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Abstract

positional inconsistency of a few markers.

Background: Despite a high genetic similarity to peach, almonds (Prunus dulcis) have a fleshless fruit and edible
kernel, produced as a crop for human consumption. While the release of peach genome v1.0 provides an excellent
opportunity for almond genetic and genomic studies, well-assessed segregating populations and the respective
saturated genetic linkage maps lay the foundation for such studies to be completed in almond.

Results: Using an almond intraspecific cross between ‘Nonpareil' and ‘Lauranne’ (N X L), we constructed a
moderately saturated map with SSRs, SNPs, ISSRs and RAPDs. The N x L map covered 591.4 cM of the genome
with 157 loci. The average marker distance of the map was 4.0 cM. The map displayed high synteny and
colinearity with the Prunus T X E reference map in all eight linkage groups (G1-G8). The positions of 14 mapped
gene-anchored SNPs corresponded approximately with the positions of homologous sequences in the peach
genome v1.0. Analysis of Mendelian segregation ratios showed that 17.9% of markers had significantly skewed
genotype ratios at the level of P < 0.05. Due to the large number of skewed markers in the linkage group 7, the
potential existence of deleterious gene(s) was assessed in the group. Integrated maps produced by two different
mapping methods using JoinMap® 3 were compared, and their high degree of similarity was evident despite the

Conclusions: We presented a moderately saturated Australian almond map, which is highly syntenic and collinear
with the Prunus reference map and peach genome V1.0. Therefore, the well-assessed almond population reported
here can be used to investigate the traits of interest under Australian growing conditions, and provides more
information on the almond genome for the international community.

Background

Almond (Prunus dulcis (Mill) D. A. Webb) is an ancient
plant species domesticated by humans initially in the
Middle East. P. fenzliana or P. communis have been
considered its most likely wild ancestors [1,2]. Valued
for its health benefits and high nutritional value, the
importance of the crop is increasing in the human diet,
and consequently its production and commercial value
are growing worldwide. Despite a high genetic similarity
to peach, almonds have a fleshless fruit and edible ker-
nel, rather than an edible fruit. Many agronomic traits
important to almond such as shell hardness, kernel

* Correspondence: shubiao.wu@une.edu.au

t Contributed equally

“Centre for Genetic Analysis and Applications and School of Environmental
and Rural Science, University of New England, Armidale, NSW 2351, Australia
Full list of author information is available at the end of the article

( ) BiolVled Central

taste, kernel weight, resistance to biotic/abiotic stress,
blooming time and self-incompatibility have been inves-
tigated, and efforts towards mapping and molecular
characterisation of these genes have been made [3-13].
With the aid of the peach genome sequence released
recently [14], characterisation of the almond genes
responsible for agronomically important traits will
become easier. However, well-assessed almond mapping
populations and subsequent genetic maps are still fun-
damental for investigations of the genetic and molecular
control of important traits.

A saturated linkage map can be a useful tool in the study
of plant genetics and breeding. Close associations between
important traits and molecular markers can assist fast
selection of plants with desired features at early stages of
growth. This is particularly valuable for breeding programs
of woody plants because conventional, phenotype-based
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selection in these is delayed due to a long juvenile stage.
Arus et al. (1994) first reported a linkage map in a ‘Fer-
ragnes’ x “Tuono’ (F x T) almond population with RFLP
and isozyme markers, where the map distance was omitted
[15]. Later the density and coverage of the map was
improved by the addition of more markers [16,17]. Balles-
ter (1998) constructed a molecular genetic map of a cross
‘Felisia’ x ‘Bertina’ (F x B) [18], and later a Late bloom
gene was mapped in the population [13]. Sdnchez-Pérez
et al. (2007) mapped 11 traits (genes or QTL) in a cross of
‘R1000’ x ‘Desmayo Largueta’ (RxD) with 56 SSRs in the
map [4]. However, more mapping populations and satu-
rated maps are required to assist broader assessment of
the almond traits and gene discovery especially under dif-
ferent environments and management systems. In Austra-
lia, a genetic linkage mapping program was initiated by
Gregory [19] in a ‘Nonpareil’ x ‘Lauranne’ cross (N x L),
but the integrated map with mainly RAPDs and ISSRs was
sparse and further saturation was desirable [20]. Recently,
Wu et al. (2009) reported that 12 SNP-anchored genes
were mapped on six linkage groups in the same popula-
tion with a higher map density [21]. Genetic maps have
also been constructed in crosses between almond and
peach including ‘Texas’x’Earlygold’ (T x E) [22-24], ‘Gar-
fi'x'Nemared’ (GxN) [25], ‘Padre’ x ‘54P455’ (Px5) [26,27]
and a derivative population from GxN [28]. The most
important map is the T x E map that has been generally
accepted as a marker-saturated Prunus reference map.
This map has been used to position genes corresponding
to 1236 ESTs [29], locate 42 putative resistance regions
[30], and align 613 rosaceaous unigenes that correspond
to single copy Arabidopsis genes [31]: the Rosaceae Con-
served Orthologous Set (RosCOS) map. A number of
QTL have also been mapped using the T x E map [11].

In this study, we developed a moderately saturated
linkage map by adding SSRs and SNPs to the N x L F1
map constructed by Gregory et al. (2005) [20]. The map
was compared with the Prunus T x E reference map to
demonstrate high synteny and colinearity between the N
x L and the reference map. The sequences of the gene-
anchored SNPs [21,32,33] were also compared to the
peach genome v1.0 and the mapped positions generally
agreed with the peach genome positions. The N x L
genetic map reported here can be used to investigate
traits of interest under the Southern Australian winter
rainfall inland environment, and provides more almond
genome information for the international community.

Results

Marker polymorphism

Altogether, 179 markers were polymorphic in the popula-
tion under analysis. Of these, 92 (51.4%) were heterozy-
gous in both parents, 34 with 4 alleles, 37 with 3 alleles,
and 21 with 2 alleles; 40 (22.3%) were heterozygous only
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in Nonpareil; and 47 (26.3%) were heterozygous only in
Lauranne. SSR markers BPPCT009, CPDCTO020,
CPSCTO039 and UDAp-479 demonstrated multi-locus
amplifications, each with two loci, across the population.
The mapping results (see following description) indicated,
however, that the loci of BPPCT009 were located closely
in the same linkage group at a distance of 6.0 cM.

Segregation of the markers

Of 179 markers analysed, 147 (82.1%) segregated in the
expected Mendelian segregation ratios, and 32 (17.9%)
showed skewed segregations (P < 0.05), with 19/113
(16.8%) SSR, 6/34 (17.6%) ISSR, 5/14 (35.7%) RAPD,
and 2/14 (14.3%) SNP markers showing skewed ratios.
Following grouping of the markers in the mapping pro-
cess, 10/20 (50.0%) of the markers appearing in linkage
group 7 (G7) had skewed segregation ratios, which was
extremely high compared to the average across other
groups 22/159 (13.8%). Interestingly, the only two
skewed SNP markers were grouped in G7. To avoid
using too few markers for a framework construction, all
the skewed markers in G7 were included in the first
step of mapping, and second step mapping for this
group was omitted.

A plot of negative log;o of p-values [-logio(p)] in x>
tests comparing frequencies of alleles of the loci in the
G7 versus their map positions is shown in Figure 1. A
main peak was identified in the area between markers
CPPCTO007 and N-93. While a few markers with low
-log10(P) values were present in the adjacent areas of
the peak, a trend that the -log;o(P) values declined gra-
dually towards two ends of the linkage group was clearly
illustrated.

Linkage maps constructed using One-step and Two-step
methods
A final linkage map of 591.4 cM containing 157 markers
(93 SSRs, 35 ISSRs, 14 SNPs, 4 S-alleles, and 11 RAPDs)
was constructed using the One-step method of JoinMap®
(Table 1). The average marker distance of the map was
4.0 cM, and 27 skewed markers were mapped in the
genome of the population. Individually, G1 was the
longest group covering 108.2 cM with 22 markers. G5
was the shortest group covering 54.8 cM with 17 mar-
kers. The average marker distance varied from 2.4 (G6)
to 5.7 (G8) cM. As indicated previously, G7 mapped the
highest number of segregation ratio skewed markers
(10), whereas G5 had no skewed markers in the group.
Using the Two-step method, the final map was 603.9
cM contained 160 markers (95 SSRs, 35 ISSRs, 18
SNPs/INDELS, and 12 RAPDs) (Table 1). The average
marker distance of this map was 4.0 cM and 28 skewed
markers were included in the map. Similar to the One-
step map, G1 was the longest group at 113 cM
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Figure 1 A plot of negative log, of p-values [-logo(p)] in % tests comparing frequencies of alleles of the loci in the G7 versus their
map positions resulting from the One-step mapping method. A main peak was shown in the area between markers CPPCT007 and N-93. A
higher -log,o(p) demonstrates the higher deviation of genotype segregation of a locus from the expected Mendelian ratio. Horizontal broken
line shows threshold of statistical significance [-log10(p) = 2, corresponding to p = 0.01].

containing 24 markers. G5 was the shortest group at
54.4 cM containing 17 markers. The average marker dis-
tance varied from 2.7 (G6) to 5.5 (G8). As with the
One-step method, G7 had the highest number of
skewed markers (10) whereas G5 had no skewed mar-
kers mapped.

For most of the markers, the two methods produced
consistent mapping results as shown in Figure 2. The
linkage groups G5 and G7 produced by the One-step
and Two-step methods were completely collinear with
no rearranged linkage order. Other linkage groups had

one or more markers in different map order in the two
maps. Although the divergence in positions were not
substantial for most markers, seven markers showed
shifts larger than 20 cM, i.e., CT8G-743 in G1, UDA-
008 and AG8YC-714 in G2, CPDCTO008 in G3, AG8YC-
771 in G6 and AG8YA-763 and OPA08-1175 in G8
with shifts of: 48.9 cM, 30.4 cM, 20.1 cM, 41.6 cM, 25.2
cM, 61.8 cM, and 29.5 cM respectively. Among these,
CT8G-743, CPDCT008, AG8YC-771 and AG8YA-763
showed significantly skewed segregation ratios, and most
(5/7) were dominant markers (ISSR and RAPD). The

Table 1 Statistics of the maps constructed using One-step and Two-step methods

One-step Two-step
Group Number Size Average marker Number of skewed Number  Size Average marker Number of skewed
of loci (cM) distance (cM) markers of loci (cM) distance (cM) markers

€] 22 108.2 52 3 24 1130 49 3

G2 16 56.0 3.7 1 16 484 32 1

G3 21 69.4 35 5 21 723 36 6

G4 21 83.6 42 3 21 894 45 3

G5 17 54.8 34 0 17 544 34 0

G6 28 65.0 24 2 28 728 2.7 2

G7 18 80.5 47 10 18 81.6 48 10
G8 14 739 5.7 3 15 76.5 55 3
Total/ 157 5914 4.0 27 160 603.9 4.0 28

average
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Figure 2 The alignment of the linkage groups between maps of the cross ‘Nonpareil’ x ‘Lauranne’ (N x L) F1 population constructed
using One-step and Two-step methods, and with the Prunus T x E reference map that include only SSR markers. The maps of N x L
population were constructed using the JoinMap® 3, and the maps were viewed and aligned by the MapChart 2.2. The SSR markers are shown in
italics, the SNP-anchored genes and S-loci are in bold, ISSR markers are underlined, and the RAPD markers are in plain font. The genetic distance
of the loci are shown in centimorgans (cM) and the gaps between two adjacent markers > 10 cM are highlighted in grey segments on the
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segment from marker UDAp-479A to marker
CPPCT029 of G1 (in map I) and from marker CA8T-
2045 to marker UDP96-019 of G8 (in map I) was
inverted between the two maps.

Among the markers mapped in the N x L population,
the ISSRs were developed in our initial analysis, and
therefore were newly mapped markers in the P. dulcis
map. The SSRs were identified from published studies,
and the majority of the markers mapped in the same
linkage groups as previously reported. However, a few
SSR markers were mapped for the first time:
CPDCTO018 on G4, CPDCT006 on G6, and CPDCT007
on G7. Moreover, some markers amplified more loci in
the N x L population than in the previous report or
mapped to different linkage groups. CPDCT020 mapped
to G8 in the T x E reference map [23] and the “Conten-
der” x “Fla.92-2C” peach map [34] as a single locus
marker. The primers for this marker amplified two loci
in the N x L population, which mapped to G3 and G8.
Primers for UDAp-479 also amplified two loci, which
mapped to G1 and G5 in our study. A recent report
identified four loci for UDA-479 in the apricot popula-
tion “Z506-07" (Z) x “Currot” (C) and all four loci were
assigned to G8 [35]. Two loci of BPPCTO009 were
mapped to G4 of the peach “Ferjalou Jalousia” x “Fanta-
sia” [36] and T x E reference maps [23] for locus A, and
G7 of the “Ferjalou Jalousia” x “Fantasia” map [36] and
G6 of the T x E reference map [23] for locus B. In con-
trast, two loci for BPPCT009 were mapped to G6 of our
mapping population in an interval of 6.0 cM.

In the maps constructed by both methods, gaps bigger
than 10 cM were observed (segments in grey shown in
Figure 2). These included one gap on G2, G3, G5, G7
and G8, and three gaps on G1 in the One-step map,
and one gap on G2, G3, and G7, two gaps on G5, and
three gaps on G1 and G8 in the Two-step map. The
Two-step map had more gaps (11) of > 10 ¢cM than the
One-step map (8). The biggest gap (21.9 cM) was
between the markers UDAp-463 and CPSCT024 on G1
of the One-step map.

Synteny of the N x L and T x E maps and between the
almond and peach genomes

The almond N x L and Prunus T x E reference genetic
maps were compared using common SSR markers to
visualise the syntenic regions. As shown in Figure 2, a
high degree of macro-synteny between N x L and T x E
was evident across the whole genome with 59 common
SSR markers. For example, the linkage groups G1, G4
and G6 did not show any order conflict between the N
x L and T x E maps. Despite the high degree of macro-
synteny, rearrangements of markers in small sections
occurred in the other linkage groups. Furthermore, a
few markers showed inconsistency of position over
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larger distances between the N x L and T x E maps.
For instance, the marker CPSCT033 mapped to the top
of G5 in the N x L maps (I and II), while it was located
in the middle segment of T x E 28.4 cM from the top.
The marker CPDCTO008 was mapped to the upper part
(N x L map I) or the lower part (N x L map II) of G3
but to the lower middle part in T x E. With reference
to the T x E map, the N x L map coverage of the gen-
ome varied with linkage groups. G1 and G6 covered the
whole length of the corresponding groups of T x E; G2,
G3, and G7 covered most of their corresponding groups
with one end or both ends having no common markers
with T x E but covering equivalent lengths; G4 and G5
had fewer markers in common with the T x E map but
comparison with maps in the GDR database http://
www.rosaceae.org[37] indicated full coverage of G4; and
G8 alignment indicated that at least the bottom part of
approximately 10 cM was not mapped in N x L. Hence,
this N x L map can be regarded as moderately
saturated.

The sequences of fourteen SNP-anchored genes were
compared using Blastn with the peach genome v1.0
database, and homologous sequences were located in
the scaffolds of the peach genome. As the scaffolds cor-
respond to each of the linkage groups of Prunus maps,
the relative positions of the genes can be identified in
the genome. The results showed that the locations of
the majority of the genes mapped in the N x L popula-
tion agreed with the positions of their homologous
sequences in the corresponding peach genome scaffolds
(Figure 3). AWPM-19-like, however, was located near
the top of G1 rather than in the lower middle part of
the group, where the homologous sequence was identi-
fied in the peach genome scaffold_1. In G6, the segment
involving MT2, dhn3 and AP2 showed inversion com-
pared to the peach genome despite spanning only a
small fragment with genetic distance of 5.9 cM or DNA
length of 2.6 Mbp.

Discussion
In this study, we constructed almond linkage maps of
an Australia population derived from the cross
between the American cultivar ‘Nonpareil’ as maternal
parent and the French cultivar ‘Lauranne’ as pollen
donor (N x L). Two maps were constructed using
One-step and Two-step methods, with total lengths of
591.4 cM and 603.9 cM respectively. 157 molecular
markers were positioned on the One-step and 160
markers were positioned on the Two-step map. The
resulting maps showed high colinearity with the Pru-
nus T x E reference map [24,36].

To obtain an integrated map of a cross pollinated
population, individual parental maps were generally con-
structed and then integrated to produce a consensus
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Figure 3 Comparison of the positions of SNP-anchored genes
mapped in the N x L population (map 1) with the positions of
their homologous sequences in the scaffolds of peach genome
v1.0. The genetic distance in the N x L map is shown in
centimorgans (cM), and the positions of the homologous sequences
in the scaffolds of peach genome v1.0 are shown in mega basepairs
(M). The scaffold bars represent the whole length of the
corresponding chromosomal DNA. The locations of all the genes
except AWPM-19-like mapped in the N x L population agreed with
the positions of their homologous sequences in corresponding
peach genome scaffolds. AWPM-19-like gene positioned near the
top of N x L G1, but in the lower part of the peach genome
scaffold_1. An inversion is present in the segment including genes
MT2, dhn3, and AP2.

map of the population by estimation of the average
recombination frequency of the loci in the two parents, as
has been used for other pseudo-test cross mapping popu-
lations in many tree species [38-40]. In this study, we
denoted this as the Two-step method. Since the release of
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JoinMap® version 3 [41], the construction of an integrated
map of the population can be undertaken by loading all
the genotyping data of the population, bypassing indivi-
dual parental map construction in a One-step strategy.
Genetic maps constructed in this way have been published
in recent years [42-44]. During initial mapping analysis,
we tried both the One-step and Two-step methods, and
variations of marker distances and positions were identi-
fied. As the comparison studies had not been reported, we
applied both methods in our N x L almond population to
investigate whether different methods yield significantly
different maps. Based on our study, these two integration
methods did not result in substantial differences for all the
linkage groups, and only a small proportion of markers
showed positional instability between the two maps. The
majority of the markers (6/7) that had a position shift of
greater than 20 cM between two maps showed skewed
segregation ratios or were adjacent to markers with
skewed segregation. The fewer large gaps generated in the
One-step map suggest that the One-step mapping is an
appropriate method to construct an integrated map of a
pseudo-test cross population such as in the almond and
other tree plants. Therefore, in this study, the One-step
map was used to represent the N x L genome for other
analyses (Figures 1 and 3).

Linkage maps based on intraspecific crosses of almond
have been reported for the crosses of ‘Ferragnes’ x
‘Tuono’ (F x T) [15-17], ‘Felisia’ x ‘Bertina’ (F x B)
[13,18], ‘R1000’ x ‘Desmayo Largueta’ (RxD) [4], and
‘Nonpareil x Lauranne’ (N x L) [20,21]. While F x T
and F x B maps consisted mostly of RFLP and RAPD
markers, the RxD map contains 56 SSR markers with
less density across the genome. SSRs are the favoured
marker type used for many applications in plant genetics
including genetic mapping because of easy transferability
between intraspecific populations and across closely
related species, and a high number of alleles per locus
that provides greater information content [45-48].
Therefore, a saturated map containing additional SSR
markers is warranted in almond intraspecific crosses.
The N x L map was initiated with RAPDs, ISSRs and
the small numbers of SSR, and a sparse integrated map
was subsequently produced [20]. Using high resolution
melting curve analysis [32], Wu et al. mapped 12 gene-
anchored SNPs on six linkage groups plus the addition
of more SSR to the map [21]. In the present study, we
have constructed a combined molecular linkage map
including SSR, SNP, RAPD, and ISSR markers. In com-
parison with the Prunus T x E reference map and other
maps reported in Prunus (data not shown), the linkage
groups of the N x L map covered close to the whole
length of the almond linkage groups with the exception
of G8 which requires further extension beyond
EPDCU3454. With reasonable dense coverage of the
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genome by SSRs and SNPs, the map can readily be used
in the Australian almond breeding program [49] and
contribute to international almond genome research.

The clustering of loci with skewed segregation ratios
on G7 suggests a possible association of deleterious
genes with this section of the linkage group and a more
in depth study to investigate this possibility is war-
ranted. In a peach F2 mapping population, no linkage of
markers could be established for G7 [50] possibly due to
the complexity of marker segregation. In our study,
more than half (10/18) of the mapped markers had sig-
nificantly skewed segregation ratios, and most of the
skewed markers clustered on the central section of the
linkage group with a peak of segregation distortion
around marker MAO020. This finding indicates that the
area may harbour one or more deleterious genes.
Although some genes or traits related to biotic or abio-
tic stress have been mapped to this group such as the
nematode resistance trait MA [30] and the DHN gene
involved in freezing and drought tolerance [27], those
genes were probably not the cause of the distorted seg-
regations as these occur in a different region of G7. It
would be interesting to search for deleterious gene
alleles in the region around MA020. The recent release
of peach genome v1.0 provides a good opportunity for
conducting such investigations.

With the release of a >7 fold coverage peach genome
in April 2010 (v1.0), with 27,852 genes predicted [14],
genomic exploration in Prunus and more widely in the
family Rosaceae and perhaps other tree plants will accel-
erate. In the present study, we compared 14 SNP-
anchored genes mapped in the N x L population with
the peach genome v1.0. A high synteny between our
map and the peach genome was observed as expected.
However, an inversion was noted in a G6 segment
including genes MT2, dhn3, and AP2. The evidence for
the inversion will become clearer when the almond gen-
ome is sequenced and a final sequence build is achieved
in the future. Nevertheless, as the closest relative of
peach, genetic and genomic studies in almond will bene-
fit significantly from the publication of the peach gen-
ome sequences prior to the complete sequencing of the
almond genome. For almond researchers and breeders
to fully utilise the sequence information becoming avail-
able for peach, well-assessed almond populations and
genetic maps are required to associate important agro-
nomic traits of the species with predicted genes in
peach. Development of saturated genetic marker maps
such as that presented in this paper will be valuable for
almond genetic research and breeding programs.

Conclusions
Here, we presented a moderately saturated Australian
almond map, which is highly syntenic and collinear

Page 7 of 10

with the Prunus T x E reference map and peach gen-
ome V1.0. It was identified that a section of G7 with
skewed markers may harbour one or more deleterious
gene(s), and further investigation to search for such a
gene is suggested. The comparison of One-step
and Two-step methods indicated that these two
methods produced highly consistent maps, but One-
step method was a preferred mapping approach. The
well-assessed almond population reported here can be
used to investigate the traits of interest under Austra-
lian growing conditions, and provides more informa-
tion on the almond genome for the international
community.

Methods

Mapping population and DNA extraction

An almond pseudo-testcross population with 93 pro-
geny, derived from the cross between the American cul-
tivar ‘Nonpareil’ as maternal parent and the French
cultivar ‘Lauranne’ as pollen donor, was used as the
mapping population (N x L) [21]. The population was
planted in a commercial orchard at Lindsay Point - Vic-
toria, Australia (34°15’27"'S - 141°00’00"E) with a fertile
and well drained soil and an average of 223 mm annual
rainfall. Standard orchard management including fertili-
sation, irrigation and pruning were applied. Total geno-
mic DNA was extracted from fresh young leaves using
the protocol of Lamboy and Alpha, (1998). DNA quan-
tity and quality was measured spectrophotometrically by
Nanodrop ND-1000° (Thermo Scientific, USA).

Molecular markers

A total of 241 SSR initially reported in different Prunus
species were screened for polymorphisms in the parents
and selected progeny (Table 2). The designation of the
markers, the original species from which the markers
were developed, and the reference information are listed
in Table 2. The PCR was performed in a total volume of
20 pl containing 1 x PCR reaction buffer (Bioline, Syd-
ney, Australia), 2.5 mM MgCl,, 0.2 mM dNTPs, 0.2 uM
of each primer, 40 ng of template DNA and 1 unit of
Taq polymerase (Bioline, Sydney, Australia). Amplifica-
tion involved first denaturation at 95°C for 5 min, 34
cycles of denaturation at 95°C for 30 seconds, annealing
at appropriate temperatures (mostly based on the infor-
mation provided in the cited literature, and available on
request from authors) for 30 seconds, and extension at
72°C for 30 seconds, and a final extension at 72°C for 7
min. Electrophoresis was performed on 8% (w/v) polya-
crylamide gel, or automated capillary gel on the ABI
PRISM 3730 DNA Analyzer (Applied Biosystems) to
visualise PCR products. Markers with good reproducibil-
ity and clearly decipherable loci were chosen for con-
struction of linkage maps.
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Table 2 List of identifiers and numbers of the SSR markers tested, segregated and mapped

Identifier  Number of markers tested Number of markers segregated Number of markers mapped Species of origin  References
AMPA 1 0 0 Apricot [52]
BPPCT 29 17 16 Peach [53]
CPDCT 25 15 13 Almond [47]
CPPCT 25 13 12 Peach [54]
CPSCT 23 13 10 Japanese plum [55]
EMPA 3 1 1 Sweet cherry [56]
EMPaS 4 0 0 Sweet cherry [57]
EPDCU 14 6 5 Almond [48]
MA 1 1 1 Peach [58]
Pac 2 0 0 Apricot [52]
PaCITA 1 1 1 Apricot [59]
PceGA 3 1 1 Sour cherry [60]
Pchcms 3 1 1 Peach [61]
Pchgms 8 3 3 Peach [61,62]
PMS 3 0 0 Peach [63]
PS 4 2 2 Sour Cherry [6]
UCD-CH 8 2 1 Sweet cherry [64]
UDA 41 15 14 Almond [65]
UDAp 28 9 Apricot [66]
UDP 15 8 Peach [67]
Total 241 108 96

The design and assay techniques for the SNPs, ISSRs
and RAPDs used in the present study have been
described previously [19-21,33]. The assay of self-incom-
patible genes S$3, S7, and S8, and self-fertile gene Sf was
conducted as described by Channuntapipat [6].

Map construction

Linkage maps were constructed using JoinMap® 3 soft-
ware [41]. Two different mapping methods were applied
and the resulting maps were compared and analysed to
assess their synteny with the Prunus T x E reference
map. The first method constructed two parental maps
separately, which was followed by the production of an
integrated map. As this approach involved two map con-
struction steps [38-40], we denoted it as ‘Two-step
method’ and the map or linkage groups labelled as “II”.
This included preparing two separate parental data sets
as described elsewhere for a pseudo-testcross population
[38]. Both sets of genotyping data were loaded into Join-
Map® 3 and the two parental maps were constructed
separately. Chi-square analysis was performed for good-
ness of fit to the expected Mendelian segregation ratio
for each marker and skewed markers were identified
using a threshold of P < 0.05. Framework linkage groups
were created by omitting the skewed markers from the
data for all the linkage groups except G7, due to the high
degree of skewed markers in this group (see Results sec-
tion). These framework groups were used as fixed orders
for the individual final map construction that included all

markers. Linkage groups were established at a LOD score
> 5 and recombination fraction < 0.40. The Kosambi
mapping function was used for the calculation of map
distances. Two parental maps (as frameworks or final
maps) were integrated using the “Combine Groups for
Map Integration” function of Joinmap® 3 to produce the
combined maps (framework or final maps). This method
uses mean recombination frequencies and combined
LOD scores for mapping calculations. The second
method constructed a map by using all the markers het-
erozygous in both or either of the parental trees as one
set of data [42-44]. As this method involved using all
markers in a single map construction, it was denoted as
the ‘One-step method’ and the map or linkage groups
labelled as “I”. The process of testing segregation ratios
and inclusion of markers in maps was identical to that
used in the ‘Two-step method’. Markers in common
between our maps and the Prunus T x E reference map
were used to identify corresponding linkage groups. The
resulting maps were graphically presented and their align-
ment was performed using Mapchart 2.2 [51].

Sequence blast and localisation in Prunus genome
Sequences of the SNP-anchored genes were blasted
against peach genome v1.0 scaffolds [14], and the result-
ing homolog sequences were located in the scaffolds
(corresponding to the linkage groups of Prunus genetic
maps) using the GBrowse function http://www.rosaceae.
org/gb/gbrowse/prunus_persica/.
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