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Genes optimized by evolution for accurate
and fast translation encode in Archaea and
Bacteria a broad and characteristic spectrum
of protein functions
Conrad von Mandach1, Rainer Merkl2*

Abstract

Background: In many microbial genomes, a strong preference for a small number of codons can be observed in
genes whose products are needed by the cell in large quantities. This codon usage bias (CUB) improves
translational accuracy and speed and is one of several factors optimizing cell growth. Whereas CUB and the
overrepresentation of individual proteins have been studied in detail, it is still unclear which high-level metabolic
categories are subject to translational optimization in different habitats.

Results: In a systematic study of 388 microbial species, we have identified for each genome a specific subset of
genes characterized by a marked CUB, which we named the effectome. As expected, gene products related to
protein synthesis are abundant in both archaeal and bacterial effectomes. In addition, enzymes contributing to
energy production and gene products involved in protein folding and stabilization are overrepresented. The
comparison of genomes from eleven habitats shows that the environment has only a minor effect on the
composition of the effectomes. As a paradigmatic example, we detailed the effectome content of 37 bacterial
genomes that are most likely exposed to strongest selective pressure towards translational optimization. These
effectomes accommodate a broad range of protein functions like enzymes related to glycolysis/gluconeogenesis
and the TCA cycle, ATP synthases, aminoacyl-tRNA synthetases, chaperones, proteases that degrade misfolded
proteins, protectants against oxidative damage, as well as cold shock and outer membrane proteins.

Conclusions: We made clear that effectomes consist of specific subsets of the proteome being involved in several
cellular functions. As expected, some functions are related to cell growth and affect speed and quality of protein
synthesis. Additionally, the effectomes contain enzymes of central metabolic pathways and cellular functions
sustaining microbial life under stress situations. These findings indicate that cell growth is an important but not the
only factor modulating translational accuracy and speed by means of CUB.

Background
The composition of genes coding for ribosomal pro-
teins and translation elongation factors is highly biased
in many genomes [1]. This codon usage bias (CUB) is
due to a preference for a species-specific set of codons,
which are named major codons. Their particular choice
depends on the genomic GC-content and can be
explained by amino acid specific rules [2]. Beginning

with pioneering work in the 1980s, it has been demon-
strated convincingly that major codons are more accu-
rately and more efficiently recognized by the most
abundant tRNA species [3-10]. These findings support
the hypothesis that major codons are used preferen-
tially in genes coding for proteins required by the cell
in large quantities (see [10] and references therein). A
further analysis of microbial genomes made clear that
CUB is one of several factors to optimize cell growth:
Species exposed to selection for rapid growth possess
more rRNA operons, more tRNA genes and use major
codons more frequently [11,12]. Additionally it turned
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out that CUB is the best determinant of minimum gen-
eration time [13].
Based on different measures of CUB, the occurrence

and function of translationally optimized gene pro-
ducts has been studied (see e.g. [14,15] and references
therein) and compiled e.g. for Escherichia coli [16],
Frankia [17], or Yeast [18]; however, most reports
lack a statistical assessment. Broad multi-species ana-
lyses of 27 [19] and 461 microbial genomes [20]
aimed at identifying preferred functional categories
among codon-optimized genes.
In the following, we report a phylogenetic- and habi-

tat-specific analysis of a particular set of 388 microbial
genomes. We found that gene products being optimized
for translational efficiency in the course of evolution
contribute to protein synthesis, energy production, and
protein folding. Compared to Bacteria, translational effi-
ciency is less pronounced in Archaea and restrained to a
smaller number of gene functions. In most cases, the
function of translationally optimized gene products is
only marginally affected by the habitat.

Results and Discussion
The GCB-approach constitutes a quantitative measure of
translational efficiency for a broad range of genomes
A number of measures for CUB have been used to pre-
dict translationally efficient genes in microbial genomes
(e.g. [1,21-28]). Generally, H1-methods [21] are more
suitable to determine the bias associated with transla-
tional efficiency than other approaches [29]. A recent
comparison of several measures has shown that two
H1-methods, namely the MELP algorithm [30] and the
GCB-approach [31], have the most consistent behaviour
for predicting the expression level of individual
genes [30]. The GCB-approach, which we utilize in the
following, is based on CB-scores determined species-
specifically for each codon; see Methods. We first com-
puted these scores for the 912 microbial entries of the
NCBI RefSeq database which consists of a curated and
non-redundant collection of reference genomes [32].
We have implemented a web-server (accessible via
http://www-bioinf.uni-regensburg.de) that calculates for
a gene sequence the GCB-score for a wide variety of
microbial species. GCB-scores take positive and negative
values; the more positive a score is, the higher is the
fraction of major codons in the considered gene.
The numbers of rRNA genes, of tRNA genes, and the

genome-wide strength of CUB are highly correlated
[11,13]. In order to confirm that GCB-values quantify
strength of CUB on the genome level as well, we corre-
lated mean values and the number of tRNA genes in
analogy to [11]. The GCBEff -value was determined for
each genome (see Methods) and taken as a measure for
the species-specific strength of CUB. To minimize the

risk of false positive classification when identifying
translationally optimized genes, we selected those 388
genomes showing a marked CUB (see Additional file 1,
Table S1 for a listing and Methods for the selection pro-
cedure). A plot of these 388 values versus the species-
specific number of tRNA genes is shown in Figure 1A.
A Spearman rank correlation confirmed for the
GCBEff -values and the number of tRNA genes a statis-
tically significant correspondence (rs = 0.71, p < 0.001),
which is stronger than the one deduced from S values
[11], an alternative measure of CUB. For 113 of these
388 species the minimum generation time is listed in
[13]. A plot of these numbers versus GCBEff -values is
shown in Figure 1B. Again, a Spearman rank correlation
confirmed a statistically significant correspondence (rs =
-0.75, p < 0.001), which is stronger than the one pub-
lished elsewhere [13]. Most likely, the stronger correla-
tion is in both cases due to our focusing on genomes
showing a marked CUB.
We conclude from these findings and previous results
[30,31] that the GCB-approach allows us to quantify
strength of CUB in a consistent manner for a broad
range of genes and genomes and to identify translation-
ally optimized genes. Note that we use the term “trans-
lationally optimized” for genes showing a marked CUB.
As we did not correlate CUB values and mRNA concen-
trations for a larger set of species, the term optimization
as used here is not necessarily related to the expression
level of a gene.
In the following, we name the subset of an individual

proteome constituted by genes with a GCB-value ≥ 0.0
the effectome and the above-introduced set of 388
microbial genomes showing a pronounced codon usage
bias MG_CUB. Subsets selected for a specific habitat are
named MG_CUB(subset); e.g., MG_CUB(Bacteria_TH)
comprises the genomes of 13 thermophilic Bacteria
belonging to MG_CUB.
In a previous study [19] M. Carbone has aimed at

characterizing the set of genes deemed to be essential
for any given bacterial species. In this context, the set of
species-specific genes possessing a marked CUB has
been named functional genomic core. Although the
approach of identifying translationally optimized genes
is similar to ours, we did not utilize this term for two
reasons: 1) The concept of a genomic core has been
coined to address the set of intrinsically conserved
genes of a phylogenetic group like Archaea (see e.g. [33]
and references therein). Thus, the above term might be
misinterpreted. 2) Irrespective of the strength of CUB
within an individual genome, those 200 genes showing
strongest CUB have been analyzed in [19]. In contrast, a
species-specific effectome consists of a gene set whose
size and composition is exclusively determined by CUB
and a well-defined cut off.

von Mandach and Merkl BMC Genomics 2010, 11:617
http://www.biomedcentral.com/1471-2164/11/617

Page 2 of 12

http://www-bioinf.uni-regensburg.de


Figure 1 shows for Bacteria that the strength of CUB
varies markedly among species. A comparison of
GCBEff -values makes clear that taxonomical position
and lifestyle affect the bias: The GCBEff -values of meso-
philic and thermo-/hyperthermophilic Archaea are simi-
lar; the means are 0.070 and 0.074, respectively. In
contrast, CUB of psychrophilic/mesophilic Bacteria is
higher than that of thermophilic species. The means are
0.10 and 0.06, respectively, and a Mann-Whitney rank
sum test signaled the statistically significant difference
of the two GCBEff -distributions (p = 0.003). These find-
ings indicate that CUB is less pronounced in Archaea
and strongest in mesophilic and psychrophilic Bacteria.
As pointed out in [13], these differences are most

likely due to the dependence of enzyme activity on tem-
perature and might explain CUB in Bacteria. At higher
temperature, diffusion increases, viscosity and activation
energy decreases, which both facilitate rapid reactions.
Therefore, selective strength on CUB is presumably
weaker for thermophilic species. In analogy, stronger
CUB might be necessary for psychrophilic species to
reach a tolerable growth rate.
Species for which speed and efficiency of growth and

replication were strong selective forces during evolution
are characterized by a high number of tRNA genes [11].
As we expected the widest range of protein functions in
the related effectomes, we selected for further analysis
those 37 bacterial genomes possessing more than 90

tRNA genes. The composition of the respective subset
MG_CUB(Bacteria_HITR) is listed in Additional file 1,
Table S2. The mean GCBEff -value of this set is 0.15
and indicates a strong selective pressure. Concordantly,
the mean of minimum generation times for those 14
species of MG_CUB(Bacteria_HITR) listed in [13] is 48
min, which is significantly lower than the mean (more
than 8 hours) deduced from the whole list.
Depending on the methods used to assess CUB, differ-

ent fractions of CUB genes have been identified. It has
been reported that CUB can be detected in ~28% [34],
~50% [35], ~70% [11], or ~100% [20] of microbial gen-
omes. In the light of these findings, our choice of ~42%
of the genomes was a more conservative approach. Here
we decided in agreement with [11] and suggest that the
lifestyle of a microbe determines the strength of CUB.
For species which we did not consider due to a small
GCBEff -value, we assumed the relative unimportance of
exponential growth.

The effectomes encode a broad and specific range of
gene functions
Each analysis of a single proteome reveals a small num-
ber of translationally optimized gene products. However,
to identify general trends that can be subjected to statis-
tical analyses, one has to explore several genomes
and to link the contribution of individual gene products
to a more general description of cellular functions.

Figure 1 A plot of GCBEff -scores versus the number of tRNA genes and the minimum generation time for microbial species. Panel
A: For 388 microbial species constituting the set MG_CUB the number of tRNA genes and the GCBEff -score was determined as described
and plotted. A Spearman rank correlation confirms the statistically significant correlation of these two values (rs = 0.71, p < 0.001). Panel B: The
minimum generation time for 113 species of MG_CUB (as listed in [13]) was plotted versus the GCBEff -score. A Spearman rank correlation
confirms the statistically significant correlation of these two values (rs = -0.75, p < 0.001).
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To achieve a multi-level categorization of gene products,
we utilized Gene Ontology terms [36] in combination
with the classification system of FunCat [37].
Gene Ontology (GO) terms allow the description of

gene products by means of a strict vocabulary organized
in a hierarchical way. However, assessing the most granu-
lar GO-terms used to annotate genes is inappropriate for
our purposes: E.g. in E. coli, the GO-term “DNA binding”
(GO:0004803) is an attribute of transposases, the DnaK
suppressor protein, subunits of the DNA polymerase III,
elements of prophages, transcription activators, and heli-
cases. Therefore, it is difficult to interpret the overrepre-
sentation of this term in a biologically meaningful way.
An overrepresentation of the GO-term “RNA binding” in
the effectomes is most probably related to the abundance
of ribosomal proteins. These examples demonstrate that
higher-level descriptions of gene functions have to be
exploited to deduce biologically meaningful results. As an
alternative to the analysis of a GO slim (a set of higher
level GO-terms) we decided to utilize FunCat categories.
FunCat [37] is a functional annotation scheme for the
systematic classification of proteins from whole genomes.
Utilizing FunCat has an important advantage over
GO-terms: As the number of categories needed to classify
effectomes is low, we could compare the full composition
of the effectomes and the whole genomes by means of
robust statistical tests.
For an analysis, we deduced for each gene-product

GO-terms, mapped them onto high-level FunCat cate-
gories and assessed their abundance. Relative frequencies

of each category were determined both for a complete
dataset MG_CUB(subset) and the respective effectomes.
To quantify the abundance of a category Cat within a set
of effectomes, we computed the term AbundEff(Cat) which
is the log-odds ratio of relative frequencies (see Methods).
An AbundEff(Cat) value above zero indicates that Cat is
overrepresented in the effectomes, a value below zero sig-
nals an underrepresentation. To this end, we determined
for the set of all archaeal and all bacterial genomes Abun-
dEff-scores for FunCat categories of level 1, which is the
most abstract level of describing protein functions. Results
are plotted in Figure 2 and listed in Table 1. These differ-
ences in the composition of the effectomes and the under-
lying whole-genome datasets are statistically significant as
confirmed by a chi-square test (p < 0.001).
The comparison of AbundEff-values indicates a trend

towards the translational optimization of several sys-
temic functions. In the following, the number of FunCat
categories is given in brackets after their name. As
expected, proteins contributing to “protein synthesis”
(12) are a major element of the effectomes. In addition,
the category “energy” (2) is overrepresented. These find-
ings show that effectomes are to a great extent com-
posed of proteins being related to cell growth and
energy production. However, the underrepresentation of
“metabolism” (1) and of “transcription” (11) indicates
that there is no general trend to optimize translational
efficiency of all functions related to cell growth. The
categories “cellular communication/signal transduction
mechanism” (30), “transposable elements, viral and

Figure 2 Abundance of metabolic functions in archaeal and bacterial effectomes. For all FunCat categories of level 1, the AbundEff-values
were deduced from the datasets MG_CUB(Archaea) and MG_CUB(Bacteria). Positive scores indicate categories overrepresented in the effectomes.
Underrepresented categories have negative values. The categories are numbered according to the FunCat scheme: “metabolism” (1), “energy” (2),
“cell cycle and DNA processing” (10), “transcription” (11), “protein synthesis” (12), “protein fate (folding, modification, destination) “ (14),
“regulation of metabolism and protein function” (18), “cellular transport, transport facilitation and transport routes” (20), “cellular communication/
signal transduction mechanism” (30), “cell rescue, defense and virulence” (32), “interaction with the environment” (34), “transposable elements,
viral and plasmid proteins” (38), “cell fate” (40), “development (systemic) “ (41), “biogenesis of cellular components” (42), “subcellular location” (70).
AbundEff-values were plotted if the number #All(Cat) was at least 100 (compare Table 1).
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plasmid proteins” (38) and “regulation of metabolism
and protein function” (18) have lowest AbundEff-values.
Most likely, due to their uncritical cellular concentra-
tion, elements of regulatory processes (categories 18 and
30) do not undergo optimization of translational effi-
ciency. The codon usage of transposable elements (cate-
gory 38) and of alien genes is frequently not optimized
for their host [38] which explains most likely their
underrepresentation in the effectomes. Alternatively, we
utilized COG-categories [39] for high level classification
because of their different approach of grouping genes.
Results are listed in Additional file 1, Table S3 and con-
firm the general trends. In summary, the analysis reveals
a consistent tendency, which is at the systemic level
independent of taxonomical position: Both in Archaea
and in Bacteria, translationally optimized genes are
involved in protein synthesis; additionally they contri-
bute to various cellular functions as e.g. to energy
production.

The habitat has a minor effect on the composition of the
effectomes
To study the impact of the habitat on the composition of
effectomes, we determined AbundEff-values for the set of
all archaeal and all bacterial effectomes, for MG_CUB(Bac-
teria_HITR) and for subsets of hyperthermophilic, ther-
mophilic, mesophilic, psychrophilic, aquatic, terrestrial,

host-associated, aerobic, anaerobic, non-halophilic, and
moderately halophilic Archaea or Bacteria contributing to
MG_CUB, if the subset contained at least seven genomes;
see Additional file 1, Table S4. For a more detailed analysis
of the effectomes and to corroborate the overrepresenta-
tion of specific functions not detectable at FunCat level 1,
we determined AbundEff-values for FunCat categories of
level 2 and compiled them in Additional file 2. Table 2
lists for 12 habitats categories overrepresented in at least
one subset of archaeal or bacterial effectomes. In agree-
ment with the above findings, sub-categories related to
“protein synthesis” (12.01, 12.04, 12.07) are overrepre-
sented in archaeal and bacterial effectomes. Additionally,
specific functions belonging to “protein folding and stabili-
zation” (14.01) are overrepresented both in bacterial and
archaeal effectomes. Compared to Bacteria, archaeal effec-
tomes contain a smaller number of gene products related
to energy production. In bacterial effectomes enzymes
being parts of “glycolysis and gluconeogenesis” (2.01) and
of the “tricarboxylic-acid pathway (citrate cycle, Krebs
cycle, TCA cycle)” (2.10) are the dominating elements of
energy production. All other protein functions are less
overrepresented in bacterial effectomes. As expected,
AbundEff-values of bacterial genomes being most opti-
mized for cell growth [represented by MG_CUB(Bacter-
ia_HITR)] are in many cases most extreme (compare
Table 2) and deviate in some cases from general

Table 1 Abundance of functional categories (FunCat level 1) in archaeal and bacterial effectomes

Archaea Bacteria

FunCat Category Description #Eff(Cat) #All(Cat) AbundEff #Eff(Cat) #All(Cat) AbundEff

1 Metabolism 594 15495 -0.21 15948 461317 -0.24

2 Energy 110 1508 0.07 5129 47263 0.25

10 Cell cycle and DNA processing 30 2557 -0.73 1775 116118 -0.60

11 Transcription 32 2746 -0.73 2587 105731 -0.39

12 Protein synthesis 1006 3576 0.65 29446 67653 0.86

14 Protein fate (folding, modification, destination) 91 2106 -0.16 2502 71643 -0.24

18 Regulation of metabolism and protein function 8 395 -0.48 61 8494 -0.95

20 Cellular transport, transport facilitation and transport routes 160 3798 -0.17 5551 155592 -0.23

30 Cellular communication/signal transduction mechanism 0 931 -2.23 138 37418 -1.22

32 Cell rescue, defense and virulence 27 590 -0.13 1026 24273 -0.16

34 Interaction with the environment 21 548 -0.21 1059 26204 -0.17

38 Transposable elements, viral and plasmid proteins 0 68 - 23 5107 -1.13

40 Cell fate 0 9 - 76 6919 -0.72

41 Development (systemic) 0 2 - 3 385 -0.30

42 Biogenesis of cellular components 13 1235 -0.77 1271 83665 -0.60

70 Subcellular localization 191 3511 -0.06 8601 175358 -0.09

Sum: 2283 39075 75196 1393140

For archaeal and bacterial genomes, the number of gene products contributing to FunCat categories was determined. The column labeled #All(Cat) gives the
number of genes deduced from the whole dataset. The column labeled #Eff(Cat) gives the number of genes belonging to the respective effectomes. The column
AbundEff lists the ratio log(fEff (Cat)/fAll(Cat)) for the category, if #All(Cat) was at least 100. In all other cases a trend is given indicated by a “-” for
underrepresentation. The line labeled Sum lists the number of genes being analyzed.
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tendencies. In summary, a comparison of the AbundEff-
values indicates two general trends: 1) The composition of
archaeal effectomes is focused on a smaller number of sys-
temic gene functions. 2) The habitat has only a minor effect
on effectome composition. Figure 3 illustrates the latter
finding for nine bacterial habitats: In nearly all cases, the
strength of over- or underrepresentation is similarly high.

A paradigmatic case: The effectome composition of
bacterial genomes being strongly optimized for cell
growth
In order to analyze effectome composition on the level
of individual gene products, we used the eggNOG data-
base [40], which consists of functionally annotated clus-
ters of orthologous genes (COGs) [39]. Additionally, we

mapped enzymes onto reference pathways of the KEGG
database [41]. To study a prominent example, we ana-
lyzed the effectomes of those Bacteria which show
strongest signals of translational optimization [the set
MG_CUB(Bacteria_HITR)]. The composition of these
effectomes is compiled in Additional file 3; respective
identifiers for the eggNOG and KEGG database are
listed in Additional file 4. Some examples that substanti-
ate the broad range of gene functions contributing to
these effectomes are given in the following list, which is
sorted according to FunCat categories and annotated
according to eggNOG.
Glycolysis and gluconeogenesis (2.01)
Enolases, which are essential for the degradation of car-
bohydrates via glycolysis; other enzymes of central

Table 2 Functional categories (FunCat level 2) and their abundance in archaeal and bacterial effectomes

FunCat
Category

Description Archaea Bacteria

HT MS AQU ANE AB TH MS PS AQU TER HOA AER ANE NHAL MHAL HITR

2.01 Glycolysis and gluconeogenesis + -0.32 -0.01 -0.17 0.49 0.34 0.52 0.42 0.44 0.51 0.46 0.35 0.55 0.56 0.36 0.60

2.04 Glyoxylate cycle x x x x 0.20 + 0.20 + 0.20 0.45 -0.12 0.30 + 0.34 + -0.78

2.07 Pentose-phosphate pathway - - - - 0.00 -0.32 0.00 0.03 -0.03 0.12 -0.12 -0.26 0.09 0.04 0.23

2.08 Pyruvate dehydrogenase
complex

x x x x 0.35 - 0.40 + + + 0.40 0.08 x 0.60 + 0.73

2.09 Anaplerotic reactions x x x x 0.48 + 0.48 + + + + 0.60 + + + 0.00

2.10 Tricarboxylic-acid pathway
(citrate cycle, Krebs cycle, TCA
cycle)

x + + x 0.49 + 0.50 0.40 0.51 0.58 0.37 0.58 0.43 0.49 0.46 0.39

2.11 Electron transport and
membrane-associated energy
conservation

0.10 0.30 0.10 0.25 0.28 0.18 0.28 0.21 0.32 0.37 0.22 0.31 0.21 0.26 0.28 0.25

2.30 Photosynthesis x x x x -0.12 - -0.12 x -0.12 0.33 -0.48 -0.60 + -0.48 x -0.30

2.45 Energy conversion and
regeneration

+ 0.29 + + 0.32 0.19 0.31 0.30 0.39 0.44 0.23 0.39 0.17 0.29 0.27 0.33

12.01 Ribosome biogenesis 0.79 0.85 0.79 0.82 1.03 0.92 1.04 1.00 1.07 1.06 0.94 1.05 1.00 1.07 1.08 1.10

12.04 Translation 0.63 0.66 0.62 0.65 0.84 0.73 0.85 0.82 0.88 0.87 0.75 0.86 0.81 0.87 0.90 0.91

12.07 Translational control + + + + 0.68 + 0.68 + 0.64 + 0.65 0.75 + 0.74 + 0.75

12.10 Aminoacyl-tRNA synthetases - - - - -0.32 - -0.32 - - - - - - - - 0.21

14.01 Protein folding and stabilization + 0.46 + + 0.45 0.53 0.47 0.35 0.46 0.55 0.36 0.48 0.46 0.46 0.50 0.52

32.07 Detoxification + - + + 0.09 0.20 0.09 0.10 0.11 0.20 -0.01 0.09 0.00 0.12 0.15 0.26

34.01 Homeostasis + - + + 0.09 -0.02 0.11 0.02 0.13 0.12 0.03 0.07 0.10 0.07 0.02 0.22

34.05 Cell motility - + 0.08 0.01 -0.04 -0.08 -0.02 -0.22 -0.25 0.16 0.17 0.12 0.06 -0.09 -0.38 -0.50

42.33 Pilus/fimbria x x x x 0.00 0 0.00 + + 0 -0.40 0.18 - 0.00 + 0.00

70.03 Cytoplasm x x x x 0.02 -0.07 0.03 0.03 0.04 0.08 -0.02 0.05 -0.01 0.04 0.05 0.10

70.27 Extracellular/secretion proteins + - + + 0.34 + 0.36 + 0.18 0.22 0.39 0.28 0.40 0.44 + 0.26

70.34 Prokaryotic cell envelope
component

x x x x 0.05 x 0.07 0.02 0.01 0.04 0.09 -0.04 -0.14 0.17 0.07 0.12

For archaeal and bacterial genomes, the number of gene products contributing to FunCat categories of level 2 was determined (see Methods). The columns lists
the ratio log(fEff (Cat)/fAll (Cat)) for the categories, if #All(Cat) was at least 100 (compare Table 1). In all other cases a trend is given indicated by a “+” for
overrepresentation, a “-” for underrepresentation and a 0 for a score value of 0.0. An “x” indicates categories not occurring in the respective dataset.
Abbreviations of subsets: AB all Bacteria, HT hyperthermophilic, TH thermophilic, MS mesophilic, PS psychrophilic, AQU aquatic, TER terrestrial, HOA host-
associated, AER aerobic, ANE anaerobic, NHAL non halophilic, MHAL moderately halophilic species, and HITR the subset of bacterial species possessing an
extreme number of tRNA genes, i.e. MG_CUB(Bacteria_HITR).
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pathways like glyceraldehyde-3-phosphate dehydrogen-
ase/erythrose-4-phosphate dehydrogenase; fructose/taga-
tose bisphosphate aldolase; the pyruvate/2-oxoglutarate
dehydrogenase complex; triosephosphate isomerase;
3-phosphoglycerate kinase.
Tricarboxylic-acid pathway (citrate cycle, Krebs cycle, TCA
cycle) (2.10)
The succinyl-CoA synthetase.
Electron transport and membrane-associated energy
conservation (2.11)
Elements of the F0F1-type ATP synthase.
Ribosome biogenesis (12.01)
All ribosomal proteins of both subunits.
Translation (12.04)
Translation initiation factors 1, 2, 3; translation elonga-
tion factors Tu, Ts, P; the ribosome recycling factor;

aminoacyl-tRNA synthetases (see 12.1); ribosomal pro-
teins (see 12.01).
Translational control (12.07)
Bacterial nucleoid DNA-binding protein.
Aminoacyl-tRNA synthetases (12.1)
Synthetases transferring 16 different amino acids occur
in the effectomes. The missing tRNA synthetases are
related to Gln, His, Cys and Trp.
Protein folding and stabilization (14.01)
Several proteins involved in protein folding and stabili-
zation like chaperones; the peptidyl-prolyl cis-trans iso-
merase (rotamase), which accelerates the folding of
proteins; the parvulin-like peptidyl-prolyl isomerase,
which plays a major role in protein secretion; the pro-
tease subunit of ATP-dependent Clp proteases, which
are important for the degradation of misfolded proteins;

Figure 3 Habitat specific abundance of metabolic functions in bacterial effectomes. For FunCat categories of level 2, the AbundEff-values
were deduced for specific bacterial subsets. Scores larger than zero indicate categories overrepresented in the effectomes. Underrepresented
categories have negative values. The categories are numbered according to the FunCat scheme: “amino acid metabolism” (1.01), “secondary
metabolism” (1.20), “extracellular metabolism” (1.25), “glycolysis and gluconeogenesis” (2.01), “glyoxylate cycle” (2.04), “pentose-phosphate pathway”
(2.07), “pyruvate dehydrogenase complex” (2.08), “anaplerotic reactions” (2.09), “tricarboxylic-acid pathway (citrate cycle, Krebs cycle, TCA cycle)” (2.10),
“electron transport and membrane-associated energy conservation” (2.11), “metabolism of energy reserves (e.g. glycogen, trehalose)” (2.19), “oxidation
of fatty acids” (2.25), “photosynthesis” (2.30), “energy conversion and regeneration” (2.45), “DNA processing “ (10.01), “RNA synthesis” (11.02), “RNA
processing” (11.04), “RNA modification” (11.06), “ribosome biogenesis” (12.01), “translation” (12.04), “translational control” (12.07), “aminoacyl-tRNA
synthetases” (12.10), “protein folding and stabilization” (14.01), “protein targeting, sorting and translocation” (14.04), “protein modification” (14.07),
“protein/peptide degradation” (14.13), “transmembrane signal transduction” (30.05), “stress response” (32.01), “disease, virulence and defense” (32.05),
“cellular sensing and response to external stimulus” (34.11), “prokaryotic cell envelope structures” (42.34), “fungal/microorganismic cell type
differentiation” (43.01), “cell wall” (70.01). AbundEff -values were plotted if the number #All(Cat) was at least 100. Abbreviations of subsets: AB all, TH
thermophilic, MS mesophilic, PS psychrophilic, AER aerobic, ANE anaerobic, AQU aquatic, TER terrestrial, MHAL moderately halophilic bacteria, and HITR
the subset of Bacteria possessing an extreme number of tRNA genes represented by MG_CUB(Bacteria_HITR).
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the cell division GTPase, which is essential for the cell-
division process.
Detoxification (32.07)
Superoxide dismutase, destroying radicals which are
normally produced within the cells and which are toxic
to biological systems.
Homeostasis (34.01)
The DNA-binding ferritin-like protein, which protects
DNA from oxidative damage.
Cytoplasm (70.03)
Cold shock proteins, inhibiting DNA replication at both
initiation and elongation steps; the pleiotropic transcrip-
tional repressor, which represses the expression of many
genes that are induced as cells make the transition from
rapid exponential growth to stationary phase; elements
of the glycine cleavage system, which catalyzes the
degradation of glycine; glycine/serine hydroxymethyl-
transferase, which supports the interconversion of serine
and glycine; nucleoside diphosphate kinase, which is
involved in the synthesis of nucleoside triphosphates
other than ATP; adenylosuccinate synthase, which
belongs to the de novo pathway of purine nucleotide
biosynthesis; several outer membrane proteins.
The mapping of enzymes belonging to FunCat cate-

gories 2.01, 2.10, and 2.11 onto KEGG reference path-
ways makes clear that all enzymes constituting the core
of the glycolysis/gluconeogenesis pathway and the TCA
cycle are elements of these effectomes; see Additional
file 5, Figure S1 and Additional file 6, Figure S2.

The analysis of multiple genomes allows a fine grained
correlation of CUB and gene functions
Due to the small number of CUB genes being identified
in a single genome, former analyses of individual gen-
omes or small sets of related species (see e.g. [14]) could
identify only a small set of individual gene functions
being translationally optimized. These results have been
confirmed by [19,20] and our findings. These three
multi-species analyses agree in detecting an overrepre-
sentation of translationally optimized genes in central
metabolic functions like in protein synthesis or energy
production. However, for other high level functions,
some findings presented here and in [19] or [20] differ.
Considering individual genes, many of our results

coincide with the outcome of [19], which is based on a
smaller set of genomes. This is also true for less pro-
nounced gene functions like the elements of the photo-
synthesis system of Synechocystis, the role of ferredoxin
in Pyrococcus abyssi and the central enzymes of
methane metabolism in Methanosarcina acetivorans. In
contrast, all proteins involved in acetoclastic methano-
genesis [42] do not belong to the effectome of M. aceti-
vorans, as their GCB-value is ≤ -0.03. The conclusions
drawn on the level of metabolic pathways are contrary

in some cases, too. For example, in the effectomes of
Archaea and Bacteria elements of the transcription
apparatus (FunCat category 11) and of transmembrane
signal transduction (FunCat category 30.05) are signifi-
cantly underrepresented, which is in contrast to the pos-
tulated composition of functional genomic cores [19].
Our approach regards a metabolic function as transla-
tionally optimized only if more than the expected num-
ber of related genes shows a marked CUB. It is a matter
of debate whether CUB in a small number of related
genes is sufficient to declare a whole metabolic process
as translationally optimized.
A recently published study [20] has been based on a

machine learning approach for the identification of
genes possessing an optimized codon usage (OCU). At
mean, the considered genomes have contained 13.2% of
OCU genes, in extreme cases, 33% of the genomic con-
tent has been OCU. These genes have been utilized to
corroborate the enrichment or depletion of metabolic
functions which have been characterized by means of
GO-terms. In contrast, the effectomes analyzed here, are
much smaller: 86% of the effectomes are constituted by
at most 5% of the respective genomic content; only four
Borrelia species possess effectomes containing more
than 25% of their genes. Despite these differences in the
amount of CUB genes, the outcomes of both studies
overlap to a great extent considering high-level meta-
bolic functions. For example, “electron transport and
membrane associated energy conservation” (FunCat
category 2.11) and the respective GO-term “ATP synth-
esis coupled proton transport” were reported as overre-
presented. The same is true for functions related to
protein folding and elements of energy production like
the TCA cycle. Both studies identify an underrepresen-
tation of functions related to “DNA repair” and “inor-
ganic ion transport” (see Additional file 1, Table S3). On
the other hand, an enrichment of functions related to
antibiotic biosynthesis, nitrogen fixation and of iron-
sulfur cluster assembly has only been observed among
OCU genes.
Most interestingly, both analyses made clear that the

habitat has only a little effect on the set of translation-
ally optimized genes. The habitat-specific analyses did
not identify an additional translationally optimized high-
level metabolic function. However, considering more
specific functions, some habitat-specific findings differ.
For example, the overrepresentation of aminoacyl-tRNA
synthetases was only identified for MG_CUB(Bacteria_-
HITR). Most plausible, these disparities as well as
those of enrichment/depletion factors are due to the
approach-specific choice of analysed gene sets: Effec-
tomes contain exclusively genes showing a marked CUB
found in a small set of genomes whereas OCU genes
are larger subsets of genomes and have been recruited
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from a larger set of species. This might e.g. explain why
the overrepresentation of genes related to bacterial chro-
matin is much lower in the effectomes than among
OCU genes. The ratios of enrichment factors are 1.34/
6.43 for Fis, 1.27/6.21, for IHF, and 1.64/3.82 for Dps,
respectively. On the other hand, the maximal enrich-
ment factor for GO-terms among bacterial OCU genes
is 8.3. In bacterial effectomes “ribosomal biogenesis” is
overrepresented more than 10-fold and “cellular com-
munication” and “transposable elements, viral and plas-
mid proteins” are depleted more than 10-fold. These
differences suggest as future work a more detailed analy-
sis of translationally optimized genes categorized
according to the individual strength of CUB.

The analysis of effectomes contributes to a more detailed
understanding of critical conditions in microbial life
Most of our knowledge about molecular biology and the
physiology of microorganisms has been deduced from
batch culture, chemostats, and turbidostats. However,
this state of balanced growth is completely unnatural for
practically all microbes [43]. In many natural habitats
nutrients and energy supplies are limited most of the
time. This is why microbes exist in a continuous state of
starvation and are in addition competing with other
microorganisms for survival. It is difficult to simulate
such situations in wet-lab experiments.
In contrast, CUB is the result of selection that shapes

individual genomes on an evolutionary timescale. Thus,
analysing CUB allows the identification of cellular func-
tions requiring the optimization of translational effi-
ciency in the natural environment. This is why the
composition of the effectomes indicates critical elements
of metabolic functions and identifies proteins whose
translational accuracy and speed is crucial in situations
occurring frequently in the typical microbial habitat.
Knowing these critical functions is an important value

in itself, but this knowledge might also be relevant for
the tailoring of productive strains. For example, our ana-
lysis of bacterial genomes being strongly optimized for
cell growth made clear that aminoacyl-tRNA synthetases
are overrepresented in the respective effectomes. If
related strains are used for protein production, it is
plausible to assess codon usage and the in vivo concen-
tration of these enzymes in order to maximize the yield.

A comparison of GCBEff -values and the composition

of the effectomes highlight a consistent trend: Generally
and independent of the strength of CUB, several central
functions involved in protein synthesis, energy produc-
tion, and protein folding are translationally optimized.
Additionally, in certain habitats and due to the prevalent
selective forces, both the strength of CUB and the pal-
ette of translationally optimized gene products increase.

This hypothesis is supported by the above mentioned
overrepresentation of aminoacyl-tRNA synthetases. The
effectomes of MG_CUB(Bacteria_HITR) contain tRNA
synthetases that load 16 different amino acids. Most
plausibly, three synthetases do not occur in the effec-
tomes because they are related to amino acids (Trp,
Cys, His), which are rare in microbial proteins. The
fourth and last aminoacyl-tRNA-synthetase missing
in the effectomes is tRNA(Gln). In several Bacteria,
Gln-tRNAGln is produced by means of a mischarged
Glu-tRNAGln and a Glu-tRNAGln amidotransferase (con-
sisting of subunits A, B, C) through the transamidation
of misacylated Glu-tRNAGln [44]. Due to the small
number of genes, a statistically sound analysis is not
possible in this case. However, in the genomes of Bacil-
lus cereus, Bacillus anthracis, and Bacillus thuringien-
sis, which lack a glutaminyl-tRNA synthetase, the large
subunits A and B of the aspartyl/glutamyl-tRNA(Asn/
Gln) amidotransferase have only slightly negative GCB-
values (-0.05 and -0.08, respectively). This finding is a
further indicator for the fine-tuned composition of
microbial effectomes.
In competitive environments nature has found many

ways of improving cell growth and response times. A
stunning example is the distinctive codirectionality of
replication and transcription as e.g. seen in Clostridium
tetani. 82% of the genes are transcribed in the same
direction as DNA replication [45]. Along these lines, our
findings highlight a further facet of the complexity of
microbial genomes, their composition, and regulation by
confirming the importance of translational efficiency for
a large number of protein functions.

Conclusions
Cell growth is an important but not the only factor
modulating translational efficiency
Definitely, the optimization of protein synthesis is the
strongest selective factor dominating the composition of
effectomes. This statement is confirmed by the finding
that aminoacyl-tRNA synthetases loading abundant
amino acids have been optimized by evolution for trans-
lational accuracy and speed. However, the underrepre-
sentation of protein functions involved in transcription
and metabolism makes clear that only a specific subset
of functions related to cell growth are subject to transla-
tional optimization. Our results show that several selec-
tive forces modulate the level of translational efficiency.
This hypothesis is confirmed by the overrepresentation
in the effectomes of chaperones, which assist protein
folding, and of proteases, which degrade misfolded pro-
teins. Minimizing damage due to radicals and oxygen as
well as the rapid control of DNA replication and gene
expression are additional and crucial tasks supported by
translationally optimized gene products.
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Methods
MG_CUB, a non-redundant set of microbial genomes
with a marked CUB
We used the microbial genomes section of the Refer-
ence Sequence database (RefSeq, version as of Feb.
2009, 912 replicons) [32] to access a non-redundant col-
lection of richly annotated chromosomes. To concen-
trate on species with a marked CUB that indicates
translational efficiency, we selected datasets containing
at least five ribosomal genes with a GCB-value ≥ 0.0
and at least one gene with a GCB-value ≥ 0.1. After
eliminating entries belonging to the same taxonomical
genus, the complete dataset MG_CUB contained 388
microbial genomes (see Additional file 1, Table S1). The
subset of bacterial genomes MG_CUB(Bacteria) sub-
sumes 370 entries with 1 175 058 genes. The subset
MG_CUB(Archaea) contains 18 genomes and 39 092
genes. Analogously, subsets containing habitat- or
taxon-specific groups HS were named MG_CUB(tax-
on_HS); e.g., MG_CUB(Bacteria_TH) is the subset of
genomes from thermophilic Bacteria; see Additional file
1, Table S4 for details. All subsets analyzed here contain
at least seven genomes. The habitat of the microbes was
taken from the file ftp://ftp.ncbi.nlm.nih.gov/genomes/
Bacteria/lproks_0.txt. Minimum generation times are
from [13].

Determination of GCB-values
The GCB-approach follows the classical and proven con-
cepts of scoring-functions as e.g. utilized for sequence
comparison [46,47] or the identification of horizontally
transferred genes [48]. It is based on a species-specific set
of codon bias (CB) scores. A CB-score is defined as
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f cdn

f cdn
j i

ref
j

i

mean
j

i

( ) log(
( )

( )
).=

Here f cdn
mean

j
i( ) is the mean frequency of codon cdni

in the genome of species j and f cdn
ref

j
i( ) is the codon
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been shown, ribosomal genes are a valid starting point
to determine reference frequencies [30,49]. In order to
deduce CB-scores from genes with strongest bias, the
GCB-approach initially starts with codon frequencies of
ribosomal genes and utilizes a steepest gradient method
to iteratively improve the CB-scores similarly to the
concept of [27]. Using CB-values, the GCB-score of an
individual gene from species j is determined as
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deduced from the m genes of genome j with GCB
(genek,j) ≥ 0.0, i.e. the species-specific effectome. By lim-
iting the calculation to the content of the effectome, we
avoid the likely distortion of the mean value caused by
horizontally acquired genes. Due to their origin, most
alien genes possess an unrelated codon usage [38].
Thus, a mean GCB-value inferred from the whole gen-
ome depends on the origin and the fraction of alien
genes, which might render useless this indicator of
translational efficiency.

Mapping genes to FunCat and scoring the abundance
of categories
For each gene product, GO-terms [36] were used to
relate the product to FunCat categories [37]. The FunCat
system is a one to many mapping of individual gene pro-
ducts to functional categories. For that reason, we have
not reported on categories like “protein with binding
function or cofactor requirement (structural or catalytic)”
(16), which are in the case of effectomes dominated by
ribosomal proteins. For a taxon- or habitat-specific set of
genomes MG_CUB(taxon_HS), the number of gene pro-
ducts contributing to each FunCat category Cat was
determined both for the whole dataset (#All(Cat)) and
those genes belonging to the related effectomes (#Eff
(Cat)). A log-odds score AbundEff was deduced from the
resulting frequencies fAll(Cat) and fEff (Cat) as

Abund Cat f Cat f CatEff Eff All( ) log( ( ) / ( )).=

A log-odds ratio above zero indicates that more than
the number of genes expected due to the distribution of
categories in the whole dataset occurs in the effectome.
AbundEff-values quantify over- and underrepresentation
of categories symmetrically about zero according to log
(a) = -log(1/a). For a two-fold over- and the respective
underrepresentation follows: log(2) = 0.30 and log(1/2)
= -0.30. In order to avoid outliers caused by a too small
number of samples, we only analyzed subsets that con-
tained at least seven genomes.

Determining the function of individual proteins
The UniProt interface [50] was used to map RefSeq
identifiers of individual genes onto UniProtKB accession
numbers which were fed into the eggNOG database
[40]. Thus, we deduced for a set of genes from different
genomes a categorized description of protein function in
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terms of COG classes [39]. Based on RefSeq identifiers,
KO-numbers were determined, mapped onto KEG refer-
ence pathways [41], and plotted color-coded.

Additional material

Additional file 1: Tables S1 - S4.

Additional file 2: Excel spreadsheets listing the composition of
effectomes for all habitats on FunCat level 2.

Additional file 3: Excel spreadsheet containing the gene names of
the effectomes of extremely optimized Bacteria.

Additional file 4: Excel spreadsheet containing the COG- and KO-
numbers of genes from the effectomes of extremely optimized
Bacteria.

Additional file 5: Figure S1 - Glycolysis/Gluconeogenesis as
depicted in the reference pathway of KEGG.

Additional file 6: Figure S2 - TCA cycle as depicted in the reference
pathway of KEGG.
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