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Abstract

product, and this strategy is recommended.

Background: Roche 454 pyrosequencing has become a method of choice for generating transcriptome data from
non-model organisms. Once the tens to hundreds of thousands of short (250-450 base) reads have been
produced, it is important to correctly assemble these to estimate the sequence of all the transcripts. Most
transcriptome assembly projects use only one program for assembling 454 pyrosequencing reads, but there is no
evidence that the programs used to date are optimal. We have carried out a systematic comparison of five
assemblers (CAP3, MIRA, Newbler, SegqMan and CLC) to establish best practices for transcriptome assemblies, using
a new dataset from the parasitic nematode Litomosoides sigmodontis.

Results: Although no single assembler performed best on all our criteria, Newbler 2.5 gave longer contigs, better
alignments to some reference sequences, and was fast and easy to use. SeqMan assemblies performed best on the
criterion of recapitulating known transcripts, and had more novel sequence than the other assemblers, but
generated an excess of small, redundant contigs. The remaining assemblers all performed almost as well, with the
exception of Newbler 2.3 (the version currently used by most assembly projects), which generated assemblies that
had significantly lower total length. As different assemblers use different underlying algorithms to generate contigs,
we also explored merging of assemblies and found that the merged datasets not only aligned better to reference
sequences than individual assemblies, but were also more consistent in the number and size of contigs.

Conclusions: Transcriptome assemblies are smaller than genome assemblies and thus should be more

computationally tractable, but are often harder because individual contigs can have highly variable read coverage.
Comparing single assemblers, Newbler 2.5 performed best on our trial data set, but other assemblers were closely
comparable. Combining differently optimal assemblies from different programs however gave a more credible final

Background

Transcriptome sequencing projects for non-model
organisms are popular because they cost less and are
more computationally tractable than full genome
sequencing projects, but still yield sufficient information
to meet the requirements of many research programs.
Traditionally, transcriptome projects have been based on
Sanger dideoxy-sequenced expressed sequence tags
(ESTs), but, because second-generation sequencing tech-
nologies provide much higher throughput than Sanger
sequencing at a lower cost per base, these new technolo-
gies are increasingly used. For model organisms where a
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wealth of genomic information is available, the massively
parallel, short-read (35-100 base) sequencing technolo-
gies (Illumina SOLEXA and ABI SOLiD) are most fre-
quently used, as transcriptome reads can be mapped to
the reference genome or transcriptome. However, most
published non-model organism projects have used the
Roche 454 pyrosequencing platform [1-36], because the
longer reads generated (currently about 400 bases) are
more amenable to de novo assembly and annotation.

A transcriptome project progresses through phases of
data acquisition, assembly of the sequence reads to define
putative transcripts, and then annotation and exploitation
of the assembled data. The transcriptome assembly
problem is not simple. Individual reads can have errors
and polymorphisms that complicate recognition of over-
laps, and individual transcripts (in non-normalised data)
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Table 1 Assemblers previously used for de novo assembly of 454 pyrosequencing transcriptome projects

Assembler Organism

Arabidopsis thaliana [1,2]; Eucalyptus grandis [3]; Castanea dentata and Castanea mollissima [4]; Sarcophaga crassipalpis [5]; Acropora

millepora [6]; Palomero toluqueno [7]; Eschscholzia californica and Persea americana [2]; Vitis vinifera [8]; Rhagoletis pomonella [9];
Heliconius spp. [10]; Euphydryas aurinia, Manduca sexta, Chrysomela tremulae, Papilio dardanus, Heliconius melpomene, Heliconius erato,

Zea mays [15,16]; Arabidopsis thaliana [1]; Ambystoma mexicanum [17]; Human breast cancer [18]; Artemisia annua [19]; Solanum

arcanum [20]; Epimedium sagittatum [21]; Haemonchus contortus [22]; Laodelphax striatellus [23]; Coleochaete orbicularis and Spirogyra

Centaurea solstitialis [26]; Chrysomela tremulae [27,11]; Pandinus imperator [28]; Zygaena filipendulae [29]; Manduca sexta [30,11];

Newbler
and Melitaea cinxia [11]; Panax quinquefolius [12]; Sclerotium rolfsii [13]; Laternula elliptica [14]
CAP3
pratensis [24]; Bugula neritina [25];
MIRA
Euphydryas aurinia, Papilio dardanus, Heliconius melpomene, Heliconius erato, and Melitaea cinxia [11];
TGICL Pythium ultimum [31]; Zoarces viviparous [32]; Medicago truncatula [33]
SegMan Melitaea cinxia [34]; Cochliomyia hominivorax [35]; Pinus contorta [36]

stackPACK  Arabidopsis thaliana [1]

can have several orders of magnitude variation in abun-
dance, and thus in effective coverage. Previous analyses
of transcriptome data generated by Roche 454 pyrose-
quencing have almost always used just one software pro-
gram for assembly (Table 1). Only two studies report the
results of more than assembler. The first [1] briefly com-
pared the length of assembled consensuses from Newbler
[37], CAP3 [38], and stackPACK [39] on an Arabidopsis
thaliana transcriptome dataset, whereas the second [11]
demonstrated the comprehensive est2assembly pipeline
on a phylogenetically diverse sample of insects, but only
compared results for Newbler and MIRA [40]. Neither
study provides a systematic comparison of assemblers,
and so here we present such a comparison to assist the
growing number of transcriptome projects using Roche
454 pyrosequencing data.

Here we compare the performance of five assemblers:
Newbler, CAP3, MIRA, SeqMan [41], and CLC’s Assem-
bly Cell [42] (Table 2). These assemblers differ in the
algorithms used (most use variations of the Overlap-
Layout-Consensus (OLC) strategy, while CLC uses de
Bruijn graph path finding) and how they treat individual
reads (whether a read is indivisible, or can be split and
ultimately be placed in different contigs). We tested two
versions of Newbler because we found the frequently-

used, public release version (Newbler Version 2.3, here-
after referred to as Newbler 2.3) to have several undesir-
able features (see below) and thus contacted the
developers to discuss these. They provided a pre-release
version (Newbler Version 2.5 pl, hereafter referred to as
Newbler 2.5) that addresses some of the issues identi-
fied. We did not include TGICL [43] or stackPACK [39]
because both are essentially wrappers for the CAP3
assembler. Although Velvet [44] and ABySS [45] are
popular assemblers for second-generation sequence data
and can use Roche 454 pyrosequencing reads, they are
primarily assemblers for genome sequence data from
short-read platforms that rely on the high and even cov-
erage depths afforded by these massively parallel tech-
nologies. In preliminary experiments on our data we
were only able to generate very short contigs using
short-read assemblers and so we have not compared
Velvet, Oases (the transcriptome-specific version of Vel-
vet, [46]), and ABySS.

Our target organism, Litomosoides sigmodontis, is a
model filarial nematode, closely related to the causative
agents of human filariases (Brugia malayi, Wuchereria
bancrofti and Onchocerca volvulus). It originally derives
from cotton rat hosts, but can be maintained in labora-
tory rodents (mice and gerbils) and is thus a tractable

Table 2 Features of assembly programmes compared in this study

Assembler Type' Splits Author Cost Source URL
reads* available
CAP3 OLCt No X Huang and A Free for use at non- No http://seq.cs.iastate.edu/
Madan [38] profit organizations
CLC Assembly Cell de Bruijn  Yes CLC Request quote or trial No http://www.clcbio.com/
30 graph license
MIRA 3.0 OLC No Bastien Chevreux Free Yes, GPL http://sourceforge.net/projects/mira-assembler/
[40]
Newbler 2.3 and  OLC Yes Roche 454 [37] Free for academic use No http://454.com/products-solutions/analysis-
Newbler 2.5 tools/gs-de-novo-assembler.asp
SegMan NGen 2.1 OLC No DNAStar [41] Request quote or trial No http://www.dnastar.com/t-products-segman-
license ngen.aspx

* j.e. data from one read can appear in multiple contigs.
1 OLC: Overlap-Layout-Consensus.
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experimental system in which to investigate the
dynamics of immune response induction and modula-
tion, and test vaccine and drug candidates [47]. We
expect L. sigmodontis to have a transcriptome similar to
that of the filarial nematode B. malayi and the more
distantly related rhabditid nematode Caenorhabditis ele-
gans, with ~18,000 to 21,000 protein-coding genes gen-
erating ~30,000 different transcripts with mean length
~1.2 kb. The transcriptome project is part of a larger
investigation into L. sigimodontis genomics, and detailed
analyses of the content and biology of the transcriptome
data will be published elsewhere.

Results

L. sigmodontis transcriptome data

We used a Roche 454 FLX instrument to generate
‘standard chemistry’ (mean read length ~220 bases) and
‘Titanium chemistry’ (mean read length ~350 bases)
reads from cDNA libraries from three different lifecycle
stages of L. sigmodontis: microfilaria (equivalent to the
first stage larva of C. elegans and other nematodes), adult
males, and adult females (Table 3, see Methods for more
details on library preparation, read pre-processing, and
assembly parameters). Reads were trimmed for adapters
leaving a total of 741,387 reads with 205,065,666 bases
used in all assembly experiments (trimmed read length
histograms in Additional file 1, Figure S1).

Comparison of assemblers

For each assembler, we used the default parameters
recommended for transcriptome assembly (details are
given in Methods). After assembly, contigs less than 100
bases in length and singletons were discarded for subse-
quent analyses. We compared the assemblies using the
following standard metrics: total number of reads used
in the assembly, number of contigs > 100 bases gener-
ated, N50 length of contigs (the smallest contig size in
which half the assembly is represented), maximum con-
tig length, summed contig length, and approximate time
taken to perform analysis (Table 4). We include the
N50 as a measure even though it is not strictly appro-
priate for transcriptome assemblies (where we expect
the median contig length to be in the region of 1.2 kb).
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We also assessed assembly integrity and completeness
by comparison to four reference datasets.

Numbers of reads used in assembly

The optimal assembler will use all the reads given, and
will deliver assemblies with unambiguous mappings of
reads to contigs, and thus putative transcripts. Each
assembler has a different way of reporting the number
of reads utilised. For example, MIRA reported only
2,170 singletons but classified 115,688 unassembled
reads as ‘debris’. Similarly, Newbler 2.3 and Newbler 2.5
generate separate lists of singletons, repetitive reads, and
‘outliers’ (problematic reads such as chimaeras). CAP3
and SeqMan only report assembled and unassembled
reads. CLC does not track reads at all and maps reads
back to the assembly to estimate where they might
belong. Therefore, to compare the assemblies, we
mapped all the reads back to each assembly using
SSAHAZ2 [48] and the CLC reference aligner (which is
part of the Assembly Cell suite [42]), as recommended
in a study comparing short-read aligners [49]. SSAHA2’s
default settings for Roche 454 reads are clearly tuned for
sensitivity, because the number of reads with multiple
matches is very high compared to the CLC aligner. For
both aligners, the highest numbers of reads were
mapped back to the SeqMan assembly, while fewest
were mapped to the Newbler 2.3 assembly. CAP3, CLC,
and MIRA were comparable in terms of the number of
reads used. CLC had the fewest reads with multiple
matches by far, indicating that it was the least redun-
dant of the six assemblies.

Number, mean length, and summed length of contigs

The optimal assembler will produce the longest summed
length of contigs, while avoiding over-assembly of reads
into in silico chimaeras, and avoiding the production of
near-identical, largely overlapping contigs from allelic
copies or error-rich data. It will also produce a transcrip-
tome estimate with a mean and variance in contig length
similar to that expected from the whole transcriptome.
Newbler 2.3 generated an assembly with the largest N50
and the longest mean contig length (Table 4), but it also
produced the smallest assembly span of the six

Table 3 The Litomosoides sigmodontis transcriptome dataset read statistics

L. sigmodontis Technology Number Number of Number of Number of Mean length of Median length of
lifecycle stage of reads  raw bases trimmed reads  trimmed bases  trimmed reads trimmed reads
Microfilaria (first Titanium 366,313 203,227,223 351,387 118,039,337 33592 374

stage larvae)

Adult female Standard 180,271 48,434,306 176,454 38,352,888 21735 236

Adult male Standard 216,940 59,231,575 213,546 48,673,441 22793 245

Total Titanium + 764,024 310,893,104 741,387 205,065,666 276.60 257

Standard
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Table 4 Basic assembly metrics

CAP3 CLC MIRA Newbler 2.3 Newbler 2.5 SegqMan
Number of contigst 24727 22746 35827 12019 21734 29969
Total Bases 16733217 14875522 21339704 14456476 20066883 21355682
Number of contigs (> = 1 kbp) 4403 4174 4770 6320 7661 6082
Total Bases (in contigs > = 1 kbp) 6461079 6255785 7027775 10810962 13691429 9296011
Max contig length 4011 4368 5784 5872 6228 6263
Mean contig length 677 654 596 1203 923 713
N50 806 850 708 1487 1448 880
Number of contigs in N50 6533 5459 9148 3406 4649 7555
Reads used (SSAHA2) 670425 679152 672036 616672 667597 681974
Multi-hit reads (SSAHA2) 271648 118334 392884 249210 352887 322409
Reads used (CLQ) 690889 691818 696527 600132 681831 711726
Multi-hit reads (CLC) 91951 24485 162365 213670 262178 128631
Time taken 1 day* 4 minutes * 3 days * 2 hours * 45 minutes * 6 hours **

1 only contigs > 100 bases were assessed.
* on a dual quad-core 3 GHz Xeon workstation with 32 GB RAM.
** on a dual core 2.53 GHz Mac mini server with 4 GB RAM.

programmes tested. Inspection of contig assemblies using
the next-generation sequence assembly visualisation soft-
ware Tablet [50] showed that Newbler 2.3 was discarding
read overlap information in deriving the assembled con-
tig sequence. The overall assembly sizes of CAP3, CLC
and Newbler 2.3 are comparable to each other (between
14.4 and 16.7 Mb), as are the assembly sizes of MIRA,
Newbler 2.5 and SeqMan (between 20.0 and 21.3 Mb).
Newbler 2.5 has an assembly that is 39% larger than the
Newbler 2.3 assembly, and seems to have solved the pre-
vious version’s problem of discarding sequence data. Of
all the six assemblers, Newbler 2.5 produced the highest
number of contigs longer than 1 kb, and the most bases
in contigs longer than 1 kb (these larger overall contig
sizes are represented in Figure 1 as the assembly with the
steepest initial slope). MIRA and SeqMan both generated
comparable assembly spans, but with at least 8,000 more
contigs than Newbler 2.5, indicating that they have
shorter contigs overall.

Speed of analyses

The optimal assembler will complete analyses in a short
period of time, and the time taken will scale well with
increasing data volumes. While speed itself is not an
overriding optimality criterion, rapid analyses will per-
mit robust and extensive exploration of parameter
space. In addition, some algorithms can make efficient
use of multi-threaded processors or cluster computing,
effectively reducing their wall-clock run time. The speed
metric is not linked to assembly quality. CLC was aston-
ishingly fast (taking only a few minutes to assemble
741,387 reads) compared to MIRA (which took 3 days
in ‘accurate’ mode on the same hardware). This speed

comes at a significant cost however, as CLC does not
track read placement in the assembly. Tracking of read
placement in an assembly is a very valuable feature, as it
allows inspection of the data underpinning suspect

assemblies, and thus CLC sacrifices speed for
verifiability.
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Figure 1 Cumulative contig lengths generated by different
assembly programs. For each of six assemblies, contigs longer than
100 bases were ordered by length, and the cumulative length of all
contigs shorter than or equal to a given contig was plotted. The total
length of the assembly and the number of contigs present in the
assembly define the end point of each curve, while the initial slope

of each curve reflects the proportion of longer contigs.
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Assembly redundancy, shared and novel bases

In comparison to other assemblies, the optimal assembly
will include the largest proportion of the unique bases
present in the sum of all assemblies. Thus an assembler
that produced a large assembly that included many con-
tigs that were redundant could be worse that an assem-
bly that was shorter but only included unique bases. To
determine if the differing assembly sizes were due to
novel sequences in each assembly, or just due to repeti-
tive and redundant assemblies, we used BLAT [51] with
default parameters to pairwise align all six assemblies
(Figure 2).

These pairwise comparisons show that the SeqMan
assembly had the most novel bases when compared to
the others, and the others five assemblies had the fewest
novel bases when compared to SeqMan. At the other
end of the spectrum, the Newbler 2.3 assembly had the
fewest novel bases and almost all its bases were seen in
the other assemblies. For example, the SeqMan assembly
had over 5 Mb of novel sequence compared to the
assembly from Newbler 2.3, and the latter had only
23,366 novel bases in the reciprocal comparison. CAP3,
CLC, MIRA, and Newbler 2.5 were all very similar in
that they generated assemblies that had about 1-2 Mb
of novel sequence compared to each other.

SeqMan, MIRA and Newbler 2.5 all generated assem-
blies in excess of 20 Mb, 25-50% larger than the 14-16
Mb assemblies produced by CAP3, CLC, and Newbler
2.3. However, these additional contigs and bases did not
represent an excess of novel sequence, except in the
case of SeqMan, suggesting that MIRA and Newbler 2.5
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produce some redundant contigs (identical except for
real polymorphisms or sequencing error). CLC gener-
ated the least redundant assembly, a direct consequence
of using a de Bruijn graph algorithm with small frag-
ments (21-mers) that collapses most repeats.

Alignments to reference sequences

Another optimality criterion for a novel de novo
assembled transcriptome is how well it recapitulates
previously determined sequences for the target species,
and how well it represents sequences from related
organisms. The best assembler will return contigs that
match previous data well, and will deliver a high cover-
age of the conserved proteome of related taxa. We used
four comparator datasets:

(i) a set of 2699 Sanger dideoxy sequenced ESTs from
L. sigmodontis (Mark Blaxter, unpublished), assembled
into 1602 clusters spanning 0.9 Mb (see http://www.
nematodes.org/nembase4/species_info.php?species=LSC).
We expect the Roche 454 pyrosequencing assemblies to
faithfully reflect these longer reads and clusters;

(ii) the proteome predicted from the genome sequence
of B. malayi [52]. We expect the B. malayi RefSeq pro-
tiens (11,472 GenBank entries, totalling 4.3 M amino
acid residues) to be a good model for the proteome of
L. sigmodontis, and thus proportional coverage of this
proteome should reflect assembly quality;

(iii) gene families conserved across the phylum Nema-
toda derived from MCL-TRIBE [53] analysis of 62 spe-
cies assembled in NEMBASE4 database (Mark Blaxter
and Ben Elsworth, unpublished; see http://www.

6,000,000
5,000,000
A
g X
§ 4,000,000 - ¢ #Novel in CAP3
E,‘ Novel in CLC
E 3,000,000 ANovel in MIRA
2 X Novel in Newbler 2.3
2,000,000 - X Novel in Newbler 2.5
= P8 A Novel in SegMan
1,000,000 A * v
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23 25
Figure 2 Novel sequence in pair-wise comparisons between assemblies produced by different assemblers. For each assembly, we
calculated the number of bases in the other assemblies that were not present in the focal assembly.
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Table 5 BLAT hits to 1602 Litomosoides sigmodontis EST clusters
CAP3 CLC MIRA Newbler 2.3 Newbler 2.5 SegMan
% of ESTs hit by BLAT 87.8 90.3 89.6 81.6* 89.6 90.8
(% of bases covered) (78.2) (80.0) (80.1) (71.3)* (78.7) (82.0)
% of ESTs hit by BLAT where each hit covered 599 519 62.5 594 639 654
at least 80% of the target EST sequence
(% of bases covered) (59.1) (50.5)* 61.1) (594) (63.7) (64.3)

* indicates a value significantly lower than the others, using a Huber M-estimator.

nematodes.org/nembase4/tribe_tree.php). We selected
3,681 tribes, containing 120,926 EST clusters, that had
representatives in species spanning the inferred base of
the phylum. They represent an estimate of the con-
served core of genes that may be present in all nema-
tode proteomes, and again proportional coverage should
reflect assembly quality.

(iv) a set of 9,782 C. elegans proteins, grouped into
3,731 euKaryotic Ortholog Groups (KOGs), that are
known to have orthologs in the proteomes of six other
eukaryotic genomes [54]. We expect mRNAs for these
conserved proteins to be present in the L. sigmodontis
data, and thus proportional coverage should reflect
assembly quality.

These datasets are not independent, but each offers a
different assessment of assembly quality. Tables 5, 6, 7
and 8 show the results of aligning the contigs from each
assembly to each of these four datasets. In all four cases,
the best assembler was either Newbler 2.5 or SeqMan.
Newbler 2.3 had the lowest number of significant
matches to known reference and related sequences.
However, to identify which assembler had the largest
number of well-assembled long contigs, we did a second
assessment of each dataset where only those hits that
covered at least 80% of a target sequence were consid-
ered. With this restriction, CLC had the fewest hits in
all cases except hits to conserved nematode proteins
(Table 7), suggesting that the longer contigs from the
CLC assembly were not as accurate.

Merging assemblies to improve credibility

As each assembler uses a different algorithm to derive
final contigs, and each of these algorithms may model
different portions of the true transcriptome with

Table 6 BLASTX hits to 11,472 Brugia malayi proteins

different accuracies, we reasoned that combining assem-
blies might identify the subset of the assemblies that
had high credibility, as it was found by both (or multi-
ple) approaches. We checked if pairs of assemblies per-
formed better than individual assemblies under the
various optimality criteria proposed above, particularly
in their recapitulation of the reference data. We com-
bined two assemblies at a time by treating their (first-
order) contigs as pseudo-reads and assembled these
using a traditional OLC assembler (CAP3 with default
settings). Only second-order contigs that contained first-
order contigs from both constituent assemblies were
considered for further analysis because two independent
assemblers had agreed on the consensus sequence in
that contig: we term these “robust contigs”.

Whereas previously the six assemblies had generated
from 12,000 to 36,000 contigs and spanned 14.5 Mb to
21.4 Mb (Table 4), we found that merging assemblies
resulted in a much narrower range of contig numbers
and total span (Table 9). The N50 and mean contig
sizes also increased, approaching that predicted for a
complete transcriptome.

These robust contigs also performed better in the tests
assessing representation of reference datasets (Table 10
and Table 11). This was especially true for matches fil-
tered to include only those covering at least 80% of the
reference sequence. The co-assemblies of [CLC and
MIRA] and [MIRA and Newbler 2.5] matched the most
EST clusters. The [CLC and Newbler 2.5] combined
assembly matched the most B. malayi peptides.

Although there was no consistent pattern indicating a
clear superiority of any pair of assemblies (other than
the exclusion of the Newbler 2.3 assembly), these
merged assemblies show that it is possible to get more

CAP3 CLC MIRA  Newbler 2.3 Newbler 2.5 SeqMan
% of proteins hit 76.7 784 77.3 68.9* 779 786
(% of bases covered) (60.4) 624)  (59.7) (51.8)* 61.5) (63.0)
% of protein hit by individual HSPs that cover 80% of target protein 270 26.0 26.5 29.2 324 28.7
(% of bases covered) (16.8) (16.1)  (164) (19.9) (22.3) (18.0)

Note: E-value cutoff 1e-5.

* indicates a value significantly lower than the others (p < 0.01), using a Huber M-estimator.
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Table 7 BLASTX hits to 3,681 tribes containing 120,926 conserved nematode proteins

CAP3 CLC MIRA Newbler 2.3 Newbler 2.5 SeqMan

% of unique tribes hit

% of unique tribes hit where individual HSPs covered 80% of target protein 81.7 81.1 789

917 922 914 87.0% 920 924
77.0% 82.1 816

Note: E-value cutoff 1e-5.

* indicates a value significantly lower than the others (p < 0.01), using a Huber M-estimator.

long, robust contigs that align better to reference
sequences by combining the outputs of two different
assemblies. Co-assembling three primary assemblies at a
time and considering only the contigs that had ‘reads’
from all three assemblies gave smaller total contig num-
bers than pairwise co-assemblies. The number of strin-
gent matches to reference sequences went up by less
than 1% in all cases (see Additional File 2, Tables S2-
S7), suggesting that the additional effort involved in gen-
erating and combining these assemblies may not be
worthwhile.

Summary

We compared six assemblers by aligning their assembly
contigs to four reference sequence sets. The Newbler
2.3 assembly scored worst in each comparison, probably
because it had the smallest span of all the assemblies.
Under stricter comparison parameters, the CLC assem-
bly was poorer, suggesting that this assembly is more
fragmented than the others. Although no single assem-
bler was optimal in every case, Newbler 2.5 and SeqMan
had the best alignments to related reference sequences
overall. However, SeqMan generated over 8000 contigs
extra for approximately the same total number of
assembled bases (21.4 Mb versus 20.1 Mb).

We were able to improve the assembly by merging
two assemblies at a time using a traditional OLC assem-
bler (CAP3). This approach generated more high quality
alignments to our reference sets.

Discussion and Conclusions

We compared six programmes (Table 2) for the task of
de novo assembly of transcriptome data from an organ-
ism with little or no previous genomic resources. We
tested each using default or minimally adjusted para-
meters, as has been the common practice in previous
454 pyrosequencing transcriptome studies (Table 1). It
may be that it is possible to generate better assemblies
for particular datasets by exploring the parameter space

for each assembler. However, as sequencing becomes
cheaper and more accessible, the vast majority of 454
transcriptome assemblies will probably be done by
researchers who are new to assembly and just want
something that works with a few sensible default para-
meters. Of the six de novo transcriptome assemblers
tested, Newbler 2.5 had the best contig length metrics
for our data, and, along with SeqMan, had the best
alignments to related reference sequences.

Each assembler has certain advantages and disadvan-
tages that are presented in more detail in the Supple-
mentary Materials (Additional file 1). Versions 2.3 and
2.5 of Newbler were the only assemblers that explicitly
attempted to reconstruct and group alternative tran-
scripts and isoforms. If only one assembler had to be
used because of time or resource constraints, we would
currently recommend Newbler 2.5 overall. However,
none of the other assemblers are deprecated apart from
Newbler 2.3. We strongly recommend redoing transcrip-
tome assemblies that were performed with Newbler 2.3
or earlier versions, if the goal is to get as complete an
assembly as possible.

It is possible that different raw data sets may be better
assembled by different programs (e.g. MIRA may be bet-
ter for normalized transcriptome sequence data, and
CAP3 for paired transcriptome data), and thus research-
ers should perhaps cross-compare the best available
ones on their data using the optimality criteria used
here.

Merging assemblies performed with different pro-
grams is a frequently used approach in genome assem-
bly projects, especially those that employ multiple
sequencing technologies. Application of this strategy to
the problem of de novo transcriptome assembly appears
particularly useful. While a merged assembly may simply
sum the errors made by both programs, filtering the
resultant second stage contigs on the basis of their con-
taining first stage contigs from both of the starting sets
generates a transcriptome assembly that is on average

Table 8 BLASTX hits to 3,731 KOGs containing 9,782 C. elegans proteins

CAP3 CLC MIRA Newbler 2.3 Newbler 2.5 SegMan

% of unique KOGs hit

892 897 886 837 89.7 90.1

% of unique KOGs hit where individual HSPs covered 80% of target protein 302 271 286 330 357 304

Note: E-value cutoff 1e-5.

* indicates a value significantly lower than the others (p < 0.01), using a Huber M-estimator.
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Table 9 Secondary assemblies by merging pairs of initial assemblies using CAP3 with default settings

Assembly 1 Assembly 2 Number of Bases in Number of Bases in Number of second- Bases in second-order
“Reads” Assembly 1 “Reads” Assembly 2 order contigs with contigs with “reads”
(contigs) in (contigs) in “reads” from both  from both assemblies

Assembly 1 Assembly 2 assemblies
MIRA SegMan 35827 21339704 29969 21355682 18068 16293192
MIRA  Newbler 2.5 35827 21339704 21734 20066883 15951 15866051
Newbler 2.5 SegMan 21734 20066883 29969 21355682 15783 15701053
CLC  Newbler 2.5 22746 14875522 21734 20066883 15778 15825663
CAP3 MIRA 24727 16733217 35827 21339704 15688 14243534
CLC SegMan 22746 14875522 29969 21355682 15504 14679975
CAP3 SegMan 24727 16733217 29969 21355682 15387 14824287
CLC MIRA 22746 14875522 35827 21339704 15334 14357031
CAP3  Newbler 2.5 24727 16733217 21734 20066883 14275 14830304
CAP3 CLC 24727 16733217 22746 14875522 14149 13753398
Newbler 2.3 Newbler 2.5 12019 14456476 21734 20066883 9733 13252303
MIRA  Newbler 2.3 35827 21339704 12019 14456476 9380 11731374
CLC Newbler 2.3 22746 14875522 12019 14456476 8884 12318589
CAP3  Newbler 2.3 24727 16733217 12019 14456476 8484 11426423
Newbler 2.3 SegMan 12019 14456476 29969 21355682 8274 11452990

longer and that better represents known or assumed
reference sequences than do either of the starting contig
sets. A preferred assembly strategy is thus to perform
initial assemblies with multiple high-quality assemblers
and then to merge these using a traditional OLC assem-
bler such as CAP3. Second-order contigs that have sup-
port from multiple first-order assemblies are much
more likely to be accurate.

Need for new assemblers

All the de novo assemblers in this study, with the excep-
tion of CLC, use the OLC assembly strategy. CLC uses
de Bruijn graphs. As read lengths and throughput
increase and sequencing costs come down, an average
transcriptome assembly project for a non-model organ-
ism may comprise several million 800 base reads. Under
the OLC paradigm, the computational time for assem-
bling more reads rises exponentially with data complex-
ity because the number of pairwise comparisons to
detect overlaps will increase, and the layout graphs will
be harder to resolve into a consensus sequence. The
CLC de novo assembler is clearly a step in the right
direction because its de Bruijn graph algorithm achieves
reasonable results in very little time on large datasets.
Other de Bruijn graph assemblers such as Oases [46]
and ABySS [55] are promising but are currently not sui-
table for most non-normalised 454 pyrosequencing de
novo transcriptome assembly projects because many
transcripts have very low coverage that cannot be
assembled reliably. Perhaps the way forward is to use
the de Bruijn graph method for transcripts with high
coverage and the OLC method for transcripts with low
coverage. We have shown that an assembly-merging

strategy delivers robust contigs from intermediate
assemblies produced by current programs, and this
strategy is likely to be of utility in deriving the best
assemblies from future programs as well.

Methods

Library preparation

The L. sigmodontis samples were prepared by Stella
Konstantinou, Eleana Theophilou and Simon Babayan,
and sequenced by the GenePool, Edinburgh. Briefly,
total RNA from three L. sigmodontis samples (adult
male, adult female, microfilaria) was converted to double
stranded cDNA using Evrogen’s MINT c¢DNA synthesis
kit. First strand cDNA was synthesised using reverse
transcriptase (RT) from a 3’-primer with oligo(dT)
sequence that annealed to the poly-A stretch of RNA
and synthesised cDNA until the 5" end of the mRNA.
Finally, double stranded ¢cDNA synthesis was performed
using PCR amplification, and the final product con-
tained the same MINT adapter sequence at both 3’ and
5" ends. The cDNA was fragmented, size-selected,
library-prepped, and sequenced according to standard
Roche-454 FLX and Titanium protocols. Sequence files
have been deposited into the Sequence Read Archive
(SRA) with accession number ERA011678 http://www.
ebi.ac.uk/ena/data/view/ERA011678.

Read pre-processing

We chose to remove MINT adapters from the
sequences ourselves rather than use the built-in adapter
removal tools in MIRA, Newbler, SeqMan, and CLC,
because each assembler pre-processes reads slightly dif-
ferently and CAP3 does not remove adapters at all. The
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Table 10 Alignments to 1602 EST clusters where > 80%
of the EST was covered by a match, by pairs of
assemblies merged using an OLC assembler

Assembly % EST clusters % EST bases

pair hit covered

CLC MIRA 654 65.1

MIRA Newbler 654 65.3
2.5

MIRA SegMan 64.9 64.6

CLC Newbler 64.7 64.6
25

Newbler 2.5 SegMan 63.2 629

CAP3 Newbler 63.0 62.6
2.5

CAP3 CLC 629 624

CLC SegMan 62.9 62.5

CLC Newbler 624 62.5
23

CAP3 MIRA 622 619

CAP3 SegMan 61.7 61.3

MIRA Newbler 61.7 619
23

Newbler 2.3 Newbler 614 61.5
2.5

Newbler 2.3 SegMan 60.0 60.2

CAP3 Newbler 59.7 596
23

Table 11 Alignments to 11,472 B. malayi peptides using
BLASTX (e value < 1e-5) where > 80% of the protein was
covered by a match, by pairs of assemblies merged using
an OLC assembler

Assembly % Peptides % Peptide bases

Pair hit covered

CLC Newbler 382 283
25

MIRA Newbler 373 274
25

CLC MIRA 37.1 271

CLC Newbler 36.5 274
23

Newbler 2.5 SegMan 365 26.8

CAP3 Newbler 364 26.9
25

CAP3 CLC 36.1 263

CLC SegMan 359 26.1

MIRA SegMan 35.7 257

Newbler 2.3 Newbler 353 263
25

CAP3 SegMan 35.1 252

Newbler 2.3 SegMan 344 256

CAP3 MIRA 340 24.2

CAP3 Newbler 340 25.1
2.3

MIRA Newbler 333 240
2.3
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Roche 454 instrument outputs sequences in Standard
Flowgram Format (SFF) files that come with quality and
clipping information. To ensure that each assembler got
exactly the same input, we changed the trim points
directly in the SFF file to exclude adapter sequence
rather than first convert the SFF files to fasta and qual-
ity files. The 29 base MINT adapter sequence was iden-
tified using BLASTN [56] from NCBI’s new blast+ suite
(Version 2.2.23) and by masking all matches with a bit-
score greater than an empirically determined threshold
of 25. The longest unmasked portion of the sequence
was used to set new trim points in the SFF file.

Most EST pipelines remove poly(A/T) regions from
reads because aligners would not be able to find good
matches back to genomes that do not have the poly(A/
T) sequence, and assemblers might try to align on these
sequences. The former reason was not a factor for us as
this was an unsequenced organism, but we did a trial
run both with and without the poly(A/T) sequence and
found no misassemblies on these regions by any of the
assemblers. Newbler and MIRA account for such
sequences when run in the -cdna and EST modes
respectively. SeqMan and CAP3 remove low quality
ends (homopolymer runs of poly(A/T) sequence have
lower qualities in 454 sequencing), and CLC uses a de
Bruijn graph which would not allow misassemblies
because it would not be able to resolve the branching
structure in a poly(A/T) region. Poly(A/T) sequence
might also be indistinguishable from genomic sequences
in some cases and therefore should not be removed. We
found that the total amount of assembled sequence was
about 10% lower for assemblies without poly(A/T)
sequence. Therefore, we did not trim the poly(A/T)
regions in the sequences. An additional advantage of
leaving the poly(A/T) sequence in is that assembled
contigs with a poly-A at the end (or poly-T at the start)
indicate that the assembly end point is almost certainly
correct. In our sequences, a poly(A/T) sequence typi-
cally had an N about half-way through because a degen-
erate oligo-dT primer was used to extract the poly-A
tails from the cDNA. Any sequences with more than
one N were discarded.

Assembly parameters

For each assembler, the version and parameters used are
described in this section. CLC, Newbler, and SeqMan
used the trimmed SFF files directly. CAP3 and MIRA
used fasta and quality files extracted from the SFF files
using Roche 454’s sffinfo utility. All the assemblers
returned a fasta file with contigs, and, except CLC, they
all returned an ACE file with read placement informa-
tion for each contig. All assemblers were run on an 8-
core 3.0 GHz Linux workstation with 32 GB of memory,
with the exception of SeqMan NGen, which currently
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runs only on Mac and Windows operating systems. Seq-
Man NGen was run on a dual core 2.53 GHz Mac mini
server with 4 GB of memory.

The CAP3 binary for 64-bit Intel Linux systems was
downloaded on June 20, 2010 from http://seq.cs.iastate.
edu/cap3.html. The version was not specified in this
download, and we did not change any of the default
settings.

The CLC Assembly Cell command line application
(version 3.02) has only one assembly-specific parameter,
the minimum contig length reported, which we set to
100. It converts Roche 454 .sff files to fasta format,
strips out all read identifiers, performs the assembly,
and returns only a fasta file with contigs. As it does not
keep track of reads, we had to use the CLC aligner, also
known as the Reference Assembly application, to per-
form the additional step of mapping all the input reads
back to the assembly contigs using default settings.

MIRA version 3.0.0 (production version) was used
with the recommended quick switches for a Roche 454
EST assembly: -job = denovo,est,accurate,454. We used
the -notraceinfo option because the traceinfo file pro-
vides clipping information, whereas we had already used
the clipping information to create trimmed fasta and
quality files. We also used -GE:not = 8 which is a gen-
eral option for specifying the number of threads that
should be used for steps that can use multiple cores.
MIRA'’s final contig output file includes singletons but
we looked for and removed all contigs with the “_s” pre-
fix ("_c” indicates contigs with more than one read).

The latest releases of Roche 454’s Newbler (version
2.3, 091027_1459, and version 2.5, newbler v2.5p1-inter-
nal-10Jun23-1) provide a “-cdna” option to assemble
transcriptomes. In transcriptome assembly, the assem-
bler frequently fails without the -cdna option because it
expects approximately even coverage in genome assem-
bly mode. The only other parameters we used were
“-ace” (to generate an ACE file at the end) and “-cpu 8”
to use all available cores. Like most other OLC assem-
blers, Newbler stops extending contigs when it cannot
resolve branches in the overlap layout graph. Unlike
other assemblers, Newbler then tries to create isotigs
out of contigs that are consistently connected by a sub-
set of reads. Each isotig corresponds to an alternative
transcript, and any contigs or isotigs that share any read
overlaps are put into the same isogroup. We noticed
that several contig fragments in the Newbler 2.3 ACE
file were not reported in the final assembly fasta file
(454Isotigs.fna). Initially, the Newbler developers said
that these contigs are not parts of actual transcripts and
are therefore not reported, but we traced a few of these
fragments and found that they were made up of well
aligned, overlapping reads that had been split into con-
tigs and then discarded. The developers have since
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modified Newbler and allowed us to try the pre-release
version on our data that addresses this issue, using the
-urt flag that allows contigs to be bridged across regions
with only single-depth coverage.

DNAStar’s SeqMan Ngen version 2 for Mac has a GUI
that calls an underlying script. We chose the de novo
transcriptome assembly option for 454 unpaired reads.
When we tried a run with default settings and no qual-
ity or vector trimming, the assembly completed without
any error messages but reported only 891 contigs. Sub-
sequently we tried an assembly with quality trimming
enabled which completed in 6 hours and reported a 21
Mb assembly.

Assembly read alignment

To get assembly stats on the number of reads used, we
used SSAHA?2 [48] and CLC’s aligner to map all the
input reads back to each assembly’s contigs (as recom-
mended in a comparison of next-generation aligners
[49]). SSAHA2 was used with the -454 option, and the
clc_ref assemble_long binary from CLC’s Assembly Cell
distribution version 3.00.44070-beta2 was used with
default settings.

Additional material

Additional file 1: Supplementary Materials. Figure S1: Trimmed read
length histograms. A section describing the advantages and
disadvantages of each assembler.

Additional file 2: Results of merging three assemblies. Assembly

metrics as a result of merging three first-order assemblies. Alignments of
merged assemblies to reference sequences.

Abbreviations

OLC: Overlap Layout Consensus; EST: Expressed Sequence Tag; kb: kilo
basepairs; Mb: mega basepairs; MB: mega bytes; GB: giga bytes; KOG:
euKaryotic Orthologous Group; HSP: High Scoring Pair, a query sequence
can have only one hit to a target sequence in a blast database, but each hit
can be made up of many HSPs.
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