given TF library, let N denote the sum of two
subsets of BEs:

N N N n m M n m M
m

t

m t

J

= + = +
=

−

=
∑ ∑1 2

1

1

( , ) ( , ), (3)

where N1 is the number of observed ‘noise-rich’ TF- DNA
binding loci, having relatively low/moderate potential of
TF binding avidity and N2 is the number of observed
‘specific- rich’ TF-binding DNA loci, having a relatively
high potential of TF binding avidity. The parameter t is
the TF-DNA binding specificity threshold value.

To quantify specific and non-specific BEs, we could
separate the uniquely-mapped ChIP-seq DNA fragments
on two subsets by the following:

M M M n m M m n m M m
m

t

m t

J

= + = +
=

−

=
∑ ∑1 2

1

1

( , ) ( , ) , (4)

where M1is the number of ChIP-seq DNA sequences
which observed in the subset of ‘noise-rich’ and non-
reliable TF-bounding DNA loci, M2 is the number of
ChIP-seq DNA fragments which are observed in subset of
reliable specific and TF-bounding DNA loci.

For a given TF library, let N s denote the total number of
specific TF-DNA binding loci in the ChIP-seq library. A
set of specific TF-DNA binding loci could be split in two
subsets by the following:

N N N n m M n m Ms s s s s

m t

J

m

t

= + = +
==

−

∑∑1 2

1

1

( , ) ( , ), (5)

where, n m MS

_ __
( , ) is the estimation of the number of

specific BEs at valuem. NS2 is the estimate of the number

of TF-DNA binding loci at m≥t.NS1 is the estimate of the

number of specific TF-DNA binding loci at m<t.

To quantify avidity specific BEs and to estimate
parameter a in (2), we could estimate the number of
ChIP-seq DNA fragments in the high confidence loci,

M , and separate this number on two numbers by the
following:

Ms Ms Ms n m M m n m M ms s

m t

J

m

t

= + = +
==

−

∑∑1 2
1

1

( , ) ( , ) , (6)

Using (6), the weight parameter a in (2) can be
estimated by the following:

α = Ms M/ (7)

Parameter t is an unknown threshold value of a random
variable X domain separating the domain on two sub-
domains a binding specificity level defined by the
following:

Sp PS X t P X t= ≥ ≥( ) / ( )* %,100 (8)

where PS X t( )≥ and P X t( )≥ were defined in (2). Let

Ntot denote an estimate of the total number of BEs in
the entire genome in a given cell population at a given
experimental conditions (e.g. genome of mouse embryo-
nic stem cell line E14 at given treatment). We defined

Ntot as the following

N N N Ntot S S= + +0 1 2, (9)

where the number of non-detected TFBSs, N0 . Then, the
sensitivity of the ChIP-seq assay could be estimated by
the following:

Se N NS tot= ( / ) %,100 (10)

where NS is estimated in (m = 1, 2, 3,..., J).
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Truncated Generalized Discrete Pareto (TGDP) function
and estimation of NS1 , NS2 and NS
To quantify the empirical frequency distribution of the

number of ChIP-seq TF-DNA BEs and to estimate NS1 ,

NS2 and N N N NS S S S( )= +1 2 , we model the prob-

ability function Ps of specific binding in (1) using the

truncated GDP (TGDP) function, which could be
considered as a good limiting approximation of many
random evolution models [20]. The GDP probability
function is described as the following

f m k J P X m
m kS J( ; , , ) ( )

( )
,β ζ

β
= = =

+ +
−1 1

1 (11)

where the random variable X is the number of BEs (m =
1, 2,... J), f (m; k, b, J) is the probability that a randomly
chosen specific loci has exactly m BEs. The f involves two
parameters, k, and b, where k > 0, and b > -1; the
normalization factor ζ is the generalized (due to b > -1)
and truncated (due to J < ∞) Riemann Zeta function
value [33]:

ζ βJ

m

J

m k= + +
=
∑ 1 1

1
( )( ) (12)

The continue parameter k characterizes the skewness of
the probability function; the continue parameter b
characterizes the deviation of the GDP distribution from
a simple power law. J denotes the maximum observed
number of BEs and used as an empirical parameter of the
model (11)-(12). This parameter in scale-dependent cases
is positively correlated with the sample sizeM [20]. Since
in log-log plot the truncated function (11)-(12) exhibits
systematic change of its shape when the sample size M is
changed [20], the model could be co-called the empirical
scale-dependent TGDP model [34].

When only the tail of the GDP is available for analysis,
the double-truncated GDP function

f m k t J P X m
m kS t J( ; , , , ) ( )

( )
,,β ζ

β
= = =

+ +
−1 1

1 (13)

where

ζ βt J

m t

J

m k, ( )( )= + +
=
∑ 1 1 (14)

could be used for quantification of empirical distribu-
tions. In this case

N N N NS S t J S S J t J2 1= = −ζ ζ ζ, ,( ). and (15)

Note, if the truncated distribution fits well to the left tail
of the mixture distribution (e.g at m ≥ t), then NS2 ≈ N2,
and thus the number of specific BSs in TF ChIP-seq data
can be estimated by

N NS t J≈ 2 / .,ζ (16)

Fitting and back-extrapolation method for TGDP function
A noise background BEs could mask the specific
moderate to low avidity TFBSs. It is important to
estimate the numbers of specific moderate to low avidity
TFBSs masked by noise background BEs in ChIP-seq
data. However, these sub-sets of BEs might be not easily
separated due to the distributions overlapping and
sample size dependence. To estimate t-value at the
given specificity level and the numbers of specific
moderate to low avidity TFBSs associated with this t-
value, we used the fitting and back-extrapolationmethod of
recovery of the distributions of specific and non-specific
BEs.

Briefly, our algorithm includes several steps: (i) an
identification of the functions which after optimization
of parameters could provide the best-fit functions
approximating the left side and the right side of the
empirical distribution, respectively, (ii) an extrapolation
of these functions to the function overlapping region,
(iii) identification of the specificity threshold t, (iv) an
estimation of the weight parameter a in (2), (v) final
correction of the estimated parameters using complete
model, (vi) restoration of the values N S2 and N S1
based on the extrapolation method applied to the best-
fit distribution functions. To fit the distribution func-
tions we used optimization criteria and methods
reported by [20,35]. We used also the non-linear
regression tools of Sigma-Plot software (Version 11).

Kolmogorov-Waring distribution function: an explanatory
model of TF-DNA binding-dissociation process
In ChIP-seq experiments, short DNA sequence tags are
randomly chosen and consequently aggregated onto
genome clusters in the result of sampling of the tags
derived from a large but finite number of a ChIP-seq
dataset. What kinds of exploratory models could be used
to quantify forming of ensemble of TF clusters bound on
the genome DNA?

We [7,9,12,36] have shown that the tail of the empirical
distribution function of TF-DNA BEs could be approxi-
mated by a skewed truncated Pareto-like function. This
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function is sample size dependent. Due to a limited
number of sequence reads, some true TFBSs, N0, which
are physically available for TF binding in the given cells
at the given condition cannot be detected in a TF ChIP-
Seq library, even if the noisy BEs are fully suppressed. In
ChIP-based experiments, the number of non-detected
TFBSs, N0, might be larger than the number of reliably
detected specific TFBSs, N2 [11].

In general, an estimation of N0 within obtained from
essentially incomplete samples is a very difficult statis-
tical task [37]. First, this is due to (i) a large number of
the real low- and moderate- avidity TFBSs (subset of real
‘hidden’ BEs, NS1 , indicated by the extrapolation curve
on Figure 2A-B) which provide only a minor admixed
part of BEs in the histogram associated with noise-
enriched BEs found in ChIP-seq data. Second, a fraction
of the rare BEs (subset N0) which is not presented in the
observed dataset could be estimated if an appropriate
physical-mathematical model is used. Below, we present
a stochastic model of TF-DNA binding and dissociation
together with the a method which allow us to estimate
not only NS1 , but also N0.

The GDP model (8)-(9) can provide a good approxima-
tion of the empirical data; however this model does not
allow estimating N0 in a given assay. Eq(8) can be a
good approximation of the Waring probability function
[20,35,38], which could count explicitly a probability of
non-observed events. This function has been considered
as an adequate distribution function derived from
several explanatory stochastic process models including
sampling genera from a heterogeneous biological popu-
lation [38] and the aggregation process of particles [39].
The Waring probability function can be considered as a
special steady-state solution of the stochastic birth-death
processes called Kolmogorov-Waring process [20] arising
in ‘omics’ data analyses. In particular, this model has
been used for the modelling of protein domains in
molecular evolution [20,35]and the sampling of SAGE
gene expression tag profiles [28].

We assume that K-W function could be considered as an
exploratory stochastic model of the evolution of specific
TF-DNA binding and use the model to estimate N0. We
assume that an evolution of specific TF-DNA interaction
in the genome can be considered as stochastic binding
and dissociation events while taking into account two
binding and two dissociation transition probabilities.
For binding, we consider the preferential attachment
process (due to the specific binding potential between TF
and DNA) and the Poisson process (non-specific
potential). Similar two processes but with different

intensities are assumed for detachments transitions
(Figure 1D).

Let pm(t) = P(Dt = m) denote the probability function
associated with the random TF-DNA binding-dissocia-
tion process {Dt, t ≥ 0} (Figure 1D). Then the rate of the
probability functions pm (m = 0, 1, 2...) of the number of
TF-DNA BEs could be described by the forward
Kolmogorov differential-difference equations:

dp t dt t p t p t0 0 0 1 1( ) / ( ) ( ) ( )= − +λ μ (17)

dp t dt t t p t t p t t p tm m m m m m m m( ) / ( ( ) ( )) ( ) ( ) ( ) ( ) (= − + + +− − + +λ μ λ μ1 1 1 1 )),

(18)

where m = 1, 2,.... The initial probabilities pm(0) ≥ 0 (m =

0, 1, 2,...) follow to the condition pm
m

=
≥
∑ 1

0
. Probably

in the most evolving near steady-state, the random
binding and dissociation processes of TF are kept near
the equilibrium. This equilibrium solution can be
written explicitly by stating dpm/dt = 0; m = 0,1,... in
(17)-(18) as

ˆ ,p p i
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m
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At m ! ∞, a necessary and sufficient condition for the
existence of the non-trivial stationary solution (19)-(20)
is provided by convergence of the series

Q i

i

m

m

=
==

∞

∏∑ η
11

, (21)

where η νλ
μi
i
i

= ≤ <−1 1 . This condition exists when

starting from some i = ic the condition hi ≤ ν < 1 takes
place for all i ≥ ic (i.e. on the right tail of the frequency
distribution).

Using (19)-(20) we can obtain the non-zero limiting
probability function for the random process Dt!∞:

P X m p p tm
t

m( ) lim ( );= = =∗
→∞

(22)

If we assume that the limiting probability distribution
pm
∗ exists, then all dpm/dt (m = 1, 2,...) would necessarily

converge to 0 as t ! ∞ and we can obtain:
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p pm s

s

m
∗

=

= ∏0
1

η .

For our application purposes, we will consider the
binding-dissociation process as a random process such
that the intensity rates are the linear functions of the
event m:

λ λ λm m= +∗ ∗
1 2 (23)

and

μ μ μm m= +∗ ∗
1 2 (24)

(m = 0, 1, 2,...), where the model parameters are
d e f i n e d b y t h e f o l l o w i n g c o n d i t i o n s

λ λ μ μ1 2 1 20 0 0 0∗ ∗ ∗ ∗> > > >, , , . Hence, during an interval

(t, t + h) where h is infinitively small, we assume that
there are four independent processes: the spontaneous
TF binding on and dissociation from a given specific

TFBS DNA locus, with constant intensities λ1
∗ and μ1

∗ ,

respectively, and the TF binding on and dissociation
from a specific TFBS DNA locus with the intensities
proportional to the number of TFs already attached to

the specific TFBS λ2
∗m and μ2

∗m respectively.

For steady-state distribution we could estimate three
parameters of the steady-state randomprocess. Let us denote

a b= = =∗ ∗ ∗ ∗ ∗ ∗λ λ θ λ μ μ μ1 2 2 2 1 2/ , / , / . Let us also denote

factorial power z[m] = z(z + 1)...(z + m - 1), where m = 0, 1,
2,...; z[0] = 1. Using (17)-(18) and (21)-(22), we can obtain
the unique limiting probability function for the process
(17)-(18) with the intensities given by (23) and (24):

p bp
a m

b m
bp

a m b
a b m

p
B b

m
m m∗ = + = + +

+ +
= +

0 0 01
1
1

1[ ]

[ ]
( ) ( )
( ) ( )

( ,θ θΓ Γ
Γ Γ

mm
B a m

m)
( , )

θ

(25)

p
a i
b i

i

m

m

0

11

11
1= + − +
+

==

∞
−∏∑( (

( )
( )

)) ,θ (26)

m = 0, 1, 2,.... Γ (x) is the Gamma function, and B(x) is
the Beta function [38]. The (25)-(26) is K-W probability
function [20]. When the preferential attachment and the
pre fe rent ia l d i s soc ia t ion ra tes a re equa l l ed

(θ λ μ= =∗ ∗
2 2 1/ ), then we have the Waring distribution

function [38].

The probability function (25)-(26) has the probability
generating function [35]

g z F a b z F a bKW( ) ( , ; ; ) / ( , ; ; ),= + +2 1 2 11 1 1 1θ θ

where 2F1(a, 1; b + 1; θ) is the hypergeometric Gauss
series [33]

 2 1

0

F x
m m

m
xm

m
m

( , ; ; )
[ ] [ ]

[ ] !
α β γ α β

γ
=

=

∞

∑
at a = a, b = 1, g = b + 1.

In this work we will considered the following practically
important conditions:

b a+ > > ≤1 0 1; .θ

Then the limiting probability function is

p p
B a m b a
B a b a

sb a s a m ds

F am
m∗ = + + −

+ −
=

− − + −∫

0
1

1

1 1

0

1

2 1 1
( , )

( , )

( )

( ,
θ

 ,, , ) ( , )b B a b a
m

+ − +1 1θ
θ

and the probability

P X m p p F a m b m p ps m m m

s m

( ) ( , , ; ) / ,,≥ = = ⋅ + + + =∗ ∗ ∗

=

∞

∑ 2 1 01 1 θ

where p b m s s dsm
b m a m

0
1

0

1
11 1,

( )[( ) ( ) ( ) ]= + − −+ − − + −∫ θ and
m = 0, 1, 2,...; p0,0 ≡ p0.

At near steady-state of such a binding-dissociation
stochastic process, the K-W function can be simply
calculated via the following simple recursive formula:

η θm m mp p
a m

b m
= = +

+ ++
∗ ∗

1 1
/

( )
, (27)

where m = 0, 1, 2, ... the other three parameters a, b and θ
are unknown parameters. Importantly, the K-W prob-
ability function allows us to estimate the value p0 which
gives the fraction of undetected (un-observed) events in
a given ChIP-seq experiment.

p
F a b0

1

2 1 1 1
0=

+
>

 ( , ; ; )
,

θ
(28)

where 2F1 is the hypergeometric Gauss series [33].

Specifically, if b >a > 0 and θ ! 1 - 0, then

lim ( )
θ→ −

= −
1 0

0 1p
a
b

(29)

Eq(19) can be used for extrapolation of K-W model up
to m = 0 (unobserved number of BEs). Than by the
following recursive formula (18), we can estimate the
frequency of BEs at each value m (m = 1, 2, 3....).
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If p0 > 0, we can define the zero-truncated limiting
probability distribution P X m X pm( | ) { }= = = ∗0 0 as

p p p
B b a a m
B b a am m

m∗ ∗= − = − + +
− +

{ } /( )
( , )

( , )
,0

01
1

1
θ (30)

where m = 1, 2, 3...

Using this formula, we can prove the following useful
approximation:

If a ! 0+; θ ! 1; b > 0, then

lim lim
( ) ( ) ( )

( ) ( )
li

,

{ }

a
m

a
p

b a a m b
a b m→ + →

∗
→ +

= − + +
+ + +0 1

0

0

1
1 1θ

Γ Γ
Γ Γ

mm ( , ),
θ

θ
→

= +
1

1m bB b m

(31)

where B(b+1, m) is the Beta function.

The expressions (28) - (31) can be used for the
quantitative analysis of the distribution of ChIP-seq
derived TF-DNA binding events and for the calculation
of p0. Note that (27)-(28) provide more accurate
estimates when a fraction of reliably detected TFBSs in
ChiIP-seq assay becomes larger.

Double-Truncated K-W Distribution and fitting of the
ChIP-Seq TF-DNA binding distribution
The estimation of parameters in the general multi-
parameter families becomes problematic when the num-
ber of unknown parameters increases. However, the three,
two- or one- parameter family distributions (27)-(28)
could be feasibly fitted to the empirical distributions.

In order to apply the probability function (27)-(28) to
the data, let us assume that the domain of the random
variable X is doubly truncated, e.g. the random variable
X is restricted to the range m = t, t + 1,..., J(t > 0, J < ∞).
The probability function of the resulting truncated
distribution can be re-normalized by the following

p p p
pm

p p J p J
m
T

m s

s

s J
∗ ∗ ∗

=

=

= =
∗

− − +
∗

+
∑/( )

/ ,
.

1 1 0 1 0 1
(32)

This probability function corresponds to a common
situation for ChIP-seq data analysis in which the
occurrence values m= 0 and m = J + 1, J + 2,...,∞ are
not observed. As θ λ μ= →∗ ∗

2 2 1/ from the left, the (32)
is transformed into practically useful expression

lim
/ ( ) /( )

,
θ→

∗ =
∗

− + + +
∗ −1 1 1

p
pm

a b b J p J b a
m
T (33)

which as J ! ∞ can be simplified to yield p bp am
T

m
∗ ∗= / .

By analogy to (32), it is easy straight forward to derive
the double-truncated K-W function for any low thresh-
old value t (t = 1, 2,...) of the number of TFs bound to a
given TFBS, and next using the re-normalized K-W
function, to estimate parameters of the double-truncated
K-W function using the optimization algorithm reported
in [20].

Discrete Pareto distribution function is an asymptotic of
the Warring distribution function
If θ = 1, b >a > 0, then pm

∗ is the zero-truncated K-W
distribution (32) and as m ! ∞:

p b a
b
a mbm

∗ − +~ ( )
( )
( )

,
Γ
Γ

1
1 (34)

i.e. the probability distribution (16) approximates the
discrete Pareto probability distribution [20,33] in the
right tail of the specific case of K-W distribution.
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(GDP): Generalized Discrete Pareto; (K-W): Kolmo-
gorov-Waring; (TF): Transcription Factor; (TFBS): Tran-
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Definitions
ChIP-seq library: list of ChIP-seq DNA fragments
uniquely mapped onto reference genome

m: number of ChIP-seq DNA fragments shearing a
unique locus in the genome; m could represent a relative
level of binding avidity of a TFBS in a given genome
locus. m = 0, 1, 2, 3,... J.
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n(m, M): number of the loci representing by m-value in
the ChIP-seq library.

N: number of distinct loci counted by the peak-finding
algorithm (T2G) in a given ChIP-seq library.

M: total number of DNA fragments uniquely mapped to
the genome and counted in N loci (or “ total DNA
sequence mass").

t: specificity threshold

M1: number of ChIP-seq DNA sequences which observed
in the subset of low/moderate avidity loci

M2: number of ChIP-seq DNA sequences in low/
moderate avidity loci

N1: number of observed ‘noise-likely’ TF-bound DNA
loci, having relatively low/moderate avidity

N2: number of observed ‘specific- rich’ TF-bound DNA
loci having relatively high binding avidity.

P: probability distribution function.

Ps: probability distribution function of specific binding.

Pns: probability distribution function of occurrence of
non-specific binding P : empirical probability distribu-
tion function

Ps : empirical probability distribution function of TF-
DNA specific binding.

Pns : empirical probability function of occurrence of
non-specific binding

NS : Predicted number of specific genome loci in the
ChIP-seq library.

MS : Predicted number of specific TF-bound DNA
fragments in NS .

NS2 estimate of the number of specific loci in the subset
of observed ‘specific- rich’ TF-bound DNA loci.

NS1 estimate of the number of specific loci in the subset
of observed ‘noise-rich’ TF-bound DNA loci.

s: relative frequency of specific BEs in the mixture
probability function (1).

a: estimated fraction of specific DNA fragments repre-
senting NS

M Ns s/ : Mean of TF specific binding.

TF-DNA binding avidity: an integrative quantitative
characteristic of availability of a DNA locus (e.g. TFBS
and its flanking region) for a given protein (e.g. TF)
binding Sp: specificity

Se: sensitivity: (1-p0)100%.

Ntot: total number of specific TF bound loci in the
genome

Ntot : model- predicted total number of specific
TFbound loci in the genome

p0: predicted fraction of specific TF bound loci out of
ChIP-seq library data.

Additional material

Additional file 1
GDP function fitting and extrapolation in noisy events for Esrrb TF
library. Empirical relative frequency distribution of peak height intensities
for Esrrb is fitted by GDP. Log-log plot: frequency of peak height intensity
for the Esrrb library; solid circles: observed frequencies for cut off 12; solid
line: best fit GDP function with parameters k = 2.40 ± 0.0778, b = 10.42 ±
0.6828. Extrapolated graph with the same parameters to get the predicted
TFBSs in noise enriched binding events of library.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-11-S1-S12-S1.pdf]

Additional file 2
K-W model fits on the observed and best-fit GDP-derived data and
calculates p0. Vertical dotted lines are representing qPCR experimental
threshold and Improved Model threshold. Table 1 is representing the
parameters of the K-W model fitting for all TFs.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-11-S1-S12-S2.pdf]

Additional file 3
Fitting statistics of the GDP model to the empirical frequency
distribution of binding events. t[k], t[b] are t test value for k, and b
respectively. p[k] and p[b] are the p values. F is Fisher criterion (by
SigmaPlot)
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-11-S1-S12-S3.xls]

Additional file 4
The numbers of TFBS-specific DNA fragments according to different
specificity thresholds. Observed and best-fit GDP function predicted
numbers of the DNA fragments are compared.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-11-S1-S12-S4.xls]
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Additional file 5
Mutual agreement best-fit K-W and GDP functions. the both
functions provide an accurately estimation of the number of specific
ChIP-seq DNA fragments in reliably-defined TF binding sites.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-11-S1-S12-S5.xls]

Additional file 6
Venn diagrams of number of E-boxes co-localization in ChIP-seq
defined binding loci. A: Venn diagram of number of E-boxes positive
loci found in vicinity ± 150 bp of the centre of ChIP-seq defined binding
loci. B: Venn diagram of number of E-boxes positive loci found in vicinity
± 250 bp of the centre of ChIP-seq defined binding loci.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-11-S1-S12-S6.pdf]

Additional file 7
Number of c-Myc binding loci containing E-boxes in different peak
height. A: Number of c-Myc binding loci (± 150 bp from c-Myc loci
center) containing E-boxes. B: Number of c-Myc binding loci (± 250 bp
from c-Myc loci center) containing E-boxes.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-11-S1-S12-S7.xls]

Additional file 8
Validation of ChIP-seq defined c-Myc binding loci based on
localization of c-Myc binding loci, E-boxes and putative promoter of
genes in mouse genome. A: Number of c-Myc BSs containing E-boxes
and not containing E-boxes around TSS ± 1 kb and Number of genes
which have c-Myc BSs containing E-boxes and not containing E-boxes.
B: Number of BSs which are around TSS ± 1 kb and contain E-box. The
number was separated in two groups; 1: relative low avidity (peak height
7-8) and 2: moderate- and high-avidity (peak height 9+)
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-11-S1-S12-S8.xls]

Additional file 9
Number of E-boxes found within c-Myc binding loci in different peak
height. A: Number of E-boxes found within c-Myc binding loci (± 150
bp of center). B: Number of motifs found in c-Myc binding loci (± 250
bp of center).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-11-S1-S12-S9.xls]

Additional file 10
TF-gene association scores. High-, moderate-, and relatively low avidity
c-Myc binding loci with multiple E-boxes in putative promoter region of
Wee1, Npm3, and Fkbp5, respectively. Gene enrichment classes: I - gene
enriched with binding site for Nanog, Oct4, Sox2, Smad1, and STAT3;
II - gene enriched with binding site for c-Myc and n-Myc. The
association score estimates distance between each pair of binding locus
and gene based on genomic location of the binding locus that is closest to
TSS.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-11-S1-S12-S10.xls]
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