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Abstract

Background: Identification of disease genes for Type 2 Diabetes (T2D) by traditional methods has yielded limited
success. Based on our previous observation that T2D may result from disturbed protein-protein interactions
affected through disrupting modular domain interactions, here we have designed an approach to rank the
candidates in the T2D linked genomic regions as plausible disease genes.

Results: Our approach integrates Weight value (Wv) method followed by prioritization using clustering coefficients
derived from domain interaction network. Wv for each candidate is calculated based on the assumption that
disease genes might be functionally related, mainly facilitated by interactions among domains of the interacting
proteins. The benchmarking using a test dataset comprising of both known T2D genes and non-T2D genes
revealed that Wv method had a sensitivity and specificity of 0.74 and 0.96 respectively with 9 fold enrichment. The
candidate genes having a Wv > 0.5 were called High Weight Elements (HWEs). Further, we ranked HWEs by using
the network property-the clustering coefficient (C;). Each HWE with a C; < 0.015 was prioritized as plausible disease
candidates (HWEc) as previous studies indicate that disease genes tend to avoid dense clustering (with an average
G of 0.015). This method further prioritized the identified disease genes with a sensitivity of 0.32 and a specificity
of 0.98 and enriched the candidate list by 6.8 fold. Thus, from the dataset of 4052 positional candidates the
method ranked 435 to be most likely disease candidates. The gene ontology sharing for the candidates showed

linked to T2D.

higher representation of metabolic and signaling processes. The approach also captured genes with unknown
functions which were characterized by network motif analysis.

Conclusions: Prioritization of positional candidates is essential for cost-effective and an expedited discovery of
disease genes. Here, we demonstrate a novel approach for disease candidate prioritization from numerous loci

Background

Type 2 Diabetes (T2D) is a complex disease, encompass-
ing various metabolic abnormalities influenced by both
gene-environment and gene-gene interactions. Meth-
odologies involving linkage analysis and/or association
studies have been extensively exploited to identify the
underlying genetic factors. Recent, advances using gen-
ome wide association (GWA) studies undertaken in
large sample sets have provided a few susceptibility
genes [1]. The success of GWA studies relies on the dis-
covery of common variants of common diseases, how-
ever rare variants may also influence the risk of type 2
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diabetes that are not captured in GWA studies. Hence,
all these approaches have yielded very limited success,
warranting new approaches, complementing the existing
ones for disease gene discovery. Linkage analyses loca-
lize disease linked markers onto chromosomal regions
that may correspond up to 30 Mb harboring several
hundred genes [2]. Ideally, the information obtained
through large number of genome-wide linkage studies
has to be utilized to search T2D genes using a positional
candidate based association studies. But, it is cost
expensive and labor intensive apart from being time
consuming to screen for each gene in the T2D linked
region. Therefore, it is necessary to prioritize positional
genes located in the linked chromosomal regions that
would facilitate and expedite the identification of disease
genes. Previously, a study used meta-analysis approach
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to prioritize disease genes from T2D and obesity linked
regions based on consensus gene prioritization methods
[3]. However, consensus methods are not always appro-
priate as they are primarily based on keyword similarity
or phenotypes like biomedical text searches and asso-
ciated pathological conditions for prediction [4].
Recently, protein-protein interaction data have also been
extensively exploited for candidate gene prioritization in
monogenetic as well as complex diseases [4-6].
Previously, we demonstrated that T2D may result
from disturbed protein-protein interactions resulting
through disrupted modular domain interactions [7].
From this lead, here we have developed systems biology
approach based on domain-domain interactions to
prioritize positional candidates located in T2D linked
regions (Fig.1). The method assumes that the functional
relationship of protein-protein interactions is primarily
facilitated by domains of the interacting proteins [8].
Information regarding the functional, positional and net-
work properties of disease related genes are utilized by
this method. Network measures like node connectivity
and clustering coefficient values of molecular interaction
networks have been extensively used to study the topo-
logical properties of disease genes [9,10]. Recently, it has
been shown that disease genes avoid ‘dense clustering
neighborhoods’ and have an average clustering coeffi-
cient of 0.015 [9]. Based on these properties, the
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positional candidates were first ranked by formulating a
scoring method that assigned Weight value (Wv) to
each candidate. Further, we exploited network measure
to prioritize HWEs (candidates with a Wv > 0.5)
referred to as HRC method (high weight elements
ranked by clustering coefficient).

Comparison with other known prioritization methods
which are based on sequence analysis as well as protein-
protein interactions showed that our method had a gene
enrichment ratio of 6.8 which is better than the other
methods compared. We also predicted the functional
processes brought about by positional candidates with
special emphasis on those with unknown functions. This
was done by constructing network motifs from the
domain interaction network. These motifs represent spe-
cific biological functions and hence provide an insight
regarding the physiological role of particular candidate.
We believe such an approach which amalgamates func-
tional, genetic and network properties could prove to be
immensely helpful in ranking the positional candidates
involved in disease.

Results

Here, we integrated Wv method and domain interaction
network property (HRC method) to predict positional
candidates with a high likelihood to be involved in dis-
ease etiology. The calculated Wv for proteins ranged
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Figure 1 Elucidation of the components used for the ranking the positional candidates in T2D.
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from 0-1 with the magnitude indicating relevance to
T2D. The candidates with Wv > 0.5 were prioritized as
high weight elements (HWEs). From the dataset of 4052
proteins, encoded by genes located within 10 Mb region
encompassing 108 markers linked with T2D (LOD score
> 2), 995 candidates were classified as HWEs.

We assumed that most likely disease genes among
HWEs should also share the network property. A recent
study of network properties of disease genes has
demonstrated that the disease genes avoid dense clus-
tering neighborhood compared to essential genes and
have an average clustering coefficient of 0.015 [9].
Hence we used average C; of 0.015 as a cut-off to prior-
itize HWEs. Ranking of HWEs based on their clustering
coefficient (C; < 0.015) in the domain interaction net-
work (HRC method) resulted in 435 most likely disease
candidates termed as HWEc (Additional file 1). The
topological features of the interactions derived here
from domain interactions include an average degree of
connectivity (k) of 6.5, an average clustering coefficient
(C)) of 0.17 and the shortest path length of 4.5. Among
the HWEs, 44% had C; < 0.015 (HWEc) whereas among
the test dataset (refer methods for details) only 35% of
the proteins had C; < 0.015 (p = 0.007). Our analysis
revealed that majority of HWEc had less connectivity (k
< 5; 47%) compared to test dataset which had prepon-
derance of genes with higher connectivity (k > 5; 78%)
(p < 1 x 10™*). This indicates that HWEc proteins have
fewer links with low C; and might be less intercon-
nected; these represent the network properties shared
by disease genes. Furthermore, this also supports the
assumption that genes that lie in the network-neighbor-
hood of disease genes are more likely to be involved in
disease causation. Using BINGO [11] we assigned the
biological processes from Gene Ontology (GO) shared
by ranked candidates and found predominant involve-
ment of HWEc in metabolic and signaling processes
(Table 1).

Functional relevance of network motif analysis

Network motifs that are the indicators of specific func-
tional modules in cellular networks [12,13] were used to
predict functions for hypothetical HWEc genes. For
instance, network motif analysis showed that QGMZN5
protein (Wv = 0.93, C; = 0.0) with domain PF05277
forms a four node motif with partners PF01565 (elec-
tron transport), PF02913 (electron transport), PF02127
(proteolysis) suggesting its role in energy metabolism.
The predicted functions were also cross-validated using
the Protfun server by matching with the functional
classes assigned by Protfun. Protfun server also pre-
dicted the involvement of Q6MZN5 protein in energy
metabolism. Energy generation in mitochondria occurs
primarily through oxidative phophorylation and as genes
involved in oxidative phosphorylation are known to be
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coordinately downregulated in T2D, Q6MZN5 might
attain significance [14].

Performance of the methods

The benchmarking dataset used to evaluate the perfor-
mance of our methods, comprised of 19 genes known to
be associated with T2D from GWA studies [1,15] and
353 non-T2D genes lying within 10 Mb regions of 12
chromosomal positions those are never shown to be
linked with any disease, as control data set. We
observed sensitivity of Wv method to be 0.73 and speci-
ficity to be 0.96. For HRC method, sensitivity and speci-
ficity were 0.32 and 0.98 respectively. Overall data
enrichment of 9 fold and 6.8 fold was observed for the
two methods respectively. Using the benchmarking data-
set, we compared both Wv and HRC predictions with
other known methods of candidate gene prioritization
(Table 2). The receiver operating characteristic (ROC)
analysis of the two methods, Wv and HRC confirms
their better performance (Fig. 2), with only PROSPECTR
[16] having a higher sensitivity (0.90) than Wv and
HRC. Where, G2D method gave accuracy and sensitivity
of 0.73 and 0.53 respectively with the benchmarking
dataset.

Further, other gene prioritization methods including
PROSPECTR [16], SUSPECTS [17], Disease Gene Pre-
diction (DGP) [18] and G2D [19] were used to prioritize
our dataset of 4052 genes. PROSPECTR and SUSPECTS
gave a disease gene estimate of 1 in 1.7 (2275 in 3972
and 2254 in 3612 respectively), DGP did 1 in 2.1 (1720
in 3632) and for G2D it was 1 in 7 (524 in 4052).
Whereas, Wv method gave disease gene estimate of 1 in
4 (995 in 4052), Wv + HRC provided an estimate of 1
in 9.31 (435 in 4052). Thus, it was striking that PRO-
SPECTR, SUSPECTS and DGP predicted a higher num-
ber of genes to be disease candidates compared to our
method. Among the other methods, G2D performed the
best. While comparing the common candidates pre-
dicted by Wv + HRC and other methods we found that
84% (364) were prioritized to be disease candidate by
any one of the methods while 16% (71) of the candi-
dates were the unique candidates prioritized by our
method (Additional file 2).

When compared with GeneWanderer (random walk)
program [5] it was found that our method identified 6
disease genes compared to 7 by GeneWanderer (Table
3). Since, Wv approach includes prioritization based on
the positional relevance of the candidate with relation to
T2D linked regions and that some of the GWA genes
do not lie in this region there is a likelihood of missing
out on some candidates.

Prioritized Candidates by Wv + HRC method

Available literature suggests that candidates with high
Wv and low clustering coefficient values, as prioritized
by our method, show considerable relevance to T2D.
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Table 1 Gene ontologies revealed by BiNGO for ranked positional candidates

GO ID Gene ontology - description No. of ranked candidates p-value
GO:0008151 Cellular process 279 13x10°
GO:0008152 Metabolic process 237 18x 107"
GO:0044237 Primary metabolic process 225 36 x 107"
G0O:0044238 Cellular metabolic process 250 15%x 107"
GO:0043170 Macromolecule metabolic process 198 1.7 x107°
GO:0019358 Protein metabolic process 160 12 %1028
GO:0044260 Cellular macromolecule metabolic process 159 20 % 10
GO:0044267 Cellular protein metabolic process 158 13x10°%°
G0O:0043283 Biopolymer metabolic process 144 41x10°
GO:0065007 Biological regulation 138 43 x10°
GO:0050791 Regulation of biological process 118 0018
GO:0051244 Regulation of cellular process 108 0.04
GO:0007154 Cell communication 106 0.026
GO:0006464 Protein modification process 100 49 x 10?2
G0O:0043412 Biopolymer modification 100 54 x 107
GO:0007165 Signal transduction 97 0.036
GO:0043687 Post-translational protein modification % 21 % 10%
GO:0006796 Phosphate metabolic process 85 20 % 10
GO:0006793 Phosphorus metabolic process 85 50 x 103
GO:0016310 Phosphorylation 84 53 % 10%
GO:0006468 Protein amino acid phosphorylation 83 23 x 10%
GO:0051869 Response to stimulus 77 45x10°
GO:0007242 Intracellular signaling cascade 55 22 % 10™
GO:0006950 Response to stress 50 15 %107
GO:0051242 Positive regulation of cellular process 38 75 % 10"
GO:0002376 Immune system process 31 0011
G0O:0007243 Protein kinase cascade 27 0017
GO:0006629 Lipid metabolic process 20 0.027
GO:0012501 Programmed cell death 27 0.034
GO:0006954 Inflammatory response 23 34 x10°

Top thirty biological processes enriched by 435 ranked positional candidates

For instance, the highest ranked candidate GPC1 (Wv-
1.0, C;-0.0) is shown to influence FGF2 signaling path-
way [20]. The angiogenic growth factor, FGF2 levels has
been found to be associated with cardiovascular events
in T2D [21]. LPIN2 and LPIN3 (Wv-0.98, C;-0.0) are the
members of lipin family known to serve as an enzyme
for triacylglycerol synthesis as well as transcriptional
coactivator in the regulation of lipid metabolism genes
[22]. CDK5R2 (Wv-0.98, C;-0.0) forms the complex with
CDKS, a serine/threonine protein kinase that plays cru-
cial role in physiological functions such as glucose sti-
mulated insulin secretion in pancreatic cells [23].

CX3CL1 (Wv-0.97, C;-0.0), a CX3C chemokine has been
shown to have specific role in initiation and progression
of atherosclerotic vascular disease [24]. VEGF has
already been shown to be associated with T2D compli-
cations [25]. PDGFB elevated levels and its induction by
PKC activation has been shown to be involved in patho-
genesis of diabetic retinopathy [26]. Mutation in AKT2
(R274H) enzyme has been shown to result in autosomal
dominant inheritance of severe insulin resistance and
T2D [27]. CAMK?2 kinase found to be expressed in the
pancreatic B-cell has been shown to affect insulin secre-
tion [28]. Fetuin-A has been shown to be an important

Table 2 Performance comparison of different methods using benchmarking dataset

Wv HRC PROSPECTR SUSPECTS G2D DGP
Accuracy (%) 94.9 94.6 414 61.1 728 498
Sensitivity (%) 73.7 316 89.5 526 526 588
Specificity (%) 96 98 388 615 739 49.3

Numbers in bold letters indicate significant values
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Figure 2 Rank ROC curve obtained for disease validation. (A) Weight value method. (B) HWEc method. Red symbols and Blue line: Fitted
ROC curve. Gray lines: 95% confidence interval of the fitted ROC curve.

modulator of insulin resistance [29]. CETP plays an
important role in the regulation of HDL metabolism
and is shown to be associated with dyslipidemia in
GWA studies [30]. DMPK, a serine/threonine protein
kinase has been shown to be a positive modulator of
insulin action [31]. NDUFA5, NDUFS7, SCOI and
FMO4 all are involved in oxidative phosphorylation and
have been shown to be important in diabetes [14].

MOGAT2 was found to be associated with

Table 3 Comparison with GeneWanderer (Random walk)
method

Gene Wv  HRC Prioritized- Ranking by GeneWanderer
Wv + HRC Random walk method
ADAMTSS 1 0 Y 35
NOTCH2  0.93 0 Y 9
HNFIB  0.87 1
PPARG 077 0667 1
KCNQ1 073 0033 4
CDKLT ~ 0.63 0.005 Y 16
CAMKID  0.63 0.005 Y 30
IGF2BP2 059  0.01 Y 71
LGRS 0.56 0.286 41
CDKN2B - 053 0016 1
CDKN2A 053 0016 3
HHEX 053 0053 16
TSPANS ~ 0.51 0 Y 10
TCF7L2 048 003
CDC123 046 0 21
MTNRIB 044 0 1
SLC30A8 037 0.055 42
HDAC2 021 0067 9
KCNJT1 0 0

The bold letters highlight significant values; Dataset comprised recently
identified disease genes in T2D

triacylglycerol synthesis and has a role in diet-induced
obesity [32]. Interestingly, we found Bactericidal/perme-
ability-increasing protein (BPI) as a highly ranked candi-
date and it has been suggested over production of BPI
could be linked to insulin sensitivity and glucose toler-
ance [33]. A variation in Cathepsin S (C7SS), a cysteine
protease has been shown to be associated human meta-
bolic risk factors for cardiovascular diseases [34]. The
other ranked candidate PDE3A in rat has been found to
have antilipolytic action of insulin in adipocytes [35].

Discussion

Identification and prioritization of the disease genes for
complex diseases like T2D is inherently difficult. The
etiology of T2D, though not very clear, involves multiple
pathways wherein each probable disease gene confers
only a modest risk. Thus, to understand the disease
pathophysiology it is better to explore the global interac-
tion network than single gene identities. These interac-
tions if employed to prioritize genes might considerably
increase the chance of detecting disease genes as per-
ceived in our approach. The method relies on the dis-
ease-specific characteristics as reflected from the
observation that 13 disease genes (Wv > 0.5) from total
19 (GWA studies in T2D) were identified. The perfor-
mance of Wv and HRC methods showed accuracy and
specificity better than other sequence based candidate
gene prediction methods. The robustness of our method
is well demonstrated by the benchmarking parameters.
Furthermore, the GO sharing showed a higher represen-
tation of metabolic and signaling processes in the
ranked genes. This confirms the common belief that
genes associated with same disorder share similar func-
tional characteristics [10,36]. Most of the ranked
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candidates were also found to be involved in diverse
biological processes important in T2D like insulin secre-
tion (CAMK?2 kinase), HDL metabolism (CETP), modu-
lation of insulin action (DMPK), oxidative
phosphorylation (NDUFA5, NDUFS7, SCOI1 and FMO4)
and triacylglycerol synthesis (MOGAT?2). Further, an
immediate support of our work can be obtained from
the recent association of LPIN2 gene to T2D [37]. Prior-
itization of candidates like LPIN2 as high ranked candi-
dates, clearly indicate the efficiency and importance of
our method.

As T2D is a polygenic disease involving multiple bio-
logical processes, it is imperative that disease genes will
be rare in topologically central regions of network. It
has been observed that the important functional mod-
ules are located in the dense regions of protein interac-
tion network having high degree of connection and high
clustering coefficient [9]. Also these dense regions of
interaction networks probably perform the basic evolu-
tionary processes with specialized functions being done
by peripheral nodes [38]. Therefore, here we have used
clustering coefficient (Ci < 0.015), in a domain interac-
tion network to prioritize T2D disease candidates. This
conglomerate modus operandi is evenhanded for genes
encoding proteins having both known and unknown
functions which are often ignored during disease gene
identification.

The other known systems biology approaches for can-
didate gene prediction are based on direct protein-pro-
tein interaction of the gene that is being studied
[4-6,39]. But, the limitation of these methods is that pre-
sently only 10% of all human protein-protein interac-
tions have been described [40]. Here, we have tried to
address this by exploiting the interactions of partner
domains and their harboring proteins for prioritization.
This increases the coverage of the search for the disease
candidates in global interaction network. Notwithstand-
ing this, a note of caution is warranted as the ranking of
candidates here, could be affected by the appropriate-
ness of the InterDom [41] and the score it provides, as
the interaction networks are neither complete nor error
free. Moreover, we have tried to encompass the true
positive interactions by having the obstinate cut-off
score, with validations from other data sources as well.
Still, owing to the constraints in the gene annotation in
the regions selected, availability of interaction data and
that of ascertainment bias there is a possibility that a
few plausible disease candidates would have missed out
during the screening process.

Conclusion

To achieve cost-effective experimentation and expedit-
ing the process of disease gene discovery it is essential
to develop disease-specific methodologies rather than to
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rely solely on model-free approaches. Our method ranks
the candidate genes in linked regions using T2D specific
properties. We believe that performance of this method
would improve with the availability of better gene and
protein annotation and of true positive interaction data.

Methods

The schematic representation of the methodology opted
for the prioritization of disease gene candidates is pre-
sented in Fig. 1. Briefly, it involved the following steps
and the detailed description of each step is provided
below:

(i) Microsatellite markers with LOD scores > 2.0
linked toT2D were selected (n = 108)

(ii) Candidates were retrieved from 10 Mb region
encompassing each marker (5 Mb each upstream and
downstream of the marker) from Ensembl and the pro-
tein sequences were extracted from SwissProt (n =
5441)

(iii) Domains were assigned for the proteins using
pfam and their interacting partners were identified using
InterDom. This resulted in a dataset of 4052 proteins.

(iv) Binary scoring was done for each partner domain
of every candidate using the following classifiers a)
domains present in proteins with T2D associated non-
synonymous variations, b) domains that are involved in
T2D related biological processes, ¢) domains present in
proteins lying in T2D linked chromosomal regions d)
domains in proteins associated with any other human
disease as given in OMIM.

(v) Weight values (Wv) were obtained by analyzing
the partners domains and candidates with Wv > 0.5
were called as High Weight Elements (HWEs)

(vi) HWEs with clustering coefficient value <0.015 in
interaction network were called as HWEc,

(vii) Wv and network property of peripherality were
integrated to prioritize the potential disease candidates.
Selection of dataset
We searched the available literature for genome wide
linkage scans in T2D and selected 108 microsatellite
markers located on 64 different chromosomal regions
with LOD scores > 2.0 to select regions of profound sta-
tistical relevance with T2D (Additional file 3). All genes
coding for known and unknown proteins within 5 Mb
upstream and downstream of the selected markers (10
Mb region) were extracted from Ensembl database (v38)
[42]. We ensured a non-redundant dataset comprising
of 5441 candidate genes by screening for them in Inter-
national Protein Index (IPI) [43].

Domain assignment and prediction of partner proteins

The domain definitions used in this study were obtained
from Pfam database [44]. The domains were assigned by
scanning libraries of Hidden Markov models (HMMs)
against the protein sequences resulting in a dataset of
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4052 candidates which alone were considered for further
analysis. Interacting partner domains for each parent
domain (domains contained in the positional candidates)
were determined using InterDom database with a confi-
dence score of interactions =10 [41]. We utilized 26,058
domain interactions for Wv calculations from InterDom
database (Version 2.0) after applying the cut-off of 210
for confidence score. These interactions were found to
be evident either in DIP, BIND or PDB databases
[45-47]. After obtaining the domain partners, all the
proteins harboring them were extracted using SwissPfam
[44].

Calculation of Weight value using disease specific
properties

Binary score of 1 or 0 was assigned to the partner
domains on the basis of their presence or absence
respectively in the following four classes:

Class a. Domains present in proteins with T2D associated
non-synonymous variations

We used the dataset of proteins containing non-synon-
ymous variations associated with T2D, derived from the
previous study, as a scoring class [7]. The value of 1 or
0 was assigned based on the presence or absence of the
domains in any of these proteins respectively. A total of
60 unique domains were identified to be present in the
proteins implicated in T2D.

Class b. Domains those are involved in T2D related
biological processes

Data from microarray-based studies in adipose tissue
and skeletal muscle were used to determine the biologi-
cal pathways involved in T2D [14,48]. We identified 15
such Gene Ontology (GO) biological processes and
Pfam domains were manually categorized into these GO
biological processes using Pfam2GO data (Additional
file 4) [49]. The binary scoring was done based on the
presence or absence of a partner domain in these GO
biological processes.

Class c. Domains present in proteins lying in T2D linked
chromosomal regions

A total of 64 chromosomal regions were identified as
the location of the markers linked to T2D with a LOD
score > 2.0 (108 markers). Chromosomal locations for
all the proteins containing the partner domains were
obtained from Swiss-Prot database and were cross-
checked with Ensembl. The score of 1 was assigned if
proteins harboring the interacting domains were located
on any of these linked chromosomal regions; otherwise
value of 0 was assigned.

Class d. Domains present in proteins associated with any
other disease

To determine the genes associated with human diseases,
we searched entries in Online Mendelian Inheritance in
Man (OMIM, release December 2005) database. A total
of 1777 disease genes associated with 1284 disorders
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were found in OMIM. Redundant proteins falling under
class ‘a’ category were eliminated. Proteins harboring
the interacting domains were searched for the presence
or absence in this dataset and values were assigned
accordingly. Consideration of this category which incor-
porates the property of disease genes in the weight
value scoring is of immense importance as T2D is a
combination of many disorders.
Weight Value (Wv) scoring
Let P; and P; be two interacting proteins where P; is the
positional candidate that is being considered for prioriti-
zation and P; is the interacting partner. This interaction
is assumed to be a result of interaction between their
domains D; and D; respectively. Let D; be the parent
domain and D; the partner, where j = 1, 2 ... N, as more
than one domain can interact with D;.

The weight value for D; was calculated as follows:

N
wy =Y (a;+b;+¢;+d)) | /N (1)

j=1

Where,

aj = Dj/T,

b; = Dy/T},

¢ = P/ T,

d; = P/ Ty

N = Total number of partner domains (D; interacting

with parent domain Dj)

Where,

Dj, and Dy, indicate the presence/absence of D; in
classes a and b respectively.

Pjc and Pj4q represent the presence/absence of P; in
classes ¢ and d respectively. Note that presence/absence
is scored by a binary system.

However, it is more likely that more than one protein
can contain Dj and all the proteins harboring D; needs
to be evaluated for categories ¢ and d.

T,, Ty, T, and T4 are the total number of events in
the classes ‘a’ through’d” which are 60, 15, 64 and 1746
respectively

Obtained Wv was normalized as follows:

Wv =[(Wv —min Wv)]| / max Wy — min Wy (2)

Subsequently, this Wv obtained for D; is allocated to
P; as final outcome to rank the candidate genes dataset.
For protein harboring more than one domain, highest
Wv obtained amongst all the domains was assigned to
the protein. Protein with Wv > 0.50 were called as
HWEs.

Ranking by clustering coefficient- HRC method
Proteins in HWEs were further ranked by determining
network measure i.e. clustering coefficient (C;) in the
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domain interaction network (HRC). The clustering coef-
ficient (C;) is 1 (high) when all the neighbors of a pro-
tein are linked to each other and small (C; = 0) if
network is locally sparse [12]. Feldman et al reported
that the two networks i.e. yeast two-hybrid (Y2H) and
GeneWays (GW) used in their work are complementary
rather than competing views of the human interactome
[9]. Disease genes are known to avoid dense clustering
neighborhoods and the average clustering coefficient for
disease network observed was 0.015 [9]. Therefore, we
have considered the lowest C; for the peripherality fea-
ture of the interaction network.

Therefore, HWEs were further ranked by using C; <
0.015 hypothesizing that those candidates below this C;
could be probable disease candidates classifying them as
HWEc. InterDom domain interactions (with a confi-
dence score of interactions >10) were used for calculat-
ing the C; in NetworkAnalyzer [50].

Benchmarking of prioritization

To assess the performance of Wv and HRC methodolo-
gies for prioritizing T2D related genes, we constructed a
test dataset consisting: (i) already identified genes impli-
cated in etiology of T2D by Genome wide association
studies (n = 19) [1,15] and (ii) proteins encoded by
genes located within 5 Mb region either side of 12 mar-
kers (n = 353) that are not linked to T2D (non-T2D
genes). Further we analyzed this dataset by four other
known independent sequence based methods viz. PRO-
SPECTR [16], SUSPECTS [17], DGP [18] and G2D [19].
PROSPECTR uses sequence based features like gene
length, protein length and percentage identity of homo-
logs in other species and designates candidates as likely
disease candidates if scored equal to or over a threshold
of 0.5 [16]. SUSPECTS method is based on the annota-
tion data from GO, InterDom and expression libraries
[17]. Since, SUSPECTS does not define the cut off score
for selecting disease genes, we have used a weighted-
score of 210 based on the training dataset of genes used
by Tiffin et al [3]. DGP assigns a probability score using
a decision tree model based on sequence properties i.e.
protein length, phylogenetic extent, degree of conserva-
tion and paralogy [18]. A probability score of >0.5 is
assigned to all the disease proteins in the learning set
used by DGP. Thus, candidates with a score of 0.5
were considered as prioritized disease genes in our data-
set. G2D method scans a human genomic region for
genes related to a particular disease based on the pheno-
type of the disorder or their similarity to an already
known related gene [19]. The method performs
BLASTX of the region against all the GO annotated in
Refseq database and extracts putative genes in the chro-
mosomal region and evaluates their possible relation to
the disease. The default E-value (<10e°) was used here
for extracting the putative disease genes based on the
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“known gene” protocol of G2D. The “known gene” takes
already well-known disease genes to be associated with
disease of interest for prediction. Thus, here we have
considered the same set of “known gene” in T2D used
by the GeneWanderer program disease-gene families
dataset [5]. As G2D takes chromosomal region for
search, we have provided 10 Mb either side of 108 mar-
kers for searching putative genes. Measure of perfor-
mance of methods was done by estimating receiver
operating characteristic (ROC) curve, which plots true
positive rate (TPR) versus false positive rate (FPR).
Comparison with GeneWanderer

We also compared our prediction using 19 identified
genes in T2D with recent GeneWanderer program. This
approach ranks each candidate gene in a genomic inter-
val (identified by linkage analysis) by their interactions
to genes known to be involved in the phenotype/disease
in the protein-protein interaction network [5]. Here, we
have used the random walk method of GeneWanderer
prioritization approach.

Enrichment ratio

Enrichment ratio was estimated as the proportion of dis-
ease genes predicted by the methods divided by the dis-
ease genes within all benchmarking set as:

ER =[(TP / (TP + FP))] | DG | =G (3)

Where ZDG is all disease genes and XG is total num-
ber of genes considered here.
Network analysis
Biological functions from interaction networks
Biological Networks Gene Ontology tool (BiNGO), a
plugin of Cytoscape software [11] was used to determine
which GO terms are significantly overrepresented in a
set of high ranked candidates. We only selected the GO
terms having >10 selected genes in particular biological
functions. This analysis for biological functions was
done for 391 from total of 435 genes.
Motif detection from domain interaction
The program ‘mdraw’ [51] was used to identify the net-
work motifs from domain interaction network. The pro-
cess of motif generation between real and randomized
networks was a result of 1000 iterations. Motifs that
recurred significantly (p < 0.01) in the real networks
compared to that of randomized networks were consid-
ered. Furthermore, the biological relevance of the net-
work motifs was evaluated by annotating the Pfam
domains to their respective biological processes. Func-
tional classes derived from this analysis were subse-
quently verified using ProtFun 2.2 prediction server [52].
Protfun approach is based on sequence features like
post-translational modifications and protein sorting for
protein function prediction. Protfun server assigns func-
tions to a protein by estimating the probability of it
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belonging to a functional class and odds values that
sequence of entry belong to that class/category. The
functional class with the highest score of probability and
odds for each hypothetical candidate genes was
considered.

Additional file 1: Prioritized 435 positional candidates by Wv + HRC
methods. The file contains the list of the 435 ranked positional
candidates with their clustering coefficients

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-2164-11-
84-S1.XLS]

Additional file 2: Number of overlaps and complementary genes
identified by different methods in the total dataset (5441
candidates). The file details the total number of genes identified by four
other prioritization methods and complementary set considering all the
5441 positional candidates

Click here for file
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Additional file 3: T2D linked markers selected for the study. The file
contains the details of the 108 markers linked with T2D curated from
literature considered for the study

Click here for file
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Additional file 4: Biological processes shown to be important in
T2D. The file provides the information for the biological pathways
involved in T2D from microarray based studies

Click here for file
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