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Abstract

Background: Identifying the bacteria and viruses present in a complex sample is useful in disease diagnostics,
product safety, environmental characterization, and research. Array-based methods have proven utility to detect in
a single assay at a reasonable cost any microbe from the thousands that have been sequenced.

Methods: We designed a pan-Microbial Detection Array (MDA) to detect all known viruses (including phages),
bacteria and plasmids and developed a novel statistical analysis method to identify mixtures of organisms from
complex samples hybridized to the array. The array has broader coverage of bacterial and viral targets and is based
on more recent sequence data and more probes per target than other microbial detection/discovery arrays in the
literature. Family-specific probes were selected for all sequenced viral and bacterial complete genomes, segments,
and plasmids. Probes were designed to tolerate some sequence variation to enable detection of divergent species
with homology to sequenced organisms, and to have no significant matches to the human genome sequence.

Results: In blinded testing on spiked samples with single or multiple viruses, the MDA was able to correctly
identify species or strains. In clinical fecal, serum, and respiratory samples, the MDA was able to detect and
characterize multiple viruses, phage, and bacteria in a sample to the family and species level, as confirmed by PCR.

Conclusions: The MDA can be used to identify the suite of viruses and bacteria present in complex samples.

Background
For microbial surveillance and discovery based on
nucleic acids from an uncharacterized sample, sequen-
cing provides the most in-depth and unbiased informa-
tion. However, the expense and time required for
sequencing using high throughput methods such as 454
(Roche), Solexa (Illumina), or SOLiD (Life Technologies)
can make these methods prohibitive for routine use,
especially when the resources required for data proces-
sing and analysis are taken into account. Viruses at low
concentration may be missed if coverage is insufficient,
and host sequence may make up 90% or more of the
reads [1]. At the other end of the cost spectrum, PCR
assays are very fast and sensitive, but have limited capa-
city for multiplexing (to test for the presence of several
organisms simultaneously). They are also intolerant of
primer-target mismatches; this is an advantage for
detecting a microbe whose sequence is precisely known,

but a great disadvantage for discovery of novel species,
or for detecting variant strains of a known species.
Microarrays span a middle ground between sequen-

cing and PCR, offering high probe density for detection
of diverse and possibly unexpected targets, costs in the
hundreds rather than thousands of dollars per sample,
and processing times on the order of 24 hours or less.
Arrays can be designed with a combination of detection
and discovery probes, which respectively target species-
specific regions (for precise characterization of known
pathogens), or more conserved regions (to enable detec-
tion of novel organisms with some homology to pre-
viously sequenced organisms). Compared to sequencing,
microarray analysis has the disadvantage that probes
designed from known sequences are unlikely to detect
truly novel organisms lacking homology to those
sequences. However, microbial genomes are difficult and
time-consuming to characterize when they have no
similarity to known sequences, so the ability of sequen-
cing to identify novel genomes has limited practical ben-
efit in a rapid diagnostic context.* Correspondence: slezak1@llnl.gov
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Microbial detection arrays provide an assessment of
known pathogens complementary to that provided by a
functional gene array, such as the array to detect viru-
lence and antibiotic resistance gene families described in
[2]. Detection arrays can tell what organisms are pre-
sent, while functional arrays can tell what capabilities
those organisms might possess. Together these tools
may be applied to detect antibiotic resistant or virulent
pathogen variants, natural chimeras, or genetically engi-
neered organisms with unusual gene content.
Detection/discovery microarrays have proven useful in

identifying or discovering viruses with homology to
known species [3-8]. They may thus be used to guide
the selection of a subset of samples for further analysis
by sequencing. Arrays can also be applied to study clini-
cal samples for which PCR diagnostics have been unin-
formative. Often, the cause of a clinically severe
infection is unknown, complicating the decision of
whether to treat with antibiotics, antivirals, or other
therapies. With optimization, and sufficiently high
pathogen titers, we have successfully generated array
results in as little as 2 hours (unpublished data). More-
over, arrays can assist in uncovering co-infections with
more than one organism. Microbial detection arrays can
also be used to check isolate stocks and vaccines for
adventitious contaminants [9]. Finally, arrays can be
used to assess the complexity of a metagenomic sample
to determine the desired depth for sequencing, poten-
tially saving costs on low complexity samples. Microar-
rays may reveal greater diversity in complex
environmental samples than sequencing of a typical
sized clone library [10]. Until the processing time and
cost of high throughput sequencing (including data ana-
lysis) decreases enough to be feasible for large numbers
of samples at sufficient depth, microarrays will continue
to be a valuable tool.
Several groups have designed microarrays containing

probes for microbial detection, discovery, or a combina-
tion of both [3-8,10-20]. Their approaches may be dis-
tinguished according to the range of pathogens targeted,
the probe design strategy, and the array platform used.
The ViroChip discovery array was one of the first to

target a broad range of pathogens; it is best known for
its role in characterizing SARS as a coronavirus [4,5,14].
It was designed by selecting probes from regions con-
served in the same family or genus based on BLAST
nucleotide sequence similarity, so that all complete viral
genomes available when it was designed (2002) were
represented by 3 probes. Later generations of the Viro-
Chip had 5-10 probes per genome and covered a larger
set of genomes; version 3 of the array included approxi-
mately 22,000 probes. It was fabricated using spotted
oligo technology, which limits the number of probes
that can be included on one array.

Chou et al. [11] designed conserved genus probes and
species specific probes covering 53 viral families and
214 genera, requiring two probes per virus. They
empirically tested a subset of 72 probes targeting the
coronavirus, flavivirus, and enterovirus families against
pure cultures of six species, although they did not exam-
ine clinical samples.
Palacios et al. [12] built the GreeneChipPm, an array

targeting vertebrate viruses and rRNA sequences of
fungi, bacteria, and protozoa, containing approximately
30,000 probes. It is an oligonucleotide array fabricated
using the Agilent ink-jet system. Viral probes were
designed to target a minimum of three genomic regions
for each family or genus, including at least one highly
conserved region coding for polymerase or structural
proteins, and two or more variable regions. Bacterial,
fungal and protozoan probes were exclusively designed
against variable segments of rRNA genes (16S for bac-
teria, 18S for eukaryotes), flanked by highly conserved
regions, so that the target regions could be amplified
with a small number of specific PCR primers. Other
groups have followed similar strategies for bacterial
array design [10,15-17]. The lack of any similar genes
universally conserved among viruses precludes using
this approach for viral target amplification.
Similar arrays designed by the same group include the

GreeneChipVr [3] (targeting viruses only) and the
GreeneChipResp [18] (targeting respiratory pathogens).
The GreeneChipPm array successfully identified viruses
at the species level, and was used to implicate Plasmo-
dium falciparum for an unexplained death. It performed
less well with bacterial samples, because probes against
the 16S rRNA variable regions frequently cross-
hybridized across taxa, so that some bacteria could only
be identified at family or class resolution.
Array design to fit all probes to span an entire king-

dom on a single microarray demands substantial invest-
ment in probe selection algorithms. Jabado et al. [19]
developed probe design software used to target con-
served amino acid regions in viruses using profile hid-
den Markov models and motif analysis, for which
uniqueness relative to non-targets was not a considera-
tion. To our knowledge, experimental data has not yet
been published for this array. Satya et al. [20] built a
software pipeline TOFI-beta for selecting target-specific
probes that are unique relative to a database of non-
targets, without requirements for conservation within a
set of multiple targets, and illustrated its application in
silico using two bacterial genomes.
In this study we describe a comprehensive, high-

density oligonucleotide array for detection and discovery
of bacteria and viruses. The large number of features on
this array, together with an efficient probe design strat-
egy, made it possible to cover all complete bacterial and
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viral genome sequences with a much larger number of
probes per target than previously reported array designs.
We discuss the process used for array design, and report
the results of testing the array against known mixtures
of DNA and RNA viruses, as well as a variety of clinical
(fecal, sputum, and serum) samples. We also present a
novel statistical algorithm for analysis of detection/dis-
covery arrays, which combines a predictive model of
probe hybridization with a greedy likelihood maximiza-
tion procedure to identify the combination of targets in
a complex sample that best explains the observed probe
intensity pattern.

Results
Array design
The array design process is diagrammed in Figure 1. In
designing probes for our array, we sought to balance the
goals of conservation and uniqueness, prioritizing oligo
sequences that were conserved, to the extent possible,
within the family of the targeted organism, and unique
relative to other families and kingdoms. The design pro-
cess is detailed in Methods, and summarized here.
We designed arrays with larger numbers of probes per

sequence (50 or more for viruses, 15 or more for bac-
teria) than previous arrays having only 2-10 probes per
target. The large number of probes per target was
expected to improve sensitivity, an important considera-
tion given possible amplification bias in the random
PCR sample preparation protocol, which could result in
nonamplification of genome regions targeted by some
probes [7]. All bacteria and viruses with sequenced gen-
omes available at the time we began the MDA v.1
design (spring 2007) were represented: ~38,000 virus
sequences representing ~2200 species, and ~3500 bac-
terial sequences representing ~900 species. Version 1 of
the array had only viral probes. A second version of the
array (MDA v.2) was designed using both viral and bac-
terial probes. Probes were selected to avoid sequences
with high levels of similarity to human, bacterial and
viral sequences not in the target family. Low levels of
sequence similarity across families were allowed selec-
tively, when the statistical model of probe hybridization
used in our array analysis predicted a low likelihood of
cross-hybridization.
Favoring more conserved probes within a family

enabled us to minimize the total number of probes
needed to cover all existing genomes with a high probe
density per target, enhancing the capability to identify
the species of known organisms and to detect unse-
quenced or emerging organisms. Strain or subtype iden-
tification was not a goal of probe design for this array.
Nevertheless, our ability to combine information from
multiple probes in our analysis made it possible to dis-
criminate between strains of many organisms.

The array design also incorporated a set of 2,600
negative control probes. These probes had sequences
that were randomly generated, but with length and GC
content distributions chosen to match those of the tar-
get-specific probes.

Modeling of probe-target hybridization
We developed a novel statistical method for detection
array analysis, by modeling the likelihood of the
observed probe intensities as a function of the combina-
tion of targets present in the sample, and performing
greedy maximization to find a locally optimal set of tar-
gets; the details of the algorithm are shown in Methods.
It incorporates a probabilistic model of probe-target
hybridization based on probe-target similarity and probe
sequence complexity, with parameters fitted to experi-
mental data from samples with known genome
sequences. To accurately determine the organism(s)
responsible for a given array result, the pattern of both
positive and negative probe signals is taken into
account. The algorithm is designed to enable quantifi-
able predictions of likelihood for the presence of multi-
ple organisms in a complex sample.
A key simplification used in this algorithm was to

transform the probe intensities to binary signal values
(“positive” or “negative”), representing whether or not
the intensity exceeds an array-specific detection thresh-
old. The threshold was typically calculated as the 99th

percentile of the intensities of the random control
probes on the array. The outcome variables in the likeli-
hood model are the positive signal probabilities for each
probe, given the presence of a particular combination of
targets in the sample. The resulting predictions are
more robust in the presence of noisy data, since the out-
come variable is a probability rather than the actual
intensity. Discretizing the intensities also led to consid-
erable savings of computation time and resources, which
are significant for arrays containing hundreds of thou-
sands of probes.
Although one might assume that reducing intensities to

binary values means discarding valuable information, the
log intensity distribution for a typical array (Figure 2)
shows that the actual information loss is much less than
expected. The figure shows separate density curves for
three classes of probes: those with BLAST hits to one of
the known targets in the sample ("target-specific”), those
without hits ("nonspecific”), and negative controls. A ver-
tical dashed line is drawn at the 99th percentile threshold
intensity. Log2 intensities for target-specific probes either
cluster with the control and nonspecific probes (when
they have low BLAST scores, usually), or approach the
maximum possible value (16). This occurs because detec-
tion array probes are designed for high sensitivity to low
target concentrations, so that probe intensities approach
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the saturation level whenever a probe has significant
similarity to a target in the sample. Therefore, the infor-
mation content of a probe signal is already reduced by
saturation effects.
Certain probes were found to be more likely than

others to yield positive signals, even when the sample
on the array was known to lack any targets with

sequences complementary to them. We observed that
this nonspecific hybridization occurs more often with
probes having low sequence complexity, i.e. long homo-
polymers and tandem repeats. One measure of the com-
plexity of a probe sequence is the entropy of its trimer
frequency distribution, which we compute as described
in Methods. To study whether the sequence entropy

Eliminate matches to non-target bacterial and viral families

Download target sequences in a family

Eliminate matches to human genome

Use primer3 to select candidate probes

Filter candidates based on entropy, Tm, etc.

Calculate entropy, Unafold Tm, homodimer, hairpin, and complement ∆G

Check for sufficient number candidates for each target in pool of 
filtered candidates, and allow unfiltered candidates when not enough

Blast each candidate probe in family against target family to 
find all matches of sufficient quality for probable hybridization

Rank candidates by number targets hit (conservation)

For each target, choose probes in rank order 
(most conserved first) that hit that target 

Tabulate targets hit and current number of probes for each target

Check if all targets have desired number of probes

Yes

Done, move to next family

No Add more probes in 
conserved rank order 
for targets with 
insufficient probes

Figure 1 Array design process diagram, illustrating the probe selection algorithm described in the text.
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could be used as a predictor of nonspecific hybridiza-
tion, we selected data from nine MDA v2 arrays for
which all sample components had known genome
sequences. We selected probes with no BLAST hits to
any of the known targets, grouped them by entropy into
equal sized bins, computed the positive signal frequency
(the fraction of probes with positive signals), converted

the frequency to a log-odds value, and plotted the log-
odds against the trimer entropy, as shown in Figure 3.
We also fit a logistic regression model for the probe sig-
nal as a function of entropy; a dashed line with the
resulting slope and intercept is shown in the plot. The
figure shows that the trimer entropy is an excellent pre-
dictor of the non-specific positive signal probability, and
that probes with low entropy are more likely to give
positive signals regardless of the target sequence.
While the nonspecific probe signal probability

depends on the probe sequence only, the target-specific
signal probability was assumed to be a function of both
the probe sequence and probe-target sequence similar-
ity. To determine an appropriate set of predictors for
the specific signal probability, given the presence of a
specific target, we BLASTed the probe sequences against
our database of target genomes, obtaining the best align-
ment (if any) for each probe-target pair. We then
derived various covariates from the probe-target align-
ment, including the alignment length, number of mis-
matches, bit score, E-value, predicted melting
temperature, and alignment start and end positions. We
tested all combinations of up to three covariates, using
logistic regression to fit models to data from samples
containing known targets, and performed leave-one-out
validation to find the combination with the strongest
predictive value. The best combination included three
covariates: (1) The predicted melting temperature, com-
puted as described in Methods; (2) the BLAST bit score
and (3) the alignment start position relative to the 5’
end of the probe. We expected the alignment start posi-
tion to have a significant effect, because we observed in
our previous work [2] that probe-target mismatches had
a weaker effect on hybridization if the mismatch was
closer to the 3’ end of the probe (nearer to the array
surface).

Likelihood maximization algorithm
To find a combination of targets whose presence in the
sample best explains the observed data, we used a
greedy algorithm to find a local maximum for the log-
likelihood, as described in Methods. We can think of
the likelihood maximization algorithm as an iterative
process, in which we first find the target that explains
the largest portion of the observed positive probe sig-
nals, while minimizing the number of negative probes
that would be expected to bind to the target. In each
subsequent iteration, we choose the target that explains
the largest part of the signal not already explained by
the first target, while again minimizing the number of
expected negative probes. The process continues until a
maximal portion of the observed probe signals are
explained, or for a specified maximum number of
iterations.
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Figure 2 Intensity distributions for an MDA v.2 array
hybridized to a spiked mixture of vaccinia virus and HHV6B,
for probes with and without target-specific BLAST hits and for
negative control probes. Vertical line: 99th percentile of negative
control distribution.
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Probe Counts Log Odds
1478.8438 expected

223 detected

Bovine viral diarrhea virus 1|BVI133738
Bovine viral diarrhea virus complete RNA

1443.7430 expected

215 detected
Bovine viral diarrhea virus 1 strain Singer_Arg

1441438 expected

222 detected

Bovine viral diarrhea virus 1 SD1
polyprotein gene

1478436 expected

223 detected
Bovine viral diarrhea virus 1

1426.8439 expected

221 detected

Bovine viral diarrhea virus 1|Bovine viral
diarrhea virus strain Oregon C24V

1420.9434 expected

220 detected
Bovine viral diarrhea virus 1|Pestivirus type 1

1253.7421 expected

215 detected

Bovine viral diarrhea virus 1|Pestivirus
type 1 noncytopathic genomic RNA

1215.9407 expected

211 detected

Bovine viral diarrhea virus 1|Pestivirus
type 1 cytopathic genomic RNA

1318437 expected

220 detected
Bovine viral diarrhea virus 1 strain KE9

1233.9434 expected

217 detected
Bovine viral diarrhea virus 1 strain ZM 95

1303.7437 expected

221 detected

Bovine viral diarrhea virus 1|Bovine viral
diarrhea virus VEDEVAC ORF1 for

1252.6435 expected

218 detected

Bovine viral diarrhea virus 1|Bovine viral
diarrhea virus 1

903.5412 expected

202 detected

Bovine viral diarrhea virus 2|Bovine viral
diarrhea virus genotype 2

919.6426 expected

203 detected
Bovine viral diarrhea virus 2 New York'93

904416 expected

201 detected

Bovine viral diarrhea virus 2| Bovine viral
diarrhea virus genotype 2 strain p11Q

889.8422 expected

199 detected

Bovine viral diarrhea virus 2| Bovine viral
diarrhea virus genotype 2 strain p24515

643.1856 expected

43 detected

Clostridium leptum|GF:648631
(Clostridium leptum DSM 753

623.6916 expected

41 detected

Anaerotruncus colihominis|GF:651056
(Anaerotruncus colihominis DSM

6281019 expected

58 detected

Clostridium scindens|GF:651069
(Clostridium scindens ATCC 35704

643.1856 expected

43 detected

Clostridium leptum|GF:636890
(Clostridium leptum DSM 753

Viral and Bacterial Families

Flaviviridae Clostridiaceae

Figure 4 MDA v2 results for a spiked sample of bovine viral diarrhea virus. Many of the same conserved probes that hybridize to BVDV
also match classical swine fever virus and Border disease virus, although these have a lower log-odds and so are not the “detected” organism,
which is labeled in red.
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The analysis results are typically visualized as shown
in Figures 4, 5, 6, 7, 8, 9, 10, and 11. The bar graphs in
the right-hand column show the initial and final log-
odds scores for the target genomes predicted to be pre-
sent (annotated in red boldface), together with the

highest-scoring targets in the same taxonomic families
as the predicted targets. The bars are divided into light
and dark shaded sections, corresponding to the initial
and final scores respectively. Bars with the same hue
correspond to targets in the same family.

Probe Counts Log Odds
1475.7444 expected

227 detected
Vaccinia virus strain Acambis clone 2000

1473.2444 expected

225 detected
Vaccinia virus (strain Tian Tan) complete genome

1473.2444 expected

225 detected

Vaccinia virus|raw sequence of Vaccinia
virus (strain Tian Tan) updated complete

1475.1454 expected

227 detected

Vaccinia virus (strain Lister) complete
genome from CDC on Apr 13 2005 3:03PM

1473.1448 expected

225 detected
Vaccinia virus strain Lister

1473.4444 expected

225 detected
Vaccinia virus strain LC16m8

1473.4444 expected

225 detected
Vaccinia virus strain LC16mO

1089.9296 expected

143 detected
Human herpesvirus 6B DNA, strain: HST

1088.4296 expected

141 detected
Human herpesvirus 6B

1058.6265 expected

134 detected
Human herpesvirus 6A

74146 expected

40 detected
Bacteriophage phiMFV1|Mycoplasma phage phiMFV1

699.665 expected

28 detected
Human endogenous retrovirus K115 complete genome

698.970 expected

28 detected
Human endogenous retrovirus K113 complete genome

616.6858 expected

71 detected

Mariprofundus ferrooxydans|GF:632951
(Mariprofundus ferrooxydans PV 1

592.195 expected

13 detected

candidate division TM7 isolate
TM7b|GF:636167 (candidate division

591.5641 expected

37 detected

Candidatus Ruthia magnifica str. Cm
(Calyptogena magnifica)

593.21011 expected

79 detected

marine gamma proteobacterium
HTCC2143|GF:630924 (marine

601.6952 expected

68 detected

gamma proteobacterium HTCC2207|GF:636223
(gamma proteobacterium HTCC2207 marine

601.5952 expected

68 detected

gamma proteobacterium HTCC2207|GF:632981
(marine gamma proteobacterium HTCC2207

616.6858 expected

71 detected

Mariprofundus ferrooxydans|GF:636226
(Mariprofundus ferrooxydans PV 1

Viral and Bacterial Families

Poxviridae
Herpesviridae

nonConformingViral
Retroviridae

nonConformingBacterial

Figure 5 MDA v.2 results for a spiked mixture of vaccinia virus and HHV6B.
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The bar graphs in the left-hand column represent expec-
tation (mean) values of the positive probe counts for each
target, given the presence of the corresponding target gen-
ome. The larger “expected” score is obtained by summing
the positive signal probabilities for all probes; the smaller

“detected” score is derived by limiting this sum to probes
having positive signals. Because probes often cross-hybri-
dize to multiple related genome sequences, the numbers
of “expected” and “detected” probes may greatly exceed
the number of probes that were actually designed for a

Probe Counts Log Odds
451.4270 expected

87 detected
Human Respiratory syncytial virus 9320

438.8224 expected

76 detected

Human respiratory syncytial virus sequence
from Genbank on 04/14/03 12:57

414.3277 expected

85 detected

Human respiratory syncytial virus strain
ATCC VR 26

412.5268 expected

82 detected
Human respiratory syncytial virus S2

254.5512 expected

50 detected
Human coronavirus HKU1 strain N25 genotype B

253.9512 expected

50 detected
Human coronavirus HKU1 genotype B

253.3512 expected

50 detected
Human coronavirus HKU1 strain N15 genotype B

246.6517 expected

50 detected
Human coronavirus HKU1 strain N21 genotype C

121.5382 expected

50 detected

 Influenza A virus (A/black headed
gull/Sweden/4/99(H16N3)) hemagglutinin (HA) gene

83.998 expected

9 detected

Influenza A virus (A/black
duck/AUS/4045/1980(H6N5)) segment 6

121.5382 expected

50 detected

 Influenza A virus (A/black headed
gull/Sweden/2/99(H16N3)) hemagglutinin (HA) gene

80.4233 expected

16 detected

 Influenza B virus (B/Memphis/13/03) PB1 (PB1)
gene

121.5382 expected

50 detected

 Influenza A virus (A/black headed
gull/Sweden/3/99(H16N3)) hemagglutinin (HA) gene

111408 expected

50 detected

 Influenza A virus (A/black headed
gull/Sweden/5/99(H16N3)) hemagglutinin (HA) gene

91.7133 expected

12 detected

Leek yellow stripe potyvirus genomic RNA for
partial nuclear inclusion protein and coat

46.7581 expected

33 detected
Pea seed borne mosaic virus complete genome

84.2377 expected

21 detected

HIV 1 isolate hypermutated VAU group O from
France

71.6410 expected

26 detected
HIV 1 isolate 98CMABB212 from Cameroon

66.8430 expected

28 detected
Human immunodeficiency virus type 1

55.7436 expected

20 detected

Simian immunodeficiency virus isolate
SIVcpzGAB2 complete genome

Viral and Bacterial Families

Paramyxoviridae 
Coronaviridae 

Orthomyxoviridae 
Potyviridae 

Retroviridae 

Figure 6 MDA v.1 results for a clinical induced sputum sample.
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given target organism. The probe count bar graphs are
designed to provide some additional guidance for inter-
preting the prediction results.

Testing on pure and mixed samples of known viruses
Several viruses with sequenced genomes (adenovirus type
7, respiratory syncytial virus [RSV], and bovine viral diar-
rhea virus [BVDV]) were each hybridized to MDA v.1

arrays in separate array experiments. Analysis of each
array identified the known virus as the highest scoring tar-
get (data not shown). Several mixtures of both RNA and
DNA viruses were also tested (Table 1). All spiked species
were detected in the mixture, including most of the seg-
ments of bluetongue virus (BTV). Strain discrimination
was not expected, since probes were designed from
regions conserved within viral families. Nevertheless, the

Probe Counts Log Odds
1254.9239 expected

231 detected
Hepatitis B virus clone dzc 12 from China

963.9175 expected

168 detected
Hepatitis B virus DNA, isolate: BOL196

743.4121 expected

120 detected
Hepatitis B virus (SUBTYPE ADW2), genotype A

400.773 expected

50 detected
Hepatitis B virus complete genome, isolate:IS1 OY

1181.3219 expected

214 detected
Hepatitis B virus DNA, isolate: UZNVC7M

1179.9218 expected

213 detected
Hepatitis B virus DNA, isolate: UZNVC7

1201.4233 expected

220 detected
Hepatitis B virus isolate TW836 genotype B

1234237 expected

227 detected

Hepatitis B virus subtype ADW genomic
DNA, clone: pODW282

1172.8223 expected

213 detected
Hepatitis B virus isolate BTO5856

1223.3234 expected

224 detected
Hepatitis B virus clone dzc 5 from China

1218.8233 expected

223 detected
Hepatitis B virus clone dzc 19 from China

1166.2221 expected

212 detected
Hepatitis B virus clone 221 15

1203.2229 expected

219 detected
Hepatitis B virus clone 220 42 from China

1192.7238 expected

217 detected
Hepatitis B virus isolate PW4

1203.4227 expected

219 detected
Hepatitis B virus isolate ph76

1150.2234 expected

209 detected
Hepatitis B virus isolate Ran128

1197.4248 expected

218 detected
Hepatitis B virus isolate PW3

1197249 expected

218 detected
Hepatitis B virus isolate PW1

185.83664 expected

61 detected

Plesiocystis pacifica|GF:636242
(Plesiocystis pacifica SIR 1

Viral and Bacterial Families

Hepadnaviridae Nannocystaceae

Figure 7 Clinical serum sample 1_5, provided by the DeRisi lab at UCSF, analyzed on MDA v.2.
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highest scoring targets in the single virus experiments with
adenovirus, BVDV, vaccinia and human herpesvirus 6B
(HHV6B) were in fact the strains hybridized to the arrays.
Human endogenous retrovirus K113 was also detected in
two of the three mixtures, possibly from host cell DNA.

For three samples tested, we compared the spiked strain
identities with those predicted by analyzing either 1) only
the LLNL probes versus 2) analyzing only the ViroChip
probes which were also included on the MDA. The LLNL
probes identified the correct Gomen strain of human

Probe Counts Log Odds
1216.6244 expected

102 detected
Human parechovirus 1 isolate BNI 788St

1171.5234 expected

100 detected

Human parechovirus 3 genomic RNA, isolate
Can82853 01

1165238 expected

100 detected
Human parechovirus 3 genomic RNA, strain:A308/99

1159.1235 expected

101 detected
Human parechovirus 4 isolate K251176 02

1068.3242 expected

99 detected

Human parechovirus 6 genomic RNA, strain:
NII561 2000

926.3223 expected

97 detected
Human parechovirus|Echovirus 23 strain CT86 6760

951.3237 expected

101 detected
Human parechovirus, genome

1028.81011 expected

116 detected
Streptococcus thermophilus LMD 9

918.344 expected

13 detected
Lactococcus lactis subsp. lactis plasmid pK214

919.2151 expected

40 detected

Streptococcus agalactiae NEM316
complete genome, segment 3

895.2205 expected

47 detected

Streptococcus agalactiae NEM316
complete genome, segment 1

901.8987 expected

86 detected

Streptococcus suis|GF:630895
(Streptococcus suis 89/1591

955.8977 expected

98 detected
Streptococcus suis 05ZYH33

936.91184 expected

107 detected
Streptococcus mutans UA159

954.3979 expected

97 detected
Streptococcus suis 98HAH33

917.41036 expected

100 detected
Streptococcus sanguinis SK36

9081077 expected

103 detected
Streptococcus gordonii str. Challis substr. CH1

949.2972 expected

97 detected
Streptococcus thermophilus LMG 18311

948.2997 expected

97 detected
Streptococcus thermophilus CNRZ1066

935.81507 expected

86 detected

Desulfatibacillum
alkenivorans|GF:648636

Viral and Bacterial Families

Picornaviridae Streptococcaceae Desulfobacteraceae

Figure 8 Clinical fecal sample 2_1, provided by the DeRisi lab at UCSF, analyzed on MDA v.2.
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adenovirus type 7 while the ViroChip probes identified the
correct species but the incorrect NHRC 1315 strain. In
another example, when RSV Long group A (an unse-
quenced strain) was hybridized to the array, the related
RSV strain ATCC VR-26 was predicted by MDA probes,
but the ViroChip probes failed to detect any RSV strain.

For the detection of BVDV Singer strain, both LLNL and
ViroChip probes were able to predict the exact strain
hybridized.
False negative error rates were estimated for MDA v.1

from experiments in which some or all of the viruses in
the sample had known genome sequences (Table 2), for

Probe Counts Log Odds
1477.71790 expected

276 detected
Escherichia coli CFT073

13651579 expected

214 detected
Escherichia coli E24377A

1392.51344 expected

229 detected
Shigella dysenteriae Sd197

1466.41571 expected

272 detected
Shigella flexneri 5 str. 8401

1470.81762 expected

276 detected

Escherichia coli 042  from Sanger on
Aug 24 2005 2:52PM

1413.61558 expected

237 detected
Escherichia coli HS

1388.41825 expected

283 detected

Escherichia coli|GF:630814
(Escherichia coli B171 Escherichia

1350.51831 expected

290 detected
Escherichia coli UTI89

908.5401 expected

77 detected

Norwalk virus|Norovirus
Hu/NLV/GII/Neustrelitz260/2000/DE from Germany

898409 expected

77 detected

Norwalk virus|Norwalk like virus genomic
RNA, isolate:Saitama U18

897.9412 expected

76 detected

Norwalk virus|Norwalk like virus genomic
RNA, isolate:Saitama U201

891.2425 expected

79 detected
Norwalk virus|Human calicivirus strain Mc37

934.1415 expected

53 detected
Dehalococcoides sp. CBDB1

956.3858 expected

84 detected

Mariprofundus ferrooxydans|GF:636226
(Mariprofundus ferrooxydans PV 1

954.5858 expected

84 detected

Mariprofundus ferrooxydans|GF:632951
(Mariprofundus ferrooxydans PV 1

997.5889 expected

97 detected

marine gamma proteobacterium
HTCC2080|GF:630923 (marine

993.7952 expected

89 detected

gamma proteobacterium HTCC2207|GF:632981
(marine gamma proteobacterium HTCC2207

994.6952 expected

89 detected

gamma proteobacterium HTCC2207|GF:636223
(gamma proteobacterium HTCC2207 marine

9571129 expected

111 detected

Endoriftia persephone|GF:637262
(Endoriftia persephone

970.71011 expected

103 detected

marine gamma proteobacterium
HTCC2143|GF:630924 (marine

974.41146 expected

96 detected

Reinekea sp. MED297|GF:630868 (Reinekea
sp. MED297 Reinekea sp. MED297, unfinished

Viral and Bacterial Families

Enterobacteriaceae Caliciviridae nonConformingBacterial

Figure 9 Clinical fecal sample 2_2, provided by the DeRisi lab at UCSF, analyzed on MDA v.2.
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probes that met our design criteria (85% identity and a
29 nt perfect match to one of the target genome
sequences). The RSV and BTV probes were excluded from
this estimate, as sequences were not available for the exact
strains used in the experiments. All 128 selected probes

had signals above the 99th percentile detection threshold,
yielding a zero false negative error rate.
To validate MDA v.2 with known spiked viruses,

BVDV type 1 (Figure 4) and a mixture of vaccinia Lister
and HHV 6B (Figure 5) were correctly identified to the

Probe Counts Log Odds
862.861 expected

51 detected
Chicken anemia virus isolate 3 1 from Malaysia

862.661 expected

51 detected
Chicken anemia virus isolate AH6 from China

861.261 expected

51 detected
Chicken anemia virus from China

86061 expected

51 detected
Chicken anemia virus isolate C14.~~

859.461 expected

51 detected
Chicken anemia virus isolate SMSC 1P9WT

859.261 expected

51 detected
Chicken anemia virus

8161678 expected

120 detected
Serratia proteamaculans 568

782.71468 expected

91 detected

Providencia stuartii|GF:649908
(Providencia stuartii ATCC 25827

802.91284 expected

107 detected
Sodalis glossinidius str. 'morsitans'

804.61579 expected

97 detected

Pectobacterium atrosepticum|Erwinia
carotovora subsp. atroseptica SCRI1043

768.71626 expected

128 detected

Erwinia chrysanthemi|GF:188098 (Erwinia
chrysanthemi NO STRAIN sequence from

803.81678 expected

121 detected

Serratia proteamaculans|GF:630880
(Serratia proteamaculans 568 Serratia

701.295 expected

14 detected

candidate division TM7 isolate
TM7b|GF:636167 (candidate division

717.1858 expected

53 detected

Mariprofundus ferrooxydans|GF:636226
(Mariprofundus ferrooxydans PV 1

721.51129 expected

68 detected

Endoriftia persephone|GF:637262
(Endoriftia persephone

7221011 expected

60 detected

marine gamma proteobacterium
HTCC2143|GF:630924 (marine

744.4952 expected

64 detected

gamma proteobacterium HTCC2207|GF:632981
(marine gamma proteobacterium HTCC2207

744.4952 expected

64 detected

gamma proteobacterium HTCC2207|GF:636223
(gamma proteobacterium HTCC2207 marine

739.9889 expected

67 detected

marine gamma proteobacterium
HTCC2080|GF:630923 (marine

Viral and Bacterial Families

Circoviridae Enterobacteriaceae nonConformingBacterial

Figure 10 Clinical fecal sample 2_3, provided by the DeRisi lab at UCSF, analyzed on MDA v.2.

Gardner et al. BMC Genomics 2010, 11:668
http://www.biomedcentral.com/1471-2164/11/668

Page 12 of 21



species level. Virus sequences selected as likely to be
present are highlighted in red in these figures. On the
vaccinia+HHV 6B array, human endogenous retrovirus
K113 was also detected. In addition, several organisms
that were unlikely to be present were predicted,

probably because of non-specific probe binding or
cross-hybridization. These organisms, Mariprofundus
ferrooxydans (a deep sea bacterium collected near
Hawaii), candidate division TM7 (collected from a sub-
gingival plaque in the human mouth), and marine

Probe Counts Log Odds
1676.61788 expected

319 detected
Staphylococcus aureus subsp. aureus Mu50

900.543 expected

19 detected

Staphylococcus aureus subsp. aureus
USA300_TCH959 plasmid pUSA300HOUMS

1676.51788 expected

319 detected
Staphylococcus aureus subsp. aureus Mu3

1585.21828 expected

317 detected
Staphylococcus aureus subsp. aureus str. Newman

1556.61344 expected

235 detected
Shigella dysenteriae Sd197

1053.7107 expected

55 detected
Escherichia coli plasmid pAPEC O2 ColV

890.733 expected

16 detected
Shigella sonnei Ss046 plasmid pSS046_spB

1544.21790 expected

264 detected
Escherichia coli CFT073

1542.21417 expected

246 detected

Shigella dysenteriae|GF:447836 (Shigella
dysenteriae M131649 from Sanger on Aug

1241.91036 expected

167 detected
Streptococcus sanguinis SK36

935.161 expected

29 detected
Lactococcus lactis plasmid pGdh442

877.814 expected

11 detected
Lactococcus lactis subsp. lactis plasmid pCI305

877.616 expected

10 detected
Lactococcus lactis plasmid pSRQ800

1252.7972 expected

170 detected
Streptococcus thermophilus LMG 18311

1251.8997 expected

170 detected
Streptococcus thermophilus CNRZ1066

1282.61011 expected

182 detected
Streptococcus thermophilus LMD 9

1232.6160 expected

118 detected

Staphylococcus aureus temperate
phage phiSLT|Staphylococcus phage phiSLT

1215.7145 expected

98 detected

Staphylococcus aureus bacteriophage
PVL|Staphylococcus prophage PVL

1244.5177 expected

114 detected

Staphylococcus aureus phage
phiNM|Staphylococcus phage phiNM

865.228 expected

12 detected
Enterococcus faecalis V583 plasmid pTEF3

10921450 expected

180 detected
Enterococcus faecalis V583

Viral and Bacterial Families
Staphylococcaceae
Enterobacteriaceae

Streptococcaceae
Siphoviridae

Enterococcaceae

Figure 11 Clinical fecal sample 2_4, provided by the DeRisi lab at UCSF, analyzed on MDA v.2.
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gamma-proteobacterium (collected in the coastal Pacific
Ocean at 10 m depth) were detected with low log-odds
scores on numerous experiments using different samples.
Genome sequences for these were not included in the
probe design because they became available only after we
designed the microarray probes or because they were not
classified into a bacterial taxonomic family; therefore
probes were not screened for cross-hybridization against
these targets. However, these sequences were included in
the analysis database, since this database included
sequences not classified as to bacterial family and it was
compiled a few months after the probes were designed.
Genome comparisons indicate that M. ferrooxydans,
TM7b, and marine gamma proteobacterium HTCC2143
share 70%, 55%, and 61%, respectively, of their sequence
with other bacteria and viruses, based on simply consid-
ering every oligo of size at least 18 nt also present in
other sequenced viruses or bacteria, so many of the
probes designed for other organisms may also hybridize
to these targets.

Testing on Blinded Samples from Pure Culture
Blinded samples were provided from collaborator Robert
Tesh at UTMB for 11 viruses. We hybridized each of
those samples separately to MDA v.2 and predicted the
identities of each virus (Table 3). Ten of 11 of the spe-
cies predicted by the MDA were confirmed by Dr. Tesh.

In addition, endogenous retroviruses were also detected
in 7 of the samples as well as the uninfected Vero cell
control, indicating the presence of host DNA from the
culture cells. These included one or more of the follow-
ing: Baboon endogenous virus strain M7 and human
endogenous retroviruses K113, K115, and HCML-ARV,
with human endogenous retrovirus K113 being the most
common. The one sample that we failed to detect on
the array was vesicular stomatitis virus, NJ (VSV NJ).
We confirmed that it was present in the sample using
two proprietary, unpublished TaqMan assays developed
by colleagues at LLNL and tested by LLNL colleagues at
Plum Island that specifically detect VSV NJ. There were
no complete genomes of VSV NJ available. Conse-
quently, we designed no probes for this species. Nor
was it included in our database for the statistical ana-
lyses. It is sufficiently different from the genomes avail-
able for VSV Indiana that none of those probes had
BLAST similarity to the partial sequences available for
VSV NJ. There were 7 probes from the ViroChip corre-
sponding to VSV NJ that were detected. These probes
were designed from partial sequences [4].

Detection of viruses and bacteria from clinical samples
We tested a clinical induced sputum sample provided to
us by the UCSF DeRisi lab on MDA v.1 (Figure 6), and
detected human respiratory syncytial virus and human

Table 1 Results of initial tests on MDA v.1

Mixture tested Detected Additionally detected

Adenovirus type 7 strain Gomen Yes Human endogenous retrovirus K113

Respiratory syncytial virus strain Long Yes Leek yellow stripe potyvirus

Bovine viral diarrhea virus type 1 strain Singer Yes

Respiratory syncytial virus strain B1 Yes None

Bluetongue virus type 2 Yes (segments 2,6,8,9,10)

Human herpesvirus 6B Yes Human endogenous retrovirus K113

Vaccinia virus strain Lister Yes Influenza A segment 8

Respiratory syncytial virus strain B1 Yes

Bluetongue virus type 2 Yes (segments 2,6,7,8,9,10)

Table 2 True positive/false negative counts for probes in MDA v.1 tests with sequenced viruses

Target Number of perfect match probes TP probes FN probes Percent FN error rate

Pure viral cultures:

Adenovirus type 7 Gomen 52 52 0 0.0

Bovine viral diarrhea virus (BVDV) 25 25 0 0.0

Mixture of viral cultures:

Human herpesvirus 6B 14 14 0 0.0

Vaccinia virus Lister strain 37 37 0 0.0

Total 51 51 0 0.0%

Overall 128 128 0 0.0%

Gardner et al. BMC Genomics 2010, 11:668
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coronavirus HKU1. We confirmed the results using spe-
cific PCR for these two viruses (Additional file 1). The
results were also confirmed by the DeRisi lab using the
ViroChip. The MDA results indicated small log-odds
scores for influenza A, leek yellow stripe potyvirus, and
HIV-1, although these low scores are a result of just a
few probes and are likely due to nonspecific binding
rather than true positives. Other samples tested using
MDA v.1 also had low scoring predictions for Influenza
A and Leek yellow stripe potyvirus (see Table 1), which
we suspect were due to non-specific binding.
Closer examination of probes giving high signal inten-

sities that were not consistent with the “detected” organ-
isms showed that there were some “sticky” probes that
seemed to bind non-specifically. On the MDA v.2 array,
we noted that 141 probes were detected in a majority
(31 out of 60) of arrays hybridized to a wide variety of
sample types. A small number of these probes were
found to have significant BLAST hits to the human gen-
ome. Since most of the samples tested on the array
were either human clinical samples or were grown in
Vero cells (an African green monkey cell line), the fre-
quent high signals for these few probes can be explained
by the presence of primate DNA in the sample. The
vast majority of sticky probes, however, were not
explained by cross-hybridization to host DNA. We did
note significant differences between sticky and non-
sticky probes in the distributions of trimer entropy and
hybridization free energy; sticky probes had smaller
entropies (mean 4.6 vs 4.8 bits, p = 7.5 × 10 -14) and
more negative free energies (mean -70.5 vs -66.8 kcal/
mol, p = 3.8 × 10 -13) compared to 1755 non-sticky
probes detected in 11 or fewer samples. Consequently,
in v.2 of the chip design, we imposed an entropy filter
as described in the methods, and additionally designed
more probe sequences at the expense of the number of
replicates per probe.

We tested partially amplified clinical samples provided
by Joe DeRisi’s laboratory at UCSF on MDA v.2. The
source (e.g. fecal or serum) was blinded during our ana-
lyses, but was provided later: sample 1_5 from serum
(Figure 7), and the rest from fecal sources (Figures 8, 9,
10, and 11). No patient history was provided. A strong
signal indicating the presence of hepatitis B virus was
detected in sample 1_5 (Figure 7). In all the remaining
samples, signals were detected for a mixture of both
viruses and bacteria, many of which are known to be
associated with gastrointestinal distress. All of the
organisms detected by the array were confirmed by PCR
except Serratia proteamaculans in sample 2_3 and the
E. coli pAPEC O2-ColV plasmid in sample 2_4 (Addi-
tional file 1) In some cases, multiple species in a genus
have similarly high log-odds ratios, suggesting that a
member of that genus is likely to be present, but the
MDA cannot make a definitive call as to which species.
For example, signals for multiple Streptococcus species
were detected in sample 2_1 (Figure 8). We expect that
this pattern could arise in cases where a novel unse-
quenced isolate from the genus is present, in cases
where conservation at the genus level is sufficiently high
that the conserved probes do not provide species discri-
mination, or when multiple related organisms are pre-
sent. Since the probes were selected from conserved
regions within a family, the array was not designed for
stringent species or strain discrimination. In sample 2_3
(Figure 10) we saw a strong signal for the presence of
chicken anemia virus which was confirmed by PCR.
This circovirus infects chickens, pointing to a dietary
influence on the components of this human fecal sam-
ple. It is similar to the recently discovered and wide-
spread human TT virus and TTV-like mini virus
(TLMV) [21]. Other studies have also found viruses
from food in fecal samples [22]. Phage are also com-
monly detected in feces, particularly when sample pre-
paration enriches for phage, for example, by purification

Table 3 Results of blinded testing on viral isolate samples from Robert Tesh at University of Texas, Medical Branch

ID Culture results Array results

— Vero cells not infected Background signal

TVP-11180 Punta Toro Punta Toro virus strain Adames

TVP-11181 Thogoto Thogoto virus strain IIA

TVP-11182 Dengue 4 Dengue 4 strain ThD4_0734_00

TVP-11183 CTF Colorado tick fever virus

TVP-11184 Cache Valley Cache Valley genome RNA for N and NSs proteins

TVP-11185 Ilheus Ilheus virus

TVP-11186 EHD-NJ Epizootic hemorrhagic disease virus isolate 1999_MS-B NS3

TVP-11187 La Crosse La Crosse virus strain LACV

TVP-11188 SF Sicilian Sandfly fever Sicilian virus

TVP-11189 VSV-NJ Not detected

TVP-11191 Ross River Ross River virus

Gardner et al. BMC Genomics 2010, 11:668
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in a cesium chloride gradient [23]. We did not do any
gradient purification for phage enrichment, and
although we detected more signals from bacteria than
from the bacteriophage that infect those bacteria, we did
detect signals for Staphylococcus aureus phage as the
viral component of sample 2_4, as well as signals that
its host bacteria was present (Figure 11).

Discussion
We report on a high density oligo microarray and statis-
tical analysis method that has detected viral and bacter-
ial sequences from single DNA and RNA viruses and
mixtures thereof, various clinical samples, and blinded
cell culture samples provided to us by our collaborators.
Results from clinical samples were validated using PCR.
The MDA v.2 has higher probe density and larger phy-
logenetic representation of viral and bacterial sequenced
genomes than other published array designs. It can be
applied to problems in viral and bacterial detection from
pure or complex environmental or clinical samples. It
may be particularly useful to widen the scope of search
for microbial identification when specific PCR fails, as
well as to identify co-infecting organisms.
The analysis method described here differs in several

key ways from previous statistical approaches to analyze
microbial detection arrays, such as E-Predict [24] and
GreeneLAMP [12]. E-Predict compares a probe intensity
vector for each array against a theoretical hybridization
free energy vector for each sequence in a target data-
base, both normalized to unit length, using the Pearson
correlation coefficient. Significance values are assigned
to the correlation scores by comparing them against an
empirical distribution derived from over 1,000 array
experiments. To handle samples that may contain a
mixture of organisms, there is an iterative version of
E-Predict, which, after identifying the most likely target
on an array, sets the intensities of the probes matching
the target to zero, computes new correlation coefficients,
and repeats the identification process. Since it requires a
corpus of data from previous experiments with the same
array design, E-Predict cannot be applied to new, proto-
type array designs. E-Predict also has limited applicability
to complex samples, in which several closely related
strains of the same species may be present.
The GreeneLAMP algorithm [12] assigns probes to

target taxa using BLAST alignments, and computes a
p-value for each probe intensity by performing a z-test
against a log-normal distribution. Intensities are first
background-corrected, using data from a matched con-
trol array when available, or random control probes on
the same array otherwise. The parameters of the distri-
bution are inferred from the intensities of all probes on
the array, under the assumption (usually justified) that
only a small fraction of probes will hybridize to the

target on the array. Probes are categorized as positive or
negative by comparing their p-values against a fixed
threshold. The p-values for the positive probes asso-
ciated with each taxon are then multiplied, and an
aggregate p-value computed for the product, using the
method of Bailey [25]. Finally, candidate taxa are ranked
by the aggregate p-value. The GreeneLAMP method
depends heavily on the assumption that probe intensities
are independent measurements of target genome abun-
dances, which is not always justified. An iterative version
of the method has not been reported to date; this makes
it inappropriate for identifying mixtures of organisms in
a sample, since the output of the algorithm is a single
ranked list of taxa
The MDA array design and accompanying analysis

algorithm have been found to perform well in identify-
ing mixtures of known pathogens. In cases where a sam-
ple contains an organism that has not been sequenced
(or whose sequence is not in our analysis database), but
is sufficiently similar to other sequenced microbes, the
analysis will identify multiple related organisms most
similar to the one in the sample. Similar results will be
seen when the sample DNA is degraded or low in con-
centration, so the analysis cannot determine that a novel
or unsequenced organism is present. Therefore, users of
the MDA will need to interpret the data in the context
of what else is known about the sample, to determine
whether the predicted organisms are exact matches to
known species or are novel but with some similarity to
other sequenced microbes. Highly novel targets with no
similarity to genomes in the database or probes on the
array will not be detected. The failure of the MDA to
detect VSV NJ in pure culture illustrates this well, and
highlights a shortcoming of our approach to use only
complete genomes to design the array. Future versions
of the array will include all available sequence data,
including partial sequences and gene fragments, for spe-
cies lacking complete genomes. Modified statistical algo-
rithms will then be required to deal with sequence
length bias when partial genomes are included in the
database. Most importantly, as new sequence data
becomes available from newly discovered or newly
sequenced organisms, the MDA must be updated with
probes to detect them. We are currently designing Ver-
sion 3 of the MDA to address these issues, probing both
partial and complete bacterial and viral sequences, as
well as fungi and some protozoa.

Conclusions
The MDA is a tool to identify viral and bacterial organ-
isms present in simple or complex samples. We have
demonstrated the capability of the array and our statisti-
cal methods to identify multiple bacteria and viruses in
clinical samples and verified results with PCR.
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Improvements are suggested for the design of future
detection arrays, and continued updates to incorporate
probes for newly sequenced microbes will be required.

Methods
Probe design for family level characterization
Figure 1 summarizes our array design process. We
downloaded all complete genomes, segments, and plas-
mid sequences, organized by family, for all bacteria and
viruses, from NCBI Genbank, Integrated Microbial
Genomics (IMG) project at the Joint Genome Institute,
The Comprehensive Microbial Resource (CMR) at the
JC Venter Institute, and The Sanger Institute in the
United Kingdom, with some additional proprietary
whole-genome data from collaborators. We included
only bacteria under the superkingdom Bacteria (eubac-
teria) taxonomy node at NCBI, and did not include the
Archaea. Sequence data was current as of the time that
probe design began for a given probe set: 34,625 viral
target sequences on April 25, 2007 (viral probes, v.1),
38,402 viral target sequences on October 29, 2007 (viral
probes, v.2), and 3,477 bacterial target sequences on July
12, 2007 (bacterial probes, v.2). These represented 2195
viral species and 924 bacterial species.
Probes were selected from whole genomes, without

regard to gene locations or identities, letting the
sequences themselves determine the best signature
regions and preclude bias by pre-selection of genes. In
prior work, we have found that the length of longest
perfect match (PM) is a strong predictor of hybridiza-
tion intensity, and that for probes at least 50 nt long,
PM ≤ 20 bp have signal less than 20% of that with a
perfect match over the entire length of the probe. [2]
This is similar to results from a systematic study of viral
probe hybridization characteristics by [7]. Therefore, for
each target family we eliminated regions with perfect
matches to sequences outside the target family. Using the
suffix array software Vmatch [26], perfect match subse-
quences of at least 17 nt long present in non-target viral
families or 25 nt long present in the human genome or
nontarget bacterial families were eliminated from consid-
eration as possible probe subsequences. Sequence simi-
larity of probes to non-target sequences below this
threshold was allowed, but could be accounted for using
the statistical algorithm described below.
From these family-specific regions, we designed probes

50-66 bases long for one family at a time using the
methods described in [2]. Probes were sufficiently long
(50-66 bases) to tolerate some sequence variation,
although slightly shorter than the 70-mer probes used
on previous arrays [4,11,12] because of the additional
synthesis cycles, and therefore cost, of making 70-mers
on the NimbleGen platform. Long probes improve
hybridization sensitivity and efficiency, alleviate

sequence-dependent variation in hybridization, and
improve the capability to detect unsequenced microbes.
Quantifying the microbe load was not a goal of this
array; sensitive detection of microbe presence was the
aim, facilitated by the higher sensitivity of longer probes.
As in [2], we generated candidate probes using MIT’s

Primer3 software [27], followed by Tm and homodimer,
hairpin, and probe-target free energy (ΔG) prediction
using Unafold [28]. Candidate probes with unsuitable
ΔG’s or Tm’s were excluded as described in [2]. Desir-
able range for these parameters was 50 ≤ length ≤ 66,
Tm≥80°C, 25% ≤ GC% ≤ 75%, ΔGhomodimer = ΔG of
homodimer formation > 15 kcal/mol, ΔGhairpin = ΔG of
hairpin formation > -11 kcal/mol, and ΔGadjusted =
ΔGcomplement - 1.45 ΔGhairpin - 0.33 ΔGhomodimer ≤ -52
kcal/mol. For the v2 array design, which includes bacter-
ial probes, an additional minimum sequence complexity
constraint was enforced, requiring a trimer frequency
entropy of at least 4.5 (calculation described below). If
fewer than a minimum number of candidate probes per
target sequence passed all the criteria, then those cri-
teria were relaxed to allow a sufficient number of probes
per target. To relax the criteria, first candidates that passed
the Primer3 criteria but failed the Unafold filters were
allowed. If no candidates passed the Primer3 criteria, then
regions passing the target-specificity (e.g. family specific)
and minimum length constraints were allowed. From
these candidates, we selected probes in decreasing order of
the number of targets represented by that probe (i.e.
probes detecting more targets in the family were chosen
preferentially over those that detected fewer targets in the
family), where a target was considered to be represented if
a probe matched it with at least 85% sequence similarity
over the total probe length, and a perfectly matching sub-
sequence of at least 29 contiguous bases spanned the mid-
dle of the probe. For probes that tied in the number of
targets represented, a secondary ranking was used to favor
probes most dispersed across the target from those probes
which had already been selected to represent that target.
The probe with the same conservation rank that occurred
at the farthest distance from any probe already selected
from the target sequence was the next probe to be chosen
to represent that target.
The MDA v.1 array contained probes representing all

complete viral genomes or segments associated with a
known viral family, with at least 15 probes per target
(Table 4). It did not include unclassified targets not
designated under a family. On the v.2 array, every viral
genome or segment was represented by at least 50
probes, totaling 170,399 probes, except for 1,084 viral
genomes that were not associated under a family-ranked
taxonomic node ("nonConforming sequences”). These
had a minimum of 40 probes per sequence totaling
12,342 probes. There were a minimum of 15 probes per
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bacterial genome or plasmid sequence, totaling 7,864
probes on the v.2 array. Bacterial genomes that were not
associated under a family-ranked taxonomic node were
not included in the array design.
On both MDA v.1 and v.2, as controls for the presence of

human DNA/mRNA from clinical samples, we designed
1,278 probes to human immune response genes. For tar-
gets, the genes for GO:0009615 ("response to virus”) were
downloaded from the Gene Ontology AmiGO website
http://amigo.geneontology.org, filtering for Homo sapien
sequences. There were 58 protein sequences available at the
time (July 12, 2007), and from these, the gene sequences of
length up to 4× the protein length were downloaded from
the NCBI nucleotide database based on the EMBL ID num-
ber, resulting in 187 gene sequences. Fifteen probes per
sequence were designed for these using the same specifica-
tions as for the bacterial and viral target probes.
We designed ~2,600 random control sequences that

were length and GC% matched to the target probes on
MDA v.1 or v.2. These had no appreciable homology to
known sequences based on BLAST similarity, and were
used to assess background hybridization intensity. These
were designed by calculating the fraction f(L, g) of detec-
tion probes with length = L and GC% = g, and simulating
f(L, g) times the number of random probes desired ran-
dom sequences of length L and GC% g for each L, g
observed in the detection probes. In addition, we also
included on the v.1 and v.2 arrays the 21,888 probes from
the ViroChip version 3 from University of California San
Francisco [4,14,24,29] downloaded from http://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GPL3429. We note
that additional probe sets may be added to meet unique
needs of specific customers, not discussed further here.

Sample preparation and microarray hybridization
DNA microarrays were synthesized using the Nimble-
Gen Maskless Array Synthesizer at Lawrence Livermore
National Laboratory as described [2]. Adenovirus type 7

strain Gomen (Adenoviridae), respiratory syncytial virus
(RSV) strain Long (Paramyxoviridae), respiratory syncy-
tial virus strain B1, bluetongue virus (BTV) type 2 (Reo-
viridae) and bovine viral diarrhea virus (BVDV) strain
Singer (Flaviviridae) were purchased from the National
Veterinary lab and grown at our laboratory. Purified
DNA from human herpesvirus 6B (HHV6B) (Herpesviri-
dae) and vaccinia virus strain Lister (Poxviridae) were
purchased from Advanced Biotechnologies (Maryland,
VA). 11 blinded viral culture samples were received
from Dr. Robert Tesh’s lab at University of Texas Medi-
cal Branch at Galveston (UTMB). The viral cultures
were sent to LLNL in the presence of Trizol reagent.
After treatment with Trizol reagent, RNA from cells was

precipitated with isopropanol and washed with 70% etha-
nol. The RNA pellet was dried and reconstituted with
RNase free water. 1 μg of RNA was transcribed into dou-
ble-strand cDNA with random hexamers using Super-
script™ double-stranded cDNA synthesis kit from
Invitrogen (Carlsbad, CA). The DNA or cDNA was
labeled using Cy-3 labeled nonamers from Trilink Bio-
technologies and 4 μg of labeled sample was hybridized to
the microarray for 16 hours as previously described (Jaing
et al., 2008). Clinical samples that had been extracted and
partially purified using Round A and Round B protocols
(Wang et al, 2003) were obtained from Dr. Joseph DeRisi’s
laboratory at University of California, San Francisco
(UCSF). The samples were amplified for an additional 15
cycles to incorporate aminoallyl-dUTP and labeled with
Cy3NHS ester (GE Healthcare, Piscataway, NJ). The
labeled samples were hybridized to NimbleGen arrays.
Data have being submitted to the Gene Expression

Omnibus (GEO) database http://www.ncbi.nlm.nih.gov/
geo/ accession number GSE24700.

PCR for confirmation
Clinical samples from the DeRisi laboratory were tested
by PCR to confirm the microarray results. PCR primers

Table 4 Summary of array design: Probe counts

Number of Probes Probe Description

Version 1

36497 Viral detection probes (15 probes/seq from each taxonomic family)

20736 ViroChip probes

1278 human viral response genes

3000 random controls

Version 2

170399 Viral probes (50 probes/seq from each taxonomic family) × 2 replicates

12342 nonConforming viruses (not associated w/ taxonomic family, 40 probes/seq)

7864 bacterial probes (15/seq)

20736 ViroChip probes

1278 human viral response genes

2651 random controls
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were designed using either the KPATH system [30] or
based on the probes that gave a positive signal for the
organism identified as present, and the primer
sequences are proved as Additional file 1. PCR primers
were synthesized by Biosearch Technologies Inc
(Novato, CA). 1 μL of Round B material was re-ampli-
fied for 25 cycles and 2 μL of the PCR product was
used in a subsequent PCR reaction containing Platinum
Taq polymerase (Invitrogen), 200 mM primers for
35 cycles. The PCR condition is as follows: 96°C, 17 sec,
60°C, 30 sec and 72°C, 40 sec. The PCR products were
visualized by running on a 3% agarose gel in the pre-
sence of ethidium bromide.

Statistical analysis
For each array hybridization, we transformed the probe
intensities Iik (for probe i on an array hybridized to sam-
ple k) to binary values Yik, representing whether Iik
exceeds an array-specific detection threshold. The
threshold was typically calculated as the 99th percentile
of the intensities of the negative control probes.
We developed simple logistic models to predict two

conditional probabilities: the probability of observing
Yik = 1 given the presence of a specific microbial target
in sample k, and the probability of observing Yik = 1
given no complementary targets. The predictors for the
specific probability P(Yik = 1 | target j is present) were
derived by BLASTing probe i’s sequence against target
j’s genome, with an E-value threshold of 0.1, and choos-
ing the highest scoring alignment for the probe-target
pair. The BLAST bit score Bij and the probe alignment
start position Qij were extracted directly from the
BLAST output; the melting temperature Tij was com-
puted according to the formula Tij = 69.4°C + (41 NGC -
600)/L, where L is the length of the alignment and NGC

is the number of G or C bases in the alignment.
The entropy Si of the probe sequence trimer distribu-

tion was computed by counting the numbers of occur-
rences nAAA, nAAC, ..., nTTT of the 64 possible trimers in
the probe sequence, and dividing by the total number of
trimers, yielding the corresponding frequencies fAAA, ...,
fTTT. The entropy is then given by:

S f fi t t

t ft

= −
≠

∑  log 2

: 0

where the sum is over the trimers t with ft ≠ 0. We
estimate the nonspecific signal probability with a logistic
model:

P Y

a a S

ik

i

( | )

exp[ ( )]

=

=
+ − +

1

1
1 0 1

no target present

We then model the specific probe signal probability by
a logistic function in which the linear predictor com-
bines both nonspecific and target-specific terms:

P Y j
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ik

j ij ij
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=
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1
1 0 1 2 3 4

target  present

iij)]

To fit the parameters a0 through a4 in the above mod-
els, we ran array experiments using samples of viruses
and bacteria with known genome sequences, computed
the covariates Si, Tij, Bij, and Qij, and performed logistic
regression against the observed outcomes.
To apply this model to samples containing unknown

targets, we performed an exhaustive BLAST search for
every probe on the array against a comprehensive data-
base of complete microbial genome sequences. We then
computed the covariates Bij, Tij, and Qij for each target
on the array, for all probes having significant BLAST
hits (E-value < 0.1) against the target.
The conditional probe signal probabilities are then

combined to compute a likelihood function for the pre-
sence of a particular target, given the observed probe
signals on an array. In the likelihood function, we
assume that the probe signals are independent of one
another, conditioned on the sample composition. Let X
= (X1, X2, ..., Xm) be a vector of target presence indica-
tors, where Xj = 1 if target j is present and 0 if not. The
conditional likelihood of Xj given the observed data Y
can then be written:

L X Y

P Y X P Y X

j

i j

i Y

i j

i Yi i

( ; )

( | ) ( | )
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= =
= =

∏ ∏1 0
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(4)

where the individual probe-target signal probabilities
are given by:
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When multiple targets may be present, an approxima-
tion is used to compute the probe signal probabilities:
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Here we assume that the probability of obtaining a
negative signal for a probe depends only on the set of

Gardner et al. BMC Genomics 2010, 11:668
http://www.biomedcentral.com/1471-2164/11/668

Page 19 of 21



targets that are assumed to be present, and that we can
estimate the probability by multiplying the probabilities
conditioned on the presence of the individual targets.
To find a combination of target presence indicators

X that best explains the observed data, we use a greedy
algorithm to find a local maximum for the log-likelihood.
The algorithm is initialized by placing all candidate tar-
gets in an “unselected” list U, and creating an empty
“selected” list S. The following steps are then iterated
until the algorithm terminates:
1. Compute the conditional log-odds score lj for each

target j Î U:

 j
i j k

i j ki Y

P Y X X k S

P Y X X k S
i

=
= = = ∀ ∈
= = = ∀ ∈

+

=
∑ log 

l

( | , )

( | , )
:

1 1 1

1 0 1
1

oog 
P Y X X k S

P Y X X k S
i j k

i j ki Yi

( | , )

( | , )
:

= = = ∀ ∈
= = = ∀ ∈

=
∑ 0 1 1

0 0 1
0

lj is the log of the ratio of the likelihood of the data, if
target j is added to S, to its likelihood if j is not added.
When this step is performed for the first time, the
selected list S will be empty, so the computed log-odds
score for target j will not be conditioned on the
presence of any other targets. We store this “initial” log-
odds score lj(i) for later display.
2. Choose the target j that yields the largest value of

lj, remove it from list U, and add it to the end of list S.
We store the value of this “final” score lj(f) for each tar-
get in S.
3. Repeat steps 1 and 2 until there is no target in U

that yields a positive value for the conditional log-odds
score (i.e., that increases the log-likelihood).
The result of this analysis is an ordered series S of tar-

get genomes predicted to be present, together with a
pair of scores for each target in S. The initial score lj(i)

is its log-odds from the first iteration; that is, the log of
the ratio of the likelihood with target j present to the
likelihood with no targets present. The final score lj(f) is
the contribution of target j to the log likelihood at the
time that it was selected, assuming the presence of all
the targets that were selected prior to j.
The analysis algorithm is implemented in the Python

language, except for plotting which is performed using
the R programming environment. The software is avail-
able on request from the authors.

Additional material

Additional file 1: Primer sequences and product sizes used to
confirm the array results from clinical samples.
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