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Abstract

Background: Genetic maps provide an important genomic resource for understanding genome organization and
evolution, comparative genomics, mapping genes and quantitative trait loci, and associating genomic segments
with phenotypic traits. Spruce (Picea) genomics work is quite challenging, mainly because of extremely large size
and highly repetitive nature of its genome, unsequenced and poorly understood genome, and the general lack of
advanced-generation pedigrees. Our goal was to construct a high-density genetic linkage map of black spruce
(Picea mariana, 2n = 24), which is a predominant, transcontinental species of the North American boreal and
temperate forests, with high ecological and economic importance.

Results: We have developed a near-saturated and complete genetic linkage map of black spruce using a three-
generation outbred pedigree and amplified fragment length polymorphism (AFLP), selectively amplified
microsatellite polymorphic loci (SAMPL), expressed sequence tag polymorphism (ESTP), and microsatellite (mostly
cDNA based) markers. Maternal, paternal, and consensus genetic linkage maps were constructed. The maternal,
paternal, and consensus maps in our study consistently coalesced into 12 linkage groups, corresponding to the
haploid chromosome number (1n = 1x = 12) of 12 in the genus Picea. The maternal map had 816 and the
paternal map 743 markers distributed over 12 linkage groups each. The consensus map consisted of 1,111 markers
distributed over 12 linkage groups, and covered almost the entire (>97%) black spruce genome. The mapped
markers included 809 AFLPs, 255 SAMPL, 42 microsatellites, and 5 ESTPs. Total estimated length of the genetic map
was 1,770 cM, with an average of one marker every 1.6 cM. The maternal, paternal and consensus genetic maps
aligned almost perfectly.

Conclusion: We have constructed the first high density to near-saturated genetic linkage map of black spruce,
with greater than 97% genome coverage. Also, this is the first genetic map based on a three-generation outbred
pedigree in the genus Picea. The genome length in P. mariana is likely to be about 1,800 cM. The genetic maps
developed in our study can serve as a reference map for various genomics studies and applications in Picea and
Pinaceae.

Background
Genetic maps provide an important genomic resource
for understanding genome organization and evolution,
comparative genomics, mapping genes and quantitative
trait loci, and associating genes and genomic segments
with phenotypic traits, especially in those species whose
genomes are not yet completely sequenced. For under-
standing the genetic architecture of species, genetic

maps with high levels of genome coverage and confi-
dence in the marker order are required. High-density
genetic maps and identification of genes or genetic fac-
tors controlling traits related to productivity, health, and
adaptation to climatic change could accelerate forest
tree improvement programs. Conifers are economically
and ecologically important, and are the dominant tree
species of the boreal and temperate forests. Genetic
mapping and other genomics research is challenging in
conifers, mainly because of their very large genome size
(~25-30 Gbp) [1], the long time required to reach sexual
maturity, inbreeding depression, and a general lack of
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advanced-generation pedigrees. The genome of any con-
ifer species has yet to be completely sequenced.
Picea (spruce) is the second largest genus after Pinus

(pine) in the family Pinaceae of conifers. Black spruce
(Picea mariana (Mill.) B.S.P.) is a widespread transconti-
nental species of the North American boreal and tempe-
rate forests [2], and has great ecological and economic
importance. It is one of the most important trees in
Canada for the production of pulp and paper, and is
one of the most important reforestation species in
Canada [3]. Black spruce is a diploid species with hap-
loid chromosome number (n) of 12 (2n = 2x = 24), like
most other Pinaceae members. The estimated genome
size of black spruce is large (1C = 15.8 pg; [4]; http://
www.rbgkew.org.uk/cval/homepage.html) with an
approximate 2C genome length of about 31,000 mpb
http://www.rbgkew.org.uk/cval/homepage.html.
Although the first genetic linkage map in conifers was

constructed for a single white spruce (Picea glauca
(Moench) Voss) tree in 1992 from the analysis of hap-
loid megagametophytes [5], the progress in the spruce
genome mapping has been rather slow, particularly
compared with the genus Pinus. Genetic linkage maps
have been constructed for Norway spruce (Picea abies
L.) [6-9], white spruce [5,10,11], and a black × red
spruce (Picea rubens Sarg.) hybrid complex with an
unknown proportion of the black spruce and red spruce
genetic contribution to this hybrid [12,13]. A parentage
test with species-specific DNA markers revealed that the
crosses used in [12] and [13] harbored a substantial
amount of the red spruce genetic background. The mar-
kers used in the above-reviewed genome mapping stu-
dies were random amplified polymorphic DNA (RAPD)
or a combination of RAPD, amplified fragment length
polymorphism (AFLP), microsatellite/simple sequence
repeat (SSR), expressed sequence tag polymorphism
(ESTP), selectively amplified microsatellite polymorphic
loci (SAMPL), single nucleotide polymorphism (SNPs),
and/or 5 S rDNA. With the exception of the maps con-
structed for Norway spruce and white spruce from F1
mapping populations [9,11] and the map constructed for
black × red spruce hybrids from F1 and BC1 mapping
populations [12,13], all other maps were constructed for
single trees from the segregation of a small number of
markers in haploid megagametophytes. Single-tree
genetic maps are of limited value. In predominantly out-
crossing plants, such as conifers, a three-generation
outbred pedigree (TGOP) is considered to be more
informative than F1 or BC1 pedigree [14]. However,
there is no published genetic linkage map in the genus
Picea based on a TGOP. Moreover, most of the pub-
lished spruce genetic linkage maps have not coalesced
into 12 linkage groups corresponding to the haploid
chromosome number of Picea. The linkage groups have

ranged from 12 to 29. The first single tree genetic link-
age map of white spruce developed from 47 RAPD mar-
kers coalesced into 12 linkage groups. Although the
consensus map of Picea abies [9] and the composite
map of P. mariana X P. rubens hybrids [12,13] coa-
lesced into 12 linkage groups, the maternal and/or
paternal maps in these species coalesced into 13-23 link-
age groups. There is no information published on a
genetic linkage map in pure black spruce.
The objective of this study was to construct a high-

density genetic linkage map of black spruce. We have
used a three-generation outbred pedigree (TGOP) to
develop a high density to near-saturated genetic map of
black spruce. Here, we report maternal, paternal, and
near-saturated consensus genetic linkage maps devel-
oped for black spruce using AFLP, SAMPL, ESTP, and
SSR markers.

Results
AFLP markers
Forty AFLP primer combinations generated 809 markers
segregating according to the expected Mendelian ratios.
The number of polymorphic fragments ranged from 2
to 52, with an average of 20 polymorphic fragments per
primer combination (Table 1). The average number of
polymorphic fragments obtained per primer combina-
tion was 27, 18, 16 with the use of three, four, and five
selective nucleotides (at the selective amplification step),
respectively. The size of the segregating polymorphic
fragments without adapters ranged from 40 to 660 bp,
with only one mapped fragment below 50 bp and seven
between 50 and 60 bp. Of the 809 markers, 485 segre-
gated in ratio of 1:1 and 324 in ratio of 3:1. The number
of markers segregating in the 1:1 ratio was 253 in the
maternal parent and 232 in the paternal parent.

SAMPL markers
A total of 255 SAMPL markers, segregating according to
the expected Mendelian ratios, was obtained from the 12
SAMPL-MseI primer combinations (Table 2; Table 3).
The fragment size without adapters ranged from 32 to
661 bp (Table 3). Only six mapped SAMPL markers were
of < 50 bp and 6 from 50 to 60 bp without adapters. The
number of polymorphic fragments ranged from 2 to 44,
with an average of 21 polymorphic fragments per
SAMPL primer combination. Of the 255 SAMPL mar-
kers, 149 segregated in the ratio of 1:1, whereas 106
SAMPL markers segregated in the ratio of 3:1. The num-
ber of SAMPL markers segregating in the 1:1 ratio was
94 in the maternal parent and 54 in the paternal parent.

Microsatellite markers
Twenty white spruce EST-based SSR loci were poly-
morphic between the parents of the mapping population
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and were mapped on the consensus map (Table 4). Six
of the 20 polymorphic loci were heterozygous in the
female parent as dominant makers and fourteen in both
parents as co-dominant makers. Two alleles at a SSR
locus heterozygous in the male or female parent, segre-
gated in a 1:1 ratio in the progeny. Where both the par-
ents were heterozygous, the progeny segregated either in

a 1:2:1 or 1:1:1:1 ratio for their parental alleles (2-4).
The known genes mapped using the microsatellites
from white spruce EST sequences were as follows: Link-
age Group (LG) I - Cytochrome B561 (RPGSE40); LG III
- TIR/P-loop/LRR (RPGSE37); LG VI - Cytochrome P450
(RPGSE10) and putative UNC-50 (RPGSE46); LG VII -
Early light inducible protein (RPGSE11) and Chloroplast

Table 1 AFLP primer combinations used, and the number and size of polymorphic fragments, and their segregation
ratios

Primer combinations Size of fragments (bp) Total number of polymorphic markers Mendelian segregation

1:1 3:1

A-EAAC-MCCAC 54-340 52 31 21

A-EAAC-MCCACC 54-134 2 2 0

A-EAAC-MCCAG 65-502 17 17 0

A-EAAC-MCCATC 95-604 31 22 9

A-EAAG-MCCAG 80-236 18 11 7

A-EAAG-MCCATC 66-324 25 20 5

A-EACA-MCCAT 56-264 7 7 0

A-EACG-MCAT 52-198 22 14 8

A-EACG-MCCAG 40-245 14 8 6

A-EACG-MCTG 73-275 13 2 11

A-EACT-MCCAA 54-321 35 26 9

A-EACT-MCCTA 54-475 28 20 8

A-EAGC-MCTC 60-547 35 9 26

A-EAGC-MCTG 45-660 47 25 22

A-EACG-MCCAA 126-275 14 7 7

A-EACG-MCCTA 60-430 30 12 18

A-EACG-MCCGC 56-622 10 8 2

A-EACT-MCCAC 59-100 5 1 4

A-EACT-MCCAG 56-70 7 3 4

A-EACT-MCTA 74-327 32 19 13

A-EACT-MCAC 61-397 33 22 11

A-EACT-MCAT 80-262 27 15 12

A-EACG-MCCAT 66-148 8 4 4

A-EACG-MCCAC 67-327 11 4 7

A-EACG-MCTC 90-280 8 4 4

A-EACG-MCCAGC 78-210 12 11 1

A-EAAC-MCCTA 62-240 27 13 14

A-EAAC-MCCAT 69-414 23 13 10

A-EAAC-MCCAA 67-271 25 14 11

A-EAAC-MCCGA 66-194 11 6 5

A-EACA-MCAC 67-292 24 15 9

A-EACA-MCCACC 69-391 21 16 5

A-EACA-MCCGA 67-262 20 11 9

A-EACA-MCTA 60-261 33 26 7

A-EACA-MCCAC 67-178 9 7 2

A-EAAG-MCCAT 66-276 18 12 6

A-EAAG-MCCACC 65-121 9 5 4

A-EAAG-MCCAC 64-311 18 9 9

A-EAAG-MCCAA 69-249 11 7 4

A-EAAG-MCCTA 66-153 17 7 10

Total 809 485 324
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nucleoid DNA binding protein (RPGSE34); LG VIII -
Homeotic protein BEL1 (RPGSE02); LG IX - Auxin-
induced protein 1 (RPGSE13); and LG XI- Putative Beta
glycosidase (RPGSE03) and Gibberellin 12-oxidase
(RPGSE04).
Six black spruce EST-based SSR loci that were poly-

morphic between the parents as dominant markers were
mapped on the consensus map; four were heterozygous
in the female and two in the male parent for a null
allele (Table 4). These markers segregated in a 1:1 ratio
in the progeny. Sixteen black spruce genomic sequence-
based SSR loci were polymorphic between the parents
and were mapped on the consensus map (Table 4).
Eight microsatellite markers were heterozygous for a
null allele in the female parent and five were heterozy-
gous in the male parent. These markers segregated in a
1:1 ratio as dominant markers. Three microsatellite loci
were heterozygous in both parents and the progeny seg-
regated in a 1:2:1 or 1:1:1:1 ratio as co-dominant
markers.

ESTP markers
Five ESTP markers showed Mendelian segregation in the
progeny. Three ESTP loci were heterozygous in the

female parent and two were heterozygous in the male
parent. These markers segregated in a 1:1 ratio. Two
ESTP markers were mapped on LG XI as well as one
each on three linkage groups I, V, and IX (Figures 1, 2, 3).

Genetic linkage maps
The maternal map consisted of 816 markers distributed
on 12 linkage groups covering 1,597 cM (Tables 5, 6).
The number of mapped markers ranged from 35 to 93,
with an average of 68 markers per linkage group. The
length of the linkage groups ranged from 112 to 158
cM, with an average of 133 cM per linkage group
(Table 6). The paternal map consisted of 743 markers
assigned on 12 linkage groups, which covered 1,636 cM
(Tables 5, 6). The number of mapped markers ranged
from 25 to 89, with an average of 62 markers per link-
age group. The length of the linkage groups ranged
from 110 to 181 cM, with an average of 136 cM per
linkage group (Table 6).
The homologous linkage groups between the parents

were identified on the basis of segregating intercross
AFLP, SAMPL, and SSR markers in the maternal and
paternal maps. At least three intercross markers per
linkage group were used. The integrated data set from
the maternal and paternal maps allowed construction of
a consensus linkage map. The consensus linkage map
composed of 1,111 markers (Tables 5, 6) mapped to 12
linkage groups (Figures1, 2, 3). The linkage groups cor-
respond to the haploid chromosome number (n = 12) of
black spruce. It is worth noting that we have consis-
tently obtained 12 linkage groups for the maternal,
paternal, and consensus linkage maps, unlike other map-
ping studies where parental and/or consensus maps did
not coalesce into 12 linkage groups. The consensus map
covered 1,770 cM, with an average of 93 markers per

Table 2 SAMPL primers developed from Lactuca (from
Witsenboer et al. [41]) compound microsatellite repeats
and used for SAMPL marker mapping in the black spruce
mapping population

Primer name Primer sequence (5’®3’) Compound repeats

SL3 ACA CAC ACA CAC ACA TAT AA A(CA)7 (TA)2A

SL4 TGT GTG TGT GTG TGT ATA T (GT)7 (AT)2

SL5 CTC TCT CTC ACA CAC ACA CA C(TC)4 (AC)4A

SL6 CTC TCT CTC GTG TGT GTG C(TC)4 (GT)4G

Table 3 SAMPL primer and MseI primer extension combinations used, and the number and size of polymorphic
fragments, and their segregation ratios

Primer combinations DNA fragments size (bp) Total number of polymorphic markers Mendelian segregation

1:1 3:1

SL3-MCTT 91-315 20 17 3

SL3-MCAC 32-661 39 18 21

SL3-MCCG 40-416 6 6 0

SL4-MCTT 40-612 44 23 21

SL4-MCAC 57-440 23 11 12

SL4-MCCG 60-640 23 4 19

SL5-MCTT 88-223 7 7 0

SL5-MCAC 48-239 2 2 0

SL5-MCCG 50-437 13 12 1

SL6-MCTT 66-277 40 35 5

SL6-MCAC 66-272 18 4 14

SL6-MCCG 66-248 20 10 10

Total 255 149 106
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linkage group and an average of one marker every
1.6 cM. The size of linkage groups varied from 131 to
172 cM, with an average of 148 cM (Table 6; Figures 1,
2, 3). The maternal, paternal and consensus genetic
maps for each of the 12 linkage groups aligned very well
and showed almost perfect colinearity of the marker
order (Figure S1- Additional File 1).

Genome length and map coverage
The estimated length of the black spruce genome was
1,786 cM based on the method of Chakravarti et al.
[15], and 1,819 cM according to the method of Fish-
mann et al. [16]. The observed length of the black
spruce genome obtained from the consensus genetic
linkage map was 1,770 cM. Thus, the consensus genetic
map constructed in our study covered more than 97%
of the estimated genome length of black spruce.

Distribution of markers along linkage groups
Significant deviations from the Poisson distribution of
markers were observed for marker intervals of 2.5 cM, 5
cM, 10 cM, 20 cM, and 40 cM. For a 10 cM interval,
the significant deviation (P < 0.001) is shown in Figure
4, indicating that the markers were not randomly dis-
tributed in the black spruce linkage groups. Marker dis-
tribution for other intervals (2.5 cM, 5 cM, 20 cM, and
40 cM) also showed clustering of markers (P < 0.05)
along linkage groups. The independent analysis for test-
ing the random distribution of AFLP (P < 0.001) and
SAMPL (P < 0.001) markers indicated deviations from
the random distribution. No correlation was observed
between the number of mapped markers and the size of
linkage groups. These results further support the clus-
tering of makers on the linkage map.
The distance between two adjacent markers on the

linkage groups varied from 0 to 23.7 cM, with an aver-
age distance of 1.6 cM between any two adjacent mar-
kers (Figure 5; Table 6). This distance distribution
reveals a strong skewness (P < 0.05), further indicating
the non-random distribution of the markers along the
linkage groups (Figure 5). Among the 1,099 intervals on
12 different linkage groups, 820 intervals were smaller
than 2 cM (74.6%), and 89 intervals were larger than 6
cM (8.1%).

Discussion
Genetic linkage map
We have developed a high density to near-saturated and
complete genetic linkage map of black spruce. This is
the first genetic map for black spruce, although genetic
maps have recently been reported for a black spruce ×
red spruce hybrid complex [12,13]. Except in the south-
ern part of its range, red spruce is largely sympatric
with black spruce. These two species hybridize in nat-
ure, although interspecific crossability represents a sub-
stantial but imperfect reproductive barrier for
maintaining the separation of the species [17]. The dif-
ferentiation of black and red spruce and their interspeci-
fic hybrids based on DNA markers, as used in Pelgas
et al. [12] and Pavy et al. [13], is quite tenuous. The par-
ents of the mapping pedigree in our study represent
pure black spruce [18,19].
Our black spruce genetic map is the first map in the

genus Picea based on a three-generation outbred pedi-
gree (TGOP). There are only three other published
genetic maps in the genus Picea that are based on pedi-
greed material: one each in Norway spruce and white
spruce based on F1 mapping populations [9,11] and one
in the black × red spruce hybrids based on F1 and BC1

mapping populations [12,13]. Almost all other reported
maps are for single trees (Table 7). The single-tree
genetic maps are based on segregation of markers in
haploid megagametophytes of maternal trees and do not
take into account the segregation or recombination of
markers in the paternal trees. Also, in conifers, the
recombination rates were reported to be lower in female
gametes than those in male gametes [20,21]. Thus, sin-
gle-tree linkage maps are not as informative as genetic
maps developed from diploid segregating pedigreed
populations, and are specific to a single tree (genotype),
and thus, having limited or often no use for QTL map-
ping. Black spruce, like most other spruce or pine spe-
cies, is highly outbred [22,23]. For genome and QTL
mapping in outbred plants, TGOP is more informative
than any other pedigree used so far in the genus Picea
[14]. Indeed, TGOP not only allows differentiation of up
to four segregating alleles at a locus but also establish-
ment of linkage phase among alleles in the mapping
population [14]. This information is required to use

Table 4 Microsatellite DNA markers used for genetic mapping in black spruce (Picea mariana)

Source Number of markers mapped

Consensus map Maternal map Paternal map

Picea glauca ESTs 20 20 14

Picea mariana ESTs 6 4 2

Picea mariana genomic sequences 16 11 8

Total 42 35 24
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A-EACG-MCCTA_3420
A-EAAG-MCCAG_1261
SL4-MCCG_1197
A-EAAG-MCCAT_0758
A-EAAC-MCCAC_166
A-EACA-MCAC_16813
A-EACA-MCTA_11014
A-EAAC-MCCTA_22717
A-EACG-MCCAGC_12120
A-EACT-MCTA_187
A-EAAC-MCCAT_07922
A-EACT-MCTA_20223
A-EAAC-MCCAT_16627
A-EACT-MCAT_15628
A-EAAC-MCCAT_21029
A-EACA-MCCAT_192
A-EACA-MCCAC_127
A-EACT-MCAT_194

31

A-EAAC-MCCAT_16832
A-EACT-MCTA_23033
A-EAAC-MCCAT_08734
A-EAAG-MCCAA_06935
A-EACG-MCCAG_188
A-EACT-MCTA_24536
A-EAAG-MCCATC_072
A-EAAC-MCCAT_07137
A-EAAC-MCCAT_261
A-EAAC-MCCAT_07238
A-EAAC-MCCACC_054
A-EAAC-MCCAT_227
A-EACT-MCAC_100

39

A-EAAC-MCCAT_41440
A-EACA-MCCGA_14441
A-EAAC-MCCAT_25542
A-EAAC-MCCAT_13544
A-EAAC-MCCAT_211
A-EACT-MCTA_32746
A-EAAG-MCCATC_102
A-EAGC-MCTG_410
A-EACG-MCCAG_092

48

A-EAAC-MCCAT_11649
A-EAAC-MCCAT_105
A-EAAC-MCCAC_065
A-EAAC-MCCAT_069

51

A-EACT-MCTA_286
A-EAAC-MCCAT_20753
A-EACT-MCTA_135
A-EACG-MCCAG_245
A-EAAC-MCCAA_140

54

A-EACA-MCCAT_264
A-EACG-MCCAGC_21055
SL3-MCCG_04056
RPGSE40
A-EACT-MCTA_23257
A-EACT-MCTA_161
A-EAAC-MCCAT_104
A-EAAC-MCCAT_252

58

A-EAAC-MCCAT_10059
SL3-MCTT_13560
RPGSE42 
RPGSE3561
A-EACG-MCTC_223 
A-EAAC-MCCAC_23462
A-EAGC-MCTG_560
A-EACA-MCCGA_200
A-EAGC-MCTC_344

63

A-EACT-MCTA_290
RPGSE41
RPMSA13

64

SL4-MCCG_51565
A-EAAC-MCCAC_064
A-EAAC-MCCAT_073
A-EACG-MCTC_146

66

A-EACA-MCCGA_12067
A-EAAC-MCCAT_167
A-EACT-MCTA_14269
A-EACA-MCCGA_088
A-EAAC-MCCTA_11070
A-EACA-MCCGA_26271
A-EACT-MCTA_196
SL4-MCCG_17573
SL3-MCCG_292
A-EACA-MCCAC_07974
A-EAAC-MCCAG_08076
A-EACA-MCCGA_131
A-EACA-MCCGA_107
A-EAAG-MCCAC_067

77

A-EACG-MCTG_147
A-EACT-MCAT_24978
A-EACA-MCTA_097
A-EACA-MCCGA_16979
RPMEP682B80
A-EACA-MCCGA_23982
RPMSA04b83
A-EACT-MCCAA_126
A-EACA-MCCGA_11684
SL6-MCCG_072
A-EACT-MCAT_26285
A-EACA-MCAC_06887
A-EACT-MCAT_25188
A-EACA-MCCGA_18189
A-EACT-MCCTA_079
A-EACT-MCCTA_15690
A-EACG-MCCAT_08591
A-EACG-MCCAGC_103
A-EAAG-MCCAA_118
A-EACT-MCTA_140

92

A-EACA-MCCGA_22294
A-EACT-MCAC_090
A-EAGC-MCTG_10196
A-EACA-MCCAC_07898
A-EACT-MCCAC_059
A-EACG-MCAT_16299
SL6-MCAC_071103
A-EACA-MCCGA_067106
A-EACG-MCCAC_073
A-EACG-MCTG_209108
A-EAAC-MCCATC_166
A-EAGC-MCTG_292113
A-EACA-MCCGA_102117
A-EACT-MCAT_104129
SL3-MCAC_480132

PM643-LG I
A-EAAC-MCCATC_3500
RPMSA09a8
SL4-MCCG_315
SL4-MCCG_507
A-EAAC-MCCAC_104

12

A-EACG-MCCAG_17613
A-EAAG-MCCTA_11317
A-EACA-MCTA_10522
RPMSG48a
RPMSG45a
RPMSG48b
RPMSG45b

24

A-EACT-MCCAA_22626
A-EAAG-MCCAT_12728
A-EAAG-MCCTA_09430
A-EAAG-MCCAG_162
A-EACA-MCTA_07833
A-EACT-MCCTA_08535
A-EAAG-MCCTA_10436
A-EAAG-MCCTA_06838
A-EACA-MCCACC_14641
A-EAAG-MCCTA_11646
A-EACT-MCAC_17148
A-EAAG-MCCTA_153
A-EACT-MCAC_06451
A-EACA-MCCAC_07553
A-EAAC-MCCATC_09554
A-EACA-MCTA_19655
A-EAAC-MCCAG_067
A-EACT-MCAT_09556
A-EACT-MCAC_13157
A-EAAC-MCCAA_10458
A-EAAG-MCCTA_071
A-EAGC-MCTC_395
SL5-MCTT_223

59

A-EACG-MCCAG_17461
A-EACG-MCCAGC_16262
A-EAAG-MCCTA_07365
A-EACT-MCAC_16566
A-EACA-MCCACC_16967
A-EACT-MCAC_14068
A-EACA-MCAC_07969
A-EACT-MCAC_116
A-EACA-MCCACC_18970
SL3-MCAC_64172
A-EACT-MCTA_10974
A-EACT-MCAT_20675
A-EAGC-MCTC_43477
A-EACT-MCAC_174
A-EACT-MCAC_093
A-EACG-MCCAA_275
SL6-MCCG_068

78

A-EAAG-MCCTA_067
A-EAAG-MCCAA_24980
A-EAAG-MCCATC_11083
A-EACT-MCAC_20384
A-EAAC-MCCAC_23685
A-EACT-MCAC_19486
A-EAAC-MCCAG_12788
A-EACT-MCTA_097
A-EAAG-MCCATC_240
A-EAGC-MCTC_547
A-EACT-MCAC_062
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Figure 1 Linkage groups I to IV of the consensus genetic linkage map of black spruce (Picea mariana) constructed using 809 AFLPs
(*A), 255 SAMPL (*S), 5 ESTPs (italicized and in red) and 42 SSR (italicized and in red color) markers. Names of the markers are provided
on the right side of the linkage groups, with the DNA fragment size in bp. Genetic map distances, in cM, are provided on the left side of the
linkage groups. AFLP and SAMPL markers in bold and italics are intercross markers.
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Figure 2 Linkage groups V to VIII of the consensus genetic linkage map of black spruce (Picea mariana) constructed using 809 AFLPs
(*A), 255 SAMPL (*S), 5 ESTPs (italicized and in red) and 42 SSR (italicized and in red color) markers. Names of the markers are provided
on the right side of the linkage groups, with the DNA fragment size in bp. Genetic map distances, in cM, are provided on the left side of the
linkage groups. AFLP and SAMPL markers in bold and italics are intercross markers.
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74

A-EAAC-MCCATC_16475
SL6-MCCG_08376
SL3-MCAC_12677
A-EACG-MCAT_12278
A-EAAG-MCCAT_117
A-EAAG-MCCAG_166
SL6-MCTT_217

81

A-EACT-MCCAG_06082
A-EAAG-MCCATC_131
SL4-MCCG_147
SL4-MCAC_180

84

SL3-MCTT_126
A-EAAC-MCCATC_12685
A-EAAG-MCCAG_103
A-EAAG-MCCATC_13286
SL4-MCCG_072
A-EACT-MCCAG_07087
A-EACT-MCCAA_09488
A-EACT-MCCAG_06793
SL4-MCCG_21095
A-EACG-MCCGC_078
A-EAGC-MCTC_09597
RPMEP682A
A-EAAC-MCCACC_134
A-EAAC-MCCTA_066

98

A-EAAG-MCCATC_068100
SL3-MCTT_076101
A-EACG-MCAT_158102
SL4-MCAC_264103
A-EACT-MCCAA_163104
A-EACT-MCCAG_069106
A-EAGC-MCTG_158108
A-EACG-MCCAA_143109
A-EACG-MCAT_192112
SL6-MCAC_185
A-EAAG-MCCAT_091113
SL3-MCTT_099115
A-EACT-MCCAG_064
SL4-MCAC_273116
A-EAAG-MCCAT_080119
SL3-MCTT_139122
A-EAAG-MCCAT_110123
A-EACT-MCAT_119126
A-EAAC-MCCAC_242129
SL4-MCAC_089
A-EAAC-MCCAG_258133
A-EAGC-MCTG_087136
A-EACT-MCCAA_216138
A-EAAC-MCCAC_222139
A-EACG-MCCAGC_078148

SL4-MCTT_092170
SL5-MCCG_178172

PM643-LG IX
A-EACT-MCAC_1260
SL5-MCTT_0882

A-EACT-MCCAA_1588
A-EACT-MCAC_099
A-EAGC-MCTG_18611
SL5-MCTT_09113

SL4-MCTT_217
A-EACT-MCAC_16420

A-EACG-MCCAA_06223
SL5-MCTT_08925

A-EAGC-MCTG_500
A-EACG-MCCAT_07531

A-EACG-MCCAT_14835
A-EACG-MCCAT_06637

A-EACT-MCCTA_21940

A-EAAG-MCCAC_221
A-EACG-MCCAT_07744

A-EACG-MCCGC_33749

SL4-MCTT_13653
A-EACG-MCCAT_07156
SL4-MCTT_36859
A-EACT-MCCTA_089
A-EACT-MCTA_19060
A-EAGC-MCTG_13061
A-EACA-MCCAC_06763
SL3-MCAC_12364
A-EAAG-MCCAC_12667
A-EACG-MCCAT_12468
A-EAGC-MCTG_42469
SL5-MCTT_100
A-EACG-MCAT_09670
A-EAAC-MCCAG_31071
A-EACG-MCCGC_20472
A-EAGC-MCTC_11873
A-EAAG-MCCATC_107
A-EAAG-MCCACC_09075
A-EACG-MCCTA_37976
A-EAAG-MCCAG_17577
A-EAAC-MCCAA_093
A-EAAC-MCCATC_28679
A-EACT-MCTA_19783
A-EAAG-MCCAT_16184
A-EACG-MCCTA_430
A-EAGC-MCTC_44686
A-EAAG-MCCTA_11289
A-EAAG-MCCAT_17790
A-EAAC-MCCATC_29291
A-EACG-MCCGC_340
A-EACG-MCAT_174
A-EAGC-MCTG_430

92

SL4-MCTT_54096
A-EACA-MCAC_29299
A-EACT-MCCTA_224
A-EACG-MCCTA_196101
A-EAAC-MCCAG_190102
SL5-MCCG_121105
A-EAAG-MCCAC_128107
SL3-MCAC_372
A-EAAG-MCCAT_122109
A-EACA-MCAC_080114

A-EAGC-MCTG_215121

A-EAAG-MCCAC_064124

A-EAAC-MCCAA_147129

A-EAGC-MCTG_451139

SL6-MCTT_144145

SL4-MCTT_274156

PM643-LG X
A-EAGC-MCTC_0870

A-EACT-MCCTA_0729

SL4-MCTT_18018

SL5-MCAC_04823

RPMSE40C4c33
SL3-MCAC_19035
RPMSE40C4a37

A-EACT-MCAC_08540
RPMEP62242
SL5-MCCG_08843
A-EAAC-MCCAC_06345

RPGSE2550

A-EACA-MCCAC_12053
A-EAAC-MCCAC_10254
RPGSE2956
SL6-MCTT_11158
RPGSE0460
A-EAAC-MCCAC_14362

RPGSE45b 72
RPMSA09d
RPMEP68774

A-EACG-MCCAG_216
A-EAAC-MCCAC_138
RPGSE03
A-EAAG-MCCACC_111

82

A-EAAG-MCCATC_08683

A-EAAC-MCCATC_23687

A-EACA-MCCACC_112
SL6-MCTT_22393

A-EAAC-MCCATC_29697

A-EAGC-MCTG_526101
SL4-MCTT_044
A-EAGC-MCTG_102104
SL4-MCTT_040105
A-EACT-MCCTA_070106
A-EAAG-MCCAG_210108
A-EACG-MCAT_136109

A-EAAG-MCCACC_101114
A-EAAC-MCCAT_101115

A-EAAG-MCCAG_102128
A-EACT-MCAT_080130
A-EAGC-MCTC_078132

SL6-MCTT_090153

PM643-LG XI
A-EACG-MCCAT_1070
RPMSE40C2c10
SL6-MCTT_09825
A-EACT-MCAT_121
A-EACG-MCCAGC_18827
RPMSE40C2a
RPMSA09b35
A-EAAG-MCCATC_088
A-EACG-MCAT_15236
SL6-MCTT_12538
A-EACT-MCCAC_07939
SL4-MCAC_24541
SL4-MCTT_16844
SL6-MCAC_07347
A-EAAC-MCCGA_075
SL3-MCAC_20248
SL4-MCTT_312
SL6-MCTT_07049
SL6-MCAC_081
SL6-MCTT_081
A-EAAC-MCCAA_074
A-EACG-MCCAA_113
A-EACT-MCAT_181

50

A-EACA-MCAC_071
A-EACA-MCCGA_17751
A-EACT-MCCAC_100
RPGSE22 
SL6-MCTT_097

52

SL6-MCCG_11653
A-EACA-MCTA_20855
A-EAGC-MCTC_140
A-EACA-MCCACC_09556
SL6-MCTT_10157
A-EAAC-MCCGA_10961
SL6-MCCG_06662
A-EACT-MCCAC_099
SL5-MCCG_39363
SL6-MCAC_092
A-EACA-MCTA_13765
A-EAAC-MCCAC_12066
A-EACA-MCTA_139
A-EAAC-MCCAG_24567
SL6-MCTT_12270
A-EACT-MCCTA_205
SL6-MCAC_12771
A-EACT-MCCTA_237
SL6-MCCG_12577
A-EAAC-MCCATC_324
A-EACT-MCCAC_08078
SL3-MCTT_313
A-EACG-MCTG_19380
A-EAGC-MCTG_52281
A-EAAC-MCCGA_120
SL6-MCCG_149
A-EACA-MCCGA_160

82

A-EACG-MCCGC_434
SL6-MCAC_07583
SL6-MCAC_12984
A-EAGC-MCTG_12286
A-EACA-MCTA_084
A-EACT-MCCAA_125
A-EACA-MCCACC_170

87

A-EAAC-MCCAA_11088
RPGSE05
SL6-MCAC_07791
A-EAAC-MCCAA_07792
A-EAGC-MCTC_438
A-EAAG-MCCAG_15294
SL6-MCCG_12295
SL6-MCAC_072
A-EAAC-MCCAC_06896
A-EACG-MCCAC_327
A-EACT-MCCAA_06397
SL5-MCCG_29099
A-EACG-MCCAGC_163100
SL3-MCTT_134
A-EACT-MCAT_100101
A-EAAC-MCCGA_079
SL6-MCTT_095
SL6-MCAC_083

103

A-EACT-MCCAA_124
A-EAAG-MCCATC_092105
A-EAGC-MCTC_202107
A-EACA-MCCGA_125110
A-EAGC-MCTC_420111
SL3-MCTT_110
SL3-MCTT_132112
SL6-MCCG_099
SL4-MCTT_146113
SL6-MCCG_123114
SL4-MCCG_087116
A-EACT-MCCTA_123117
A-EACA-MCTA_107
SL6-MCAC_069121
A-EAAC-MCCGA_087125
A-EACG-MCCAGC_147128
A-EACT-MCCAA_086129
A-EACG-MCCAGC_090132
A-EAAC-MCCAC_318136
A-EACA-MCCACC_071137
A-EAGC-MCTC_107139

PM643-LG XII

Figure 3 Linkage groups IX to XII of the consensus genetic linkage map of black spruce (Picea mariana) constructed using 809 AFLPs
(*A), 255 SAMPL (*S), 5 ESTPs (italicized and in red) and 42 SSR (italicized and in red color) markers. Names of the markers are provided
on the right side of the linkage groups, with the DNA fragment size in bp. Genetic map distances, in cM, are provided on the left side of the
linkage groups. AFLP and SAMPL markers in bold and italics are intercross markers.
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genetic linkage maps for QTL mapping. Furthermore,
the outbred pedigrees are more representative of natural
populations in an outbred plant. In Pinus, where the
genome and QTL mapping work has been more
advanced than in its sister genus Picea, high-density
genetic and QTL maps have been prepared using TGOP
in loblolly (Pinus taeda L.) and maritime (Pinus pinaster
Aiton) pine [24-28].

Genome length and map coverage
The black spruce genome length estimated in our study
is 1,770 cM (Kosambi). This is comparable with the
genome length of 1845.5 or 1849.8 cM (Kosambi)
reported for black × red spruce hybrids based on a com-
posite map of F1 and/or BC1 mapping populations
(Table 7) [12,13] and that of 1,865 cM estimated for
black × red spruce controlled cross hybrids from a BC1

mapping population (Kang et al. unpublished data).
These results are consistent with the length of the
genetic map for black spruce that is likely to be between
1800 and 1900 cM. The length of the black spruce

genetic map observed in our study is about 15% shorter
than that reported for Norway spruce (2,035 cM) [9]
and white spruce (2,007, 2,059, or 1933.5 cM) [10,11]
maps. The genome size (1C nuclear DNA contents) of
Norway spruce (18.6 pg) [29] and white spruce (20.2 pg)
[4] is 17.8% and 27.8%, respectively, higher than that of
black spruce (15.8 pg) [4]. Although no direct relation-
ships between the nuclear DNA contents and genetic
map lengths apparently exist, the shorter genetic map
length in black spruce than in Norway spruce or white
spruce is apparently consistent with its comparatively
smaller genome size. Our results suggest that the gen-
ome length observed in our study covers more than 97%
of the estimated black spruce genome length. Thus, the
black spruce genetic map reported here can very well be
considered as almost complete. This is the highest map
coverage so far for any Picea species. The estimated

Table 5 Marker systems used for the construction of
genetic linkage map and the number of markers mapped

Marker type Total number of markers mapped

Consensus map1 Maternal map Paternal map

AFLP 809 (324) 577 556

SAMPL 255 (107) 201 161

SSR 42 (17) 35 24

ESTP 5 (0) 3 2

Total 1,111 (448) 816 743
1within-parentheses are the numbers of inter-cross or co-dominant markers
used for construction of the consensus maps.

Table 6 Linkage groups, markers mapped, and marker density for the maternal, paternal, and consensus linkage maps
in black spruce

LG Maternal map Paternal map Consensus map

Length
(cM)

Markers Length
(cM)

Markers Length
(cM)

Markers

Total Average/cM Total Average/cM Total Average/cM

I 123 93 1.3 125 81 1.5 132 122 1.1

II 126 79 1.6 139 73 1.9 149 108 1.4

III 121 72 1.7 181 83 2.2 131 104 1.3

IV 158 71 2.2 111 49 2.3 159 92 1.7

V 135 71 1.9 148 56 2.6 144 97 1.5

VI 137 81 1.7 116 78 1.5 144 105 1.4

VII 141 85 1.7 131 89 1.5 149 116 1.3

VIII 147 51 2.9 164 30 5.5 142 57 2.5

IX 135 71 1.9 129 62 2.1 172 100 1.7

X 127 35 3.6 127 42 3.0 156 66 2.4

XI 112 36 3.1 110 25 4.4 153 43 3.6

XII 135 71 1.9 155 75 2.1 139 101 1.4

Total 1,597 816 2.0 1,636 743 2.2 1,770 1,111 1.6
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Figure 4 Poisson distribution function for the observed and
expected frequencies of the markers distributed at 10 cM
interval.
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length and the extent of coverage of genetic maps in dif-
ferent species could vary owing to differences in the
mapping populations used, variation in recombination
rates of the parents, and the number and types of mar-
kers used in linkage map construction [14]. The map-
ping pedigree and markers used in our study are
different from those used in Norway spruce and white
spruce (Table 7).

Linkage groups and marker density
In our study, the paternal, maternal, and consensus link-
age maps consistently coalesced into 12 linkage groups,
corresponding to the haploid chromosome number (n =
12) in black spruce. By contrast, in all other studies
reported on genome mapping in the genus Picea (Table
7), with one exception, maternal, paternal, and/or con-
sensus map did not coalesce into 12 linkage groups (see
Table 7). The consensus map reported here has 1,111
markers distributed over 12 linkage groups, which
represents an almost complete coverage of the black
spruce genome, as the number of linkage groups corre-
sponds to the haploid chromosome number. The aver-
age distance observed among adjacent markers mapped
for the genetic map of black spruce in our study (1.6
cM) is comparable with or lower than that reported for
the composite map of black spruce × red spruce com-
plex [12,13], as well as lower than that reported for Nor-
way spruce (2.6 cM) (Table 7). However, the marker
density of the black spruce genetic map reported here is
the highest for any genetic map based on a single cross
in the genus Picea, as well for the maternal and paternal
genetic maps (see Table 7 for comparisons).

Marker systems
The genetic map of black spruce was constructed using
AFLP, SAMPL, SSR, and ESTP marker systems. The

AFLP and SAMPL systems provided a sufficient number
of anonymous polymorphic and informative markers to
construct a high density to near-saturated genetic map,
whereas the SSR and ESTP systems provided highly
informative and co-dominant markers. Although SSR
and ESTP markers, due primarily to their codominant
nature, would be preferred for genome mapping, avail-
ability of limited numbers of these markers precludes
constructing a high density to saturated genetic map in
conifers using only these markers. We mapped 809
AFLP markers that were resolved by 40 primer combi-
nation, showing an average multiplex ratio of 20 mar-
kers per primer combination. This multiplex ratio is
comparable to that observed in Norway spruce (14) [9]
and loblolly pine (21) [30]. We mapped 255 SAMPL
markers on 12 different linkage groups. The multiplex
ratio for SAMPL markers (21 polymorphic mapped mar-
kers per primer combinations) was comparable to that
observed for AFLP markers. The only other report
where SAMPL markers have been used for genetic link-
age mapping in conifers is for Norway spruce [8], where
20 SAMPL markers were mapped using two primer
combinations. A large number of AFLP and SAMPL
markers segregated in the 3:1 ratio, which suggests that
the parental genomes are highly heterozygous. As AFLP
and SAMPL markers were dominant, the 3:1 segregating
(intercross) markers were useful for aligning the paren-
tal maps to construct the consensus map, which cannot
be established directly. Also the intercross markers can
help to identify additional linkage groups that were not
represented in the parental maps [31].
SSR loci provided highly informative markers. Forty-

two SSR loci were mapped onto 11 linkage groups; 17
of these were highly informative for integrating the
maternal and paternal maps to construct the consensus
map. The mapped cDNA-based SSR markers are excel-
lent candidates for comparative and composite mapping
because these markers are expected to show high intras-
pecific homology and high interspecific orthology [e.g.,
[11]]. Also these markers allowed mapping of 10 known
genes on seven different linkage groups.
Most EST primer pairs resolved multilocus patterns,

which is not surprising given the occurrence of multi-
gene families in conifers [32]. Also, the rate of poly-
morphism observed in ESTPs was very low, which
suggests that more powerful methods, such as detection
of single nucleotide polymorphisms (SNPs) can be used
to increase the resolution of polymorphism [13]. Never-
theless, the mapped ESTP loci along with cDNA-based
SSR markers provide good candidates for comparative
mapping in Picea, Pinaceae, or other conifers [12,33,34].
The genetic map presented here is the first-generation

genetic map for black spruce, which provides a framework

Figure 5 Distribution of the map distance between two
adjacent mapped markers.
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Table 7 Comparison of the genetic linkage maps constructed in black spruce (Picea mariana) with those constructed
(published) for other species in the genus Picea. Mega = megagametophytes

Species Mapping
population

Mapping
population
size

Map type No.
markers
mapped

Marker
systems

No.
linkage
groups

Map length
in cM
(Kosambi)

Average distance
between markers
(cM)

Reference

Picea mariana Three-
generation
outbred
pedigree

90 F2
progeny

Maternal 816 AFLP,,
SSR,
SAMPL

12 1597 2.0 This study

Paternal 743 ESTP 12 1636 2.2

Consensus 1,111 12 1770 1.6

Picea abies 1 single tree 72 mega Single tree 185 RAPD 17 3584 22.0 Binelli and Bucci
1994 [6]

48 single trees 384 (48 × 8)
mega

Population 70 RAPD 15 Bucci et al. 1997
[7]

1 single tree 72 mega Single tree 413 AFLP,
SAMPL,
SSR

29 2198.3 9.3 Paglia et al.
1998 [8]

F1 73 F1
progeny

Maternal 461 AFLP,
SSR,

12 1920 4.0 Acheré et al.

Paternal 360 ESTP, 16 1792 4.9 2004 [9]

Consensus 755 5srDNA 12 2035 2.6

Picea glauca 1 single tree 47 mega Single tree 47 RAPD 12 873.8 18.5 Tulsieram et al.
1992 [5]

2 single trees 92 mega
96 mega

Single tree
Single tree

165
144

RAPD,
SCAR,
ESTP

23
19

2059.4
2007.7

Gosselin et al.
2002 [10]

F1 118 F1
progeny

Maternal 295 AFLP,
SSR,

16 +3* 1842.3 6.2 Pelgas et al.

Paternal 318 ESTP 15+4* 1928.2 6.1 2006 [11]

F1 118 F1
progeny

Maternal 259 15+7* 1424.7 5.5

Paternal 264 12+8* 1533.6 5.8

Male
consensus

512 13 1837.5 3.3

Composite F1
& F1

Composite
F1 & F1

Composite 802 11 1933.5 2.4

Picea mariana
x P. rubens
complex

F1 80 F1
progeny

Maternal 326 AFLP,
SSR,

15 1489.3 4.6 Pelgas et al.

Paternal 303 ESTP,
RAPD

20 1724.6 5.6 2005 [12]

BC1 109 BC1
progeny

Maternal 313 14 1819.5 5.8

Paternal 281 17 1573.6 5.6

Male
consensus

626 13 1704.8 2.8

Composite-
F1 &BC1

Composite-
F1 & BC1

Composite 1124 12 1845.5 1.6

BC1 283 BC1
progeny

Maternal 534 AFLP,
ESTP,
RAPD,
SSR,

14 1833.5 4.0 Pavy et al. 2008
[13]

Paternal 542 SNP 14 1814.1 3.8

Consensus 1,064 12 1849.8 2.2

*minor linkage groups
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to map SNP and other markers in the second-generation
genetic map. We are planning to map SNP markers from
candidate genes and genes expressed differentially in
response to climate change and SNPs mapped by Pavy et
al. [13] onto this map in future. This is further discussed
below under the Future Perspective section. The mapped
SNP markers from expressed genes are quite useful for
QTL and association mapping of relevant traits because
allelic variation in the genes could be linked or associated
with trait phenotypes. However, these markers represent a
very small proportion of the spruce genome. Assuming
50,000 expressed genes of average 1 kb size and genome
size of 30 Gbp in black spruce, the transcribed genome
represents less than 0.2% of the whole genome. SNPs in
about 500 candidate genes are normally mapped, further
reducing the proportion of the genome sampled to less
than 0.002%, although the mapped genes may have gen-
ome-wide distribution. The anonymous markers, such as
AFLP and SAMPL markers generally provide a whole-gen-
ome scan; thus a genetic map using these markers may
cover a large proportion of the genome, if not the whole
genome. However, anonymous markers such as AFLP and
SAMPL, have limitations in tagging genes controlling
traits of interest via QTL and association mapping because
variation in these markers may not represent functional
genetic variation. Nevertheless, the black spruce genetic
map reported here provides a valuable genomic resource
in Picea and Pinaceae.

Clustering of markers
Even though only those markers segregating in Mende-
lian ratios and not those showing a distorted segregation
were used for the linkage analysis, clustering of AFLP
and SAMPL markers was detected in the linkage groups
of black spruce. These results agree with the clustering
of AFLP markers reported for genetic maps of Picea
abies [35], Pinus taeda [30], and Pinus sylvestrisL [36],
but in contrast to random distribution of AFLP markers
in the genetic maps reported for Norway spruce [9] and
black × red spruce hybrids [12]. It should be noted that
the study of Scotti et al. [35] was specifically performed
to examine the distribution of marker classes in a
genetic linkage map of Norway spruce.
The non-random distribution of markers may be

caused by non-random and unequal crossing over and
recombination along the chromosome length. The
recombination is suppressed in the centromeric and het-
erochromatic pericentromeric regions [37], and the pre-
sence of heterochromatin in pericentromeric regions is
a general feature of plant chromosomes. Assuming a
random distribution of markers, low levels of meiotic
recombination may well cause markers that are physi-
cally well separated, to cluster on a linkage map.

Future Perspectives
The genetic map reported here is suitable for constructing
a composite map of two TGOP in black spruce and for
the envisaged comparative mapping with red spruce and
black spruce × red spruce hybrid. The mapped EST-based
microsatellites and ESTPs will provide very useful markers
for this work. We are also mapping additional EST-based
SSR markers. Black spruce and red spruce are highly
genetically related species but their evolutionary relation-
ships are controversial. Comparative genome mapping
may shed some light on comparative genome organization
(orthology, synteny and order of the markers) and evolu-
tion of these species. The map could also be used for com-
parative mapping with other genera of Pinaceae.
We are genotyping and phenotyping the larger map-

ping populations of the TGOP used in this study and
another TGOP (> 300) of black spruce for QTL map-
ping of traits related to growth and adaptation to cli-
mate change. We plan to use about 1,500 SNPs from
candidate genes and genes expressed differentially in
response to climate change conditions as well as SNPs
mapped by Pavy et al. [13] for our QTL mapping work,
using a high throughput SNP genotyping platform such
as Illumina’s Golden Gate Genotyping Assay http://
www.illumina.com/technology/goldengate_genotypin-
g_assay.ilmn. Thus, the technologies, markers and
genetic map developed in the present study provide an
invaluable genomic resource for basic and applied geno-
mics studies.

Conclusions
We have constructed the first high density to near-satu-
rated genetic linkage map of black spruce, with above
97% genome coverage. The maternal, paternal, and con-
sensus maps in our study consistently coalesced into 12
linkage groups, corresponding to the haploid chromo-
some number (1n = 1x = 12) of 12 in the genus Picea.
Also, this is the first genetic map based on a three-gen-
eration outbred pedigree in the genus Picea. The gen-
ome length in P. mariana is likely to be about 1,800
cM. The genetic maps developed in our study can serve
as a reference map for various genomics studies and
applications in Picea and Pinaceae. It will provide a
foundation and a valuable resource for comparative
mapping, constructing composite maps, and mapping
quantitative trait loci and determining the genetic basis
of complex quantitative traits of interest, such as growth
and adaptation to climate change.

Methods
Mapping population
A three generation outbred pedigree (TGOP), includ-
ing the grandparents, parents (F1), and F2 progeny, was
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used to construct the black spruce genetic linkage
map. The grandparents of this pedigree were part of a
7 × 7 diallel F1 controlled-cross experiment, performed
by Dr. E.K. Morgenstern in the early 1970s at the Peta-
wawa National Forestry Institute (PNFI), in Chalk
River, Ontario, Canada (46° N, 77° 30′ W) [18]. The
seven parental trees used for the diallel cross were
from a pure black spruce plantation established at the
Petawawa Research Forest (PRF), but the exact origin
of the trees is unknown, other than that they were
grown from seeds collected from the Lake Simcoe-
Rideau region in Ontario [18]. The F1 seedlings from
the full-sib families of this diallel were planted in
genetic tests at three sites at PRF in 1973 [18]. The
parents of the mapping pedigree were crossed from
the F1 genetic tests in 1987 and 1988 by Dr. Tim
Boyle at PNFI to produce F2 controlled crosses [19].
The F2 family 643 (32 × 40) was selected for genetic
mapping purposes based on near-top and bottom rank-
ing of its parents for growth and 13C discrimination
rate [38] and availability of sufficient number of F2
seeds. Grandparents, parents, and 90 F2 individuals
from this family were used as the mapping population.
The F2 progeny were raised and grown at the Cana-
dian Forest Service-Atlantic Forestry Centre, Frederic-
ton, New Brunswick, Canada (45° 52′ N, 66° 31′ W).

DNA extraction
Genomic DNA was extracted from needle tissues of the
female grandparent and megagametophtyes of the male
grandparent, and needle tissues of the parents and their
F2 progenies, using the Qiagen DNeasy Plant® Mini Kit,
following the manufacturer’s protocol (Qiagen Inc. Mis-
sissauga, ON, Canada). Needle tissues from the paternal
grandparent were not available as the tree was harvested
from the plantation, but its open-pollinated seeds were
stored at the Atlantic Forestry Centre. Therefore, to
genotype this grandparent, we used DNA extracted
from pooled megagametophyte tissues from 20 to 30
seeds. In spruce, the genetic constitution of haploid
megagametophytes is the same as that of female
gametes of the mother tree. The quality and quantity of
DNA preparations were determined by electrophoresing
the DNA samples along with a standard of Lambda
DNA on 0.8% agarose gels followed by staining with
ethidium bromide.

Marker systems
Four different marker systems were used to genotype
the grandparents, parents, and F2 progeny of the TGOP:
AFLPs, SAMPL, microsatellites or SSRs, and ESTPs. We
used four marker systems in order to achieve better
genome coverage because different marker types target
different genomic regions.

AFLP markers
Because of the extremely large genome size of spruce, a
standard AFLP protocol, based on EcoRI-MseI digestion,
EcoRI, and MseI primer extension by 1 nucleotide in the
preamplification step and 3 base extension to the EcoRI
and MseI primers in the selective amplification step
[39], produced complex AFLP fragment patterns. We
developed methods for high throughput resolution of
high-quality and clearly scorable AFLP markers for
black spruce, using LI-COR 4200L® (LI-COR Bios-
ciences, Lincoln, NE, USA) or Beckmann Coulter CEQ
8000 GENETIC ANALYSIS SYSTEM® (Beckmann Coul-
ter, Fullerton, CA, USA), by evaluating a variety of con-
ditions, including EcoRI and MseI restriction digestion
time of black spruce genomic DNA, and the number of
selective nucleotides used in the preamplification and
selective amplification steps. The primer combinations
producing consistent, clear, and easily scorable poly-
morphic AFLP markers were identified and used for
genotyping the mapping population.
The AFLP method was essentially as described in Vos

et al. [39], with some modifications. Black spruce geno-
mic DNA (500 ng) was digested with 2U each of EcoRI
and MseI (New England Biolab Inc. Ipswich, MA, USA)
for 3 h at 37°C, followed by incubation at 70°C for 20
min. The digested DNA was ligated overnight with the
EcoRI and MseI adapters in a total volume of 20 μl at
25°C, followed by incubation at 70°C for 20 min. This
restriction-ligation (RL) mixture was diluted 1:5 with
autoclaved deionized distilled water before using it in
the preamplification step.
A 3 μl aliquot of the RL mixture was preamplified

using EcoRI (E) and MseI (M) preamplification primers
with an extension of one or two selective nucleotides at
the 3′ end. EcoRI preamp primers (+1/+2):

(+1) 5′- GAC TGC GTA CCA ATT CA - 3′
(+2) 5′- GAC TGC GTA CCA ATT CAC -3′

MseI preamp primers (+1/+2):

(+1) 5′-GAT GAG TCC TGA GTA AC - 3′
(+2) 5′-GAT GAG TCC TGA GTA ACC - 3′

The PCR profile for the preamplification step con-
sisted of 20 cycles each of denaturation at 94°C for 30
sec, annealing at 56°C for 1 min, and extension at 72°C
for 1 min, followed by a final soak at 10°C using a PTC-
200 thermal cycler (MJ Research, Reno, NV, USA).
After the preamplification step, the reaction mixture
was diluted 1:50 with sterile deionized distilled water. A
total of 54 different EcoRI and MseI primer pairs were
tested with one or two selective nucleotides at the pre-
amplification step and three to five selective nucleotides
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at the selective amplification step. From these, 40 AFLP
primer combinations were selected for further use in
mapping. Selective amplifications were performed using
these primer combinations with various selective
nucleotide extensions (E+3/M+3, E+3/M+4, E+3/M+5)
(Table 1). The reaction mixture for the selective amplifi-
cation consisted of 2 μl of diluted preamplified template
DNA, 1 U Taq polymerase, 2.5 ng of EcoRI labeled pri-
mer (IRDye 700 label for LI-COR and D2 or D3 label
for Beckmann Coulter CEQ 8000 GENETIC ANALYSIS
SYSTEM), 12.5 ng MseI primer, 10× PCR buffer (MBI
Fermentas Inc, Burlington, ON, Canada), 1.5 mM
MgCl2, 0.2 mM each of all four dNTPs (MBI Fermentas
Inc, Burlington, ON, Canada), and BSA (1 μg/μl)
(Sigma-Aldrich, Oakville, ON, Canada). PCR amplifica-
tion profile consisted of 12 cycles each of denaturation
at 94°C for 30 sec, annealing at 65°C for 30 sec (with
lowering of 0.7°C per cycle) and extension at 72°C for 1
min, followed by 23 cycles each of denaturation at 94°C
for 30 sec, annealing at 56°C for 60 sec and extension at
72°C for 1 min, followed by a final soak at 10°C.
Reaction products following selective amplification

were resolved either on LI-COR 4200L or Beckmann
Coulter CEQ 8000 GENETIC ANALYSIS SYSTEM. For
LI-COR, selective amplification products were resolved
on 6.5% denaturing Long Ranger polyacrylamide gels
(LI-COR Biosciences, Lincoln, NE, USA). Approximately
0.5 μl of each sample (10 μl of PCR product and 15 ul
of loading dye) was loaded on the gel. IRD-labeled
molecular-weight markers were loaded in three lanes as
a size-standard. Electrophoresis was carried out using
1× TBE running buffer, with run parameters of 1500 V,
35 mA, 70 W, signal channel 3, motor speed 3, 50°C
plate temperature and 16-bit pixel depth for collection
of TIFF image files. Polymorphic fragments were visually
scored in the TIFF image files. Only those markers that
were segregating in a Mendelian ratio (c2- test, P <
0.05) were scored. For Beckmann Coulter CEQ 8000
GENETIC ANALYSIS SYSTEM, 2 μl of the selective
amplification product was added to 27.5 μl of sample
loading solution and 0.5 μl of CEQ DNA size standard-
600 (Beckmann Coulter, Fullerton, CA, USA), followed
by overlaying a drop of mineral oil. Samples were
injected into a 33 cm capillary at 2.0 KV for 90 sec and
electrophoresed at 7.5 KV for 70 min at 35°C. The
AFLP fragments data were exported to an Excel® file
using fragment analysis software for further analysis of
genetic linkage parameters.

SAMPL markers
Selectively amplified microsatellite polymorphic loci
markers, based on a combination of AFLP and microsa-
tellite technology, can combine good features of both
AFLP and microsatellite markers, and can reduce the

marker complexity of AFLPs in spruce. The SAMPL
technology is a modified AFLP technique, in which a
compound microsatellite sequence is used as one of the
two AFLP primers in selective amplification, generally in
place of EcoRI primers [40]. We developed SAMPL mar-
kers using the compound microsatellite repeats from
Lactuca species [41] as SAMPL primers (Table 2) in
place of the EcoRI primer in the selective amplification
step. The SAMPL markers were analyzed on the LI-
COR and Beckman CEQ 8000 systems, using the proto-
col described above for AFLP analysis as well as in
Gupta et al. [40].
Sixteen combinations of four SAMPL and four MseI

primers (with an extension of three selective nucleo-
tides) were tested to screen SAMPL marker polymorph-
isms between the parents of the mapping population. Of
these, 12 primer combinations were selected for geno-
typing of the mapping population based on the quality
and polymorphism of the markers resolved (Table 3).
The SAMPL marker data were scored as described
above for AFLP markers.

Microsatellite/SSR markers
Seventy-eight microsatellites developed from black
spruce cDNA (EST) or genomic DNA sequences and
white spruce ESTs in our lab were used to screen poly-
morphisms between the parents of the mapping popula-
tion. Forty-two microsatellites showed inter-parental
polymorphisms, and were used to genotype the mapping
population (Table 4). Out of these, 20 were from the
white spruce ESTs, 6 from black spruce ESTs, and 16
from black spruce genomic sequences (SSR-enriched
and AFLP-SSR libraries). White spruce EST sequences
were obtained from the publicly available NCBI Gen-
Bank EST database. EST sequences containing microsa-
tellites were identified. Primers were designed and
microsatellite markers were optimized. The mapped six
black spruce EST-SSRs were developed from the EST
sequences obtained from a cambium-transcript enriched
cDNA library constructed from the male parent (40) of
the mapping population. The details of the study on
cDNA library construction and EST sequencing, analysis
and annotation will be published elsewhere. Here, we
provide the primer sequences and annealing tempera-
tures for six mapped EST-SSR markers in the Additional
File 2. The results on the development and characteriza-
tion of microsatellite DNA markers from the white
spruce EST sequences (RPGSE series) and from the
black spruce genomic sequences (RPMSA and RPMSG
series) will be published elsewhere because this work
was performed by other researchers in the Rajora lab.
However, pending publication, information on these
mapped markers, including primer sequences, is avail-
able from the Principal Investigator O.P. Rajora of the
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Spruce Genomics Program. The microsatellite markers
were resolved on the LI-COR system and data scored as
described in Rajora et al. [42,43].

ESTP markers
Primers for 198 ESTs, obtained from sequencing of a
black spruce standard cDNA library prepared from nee-
dle tissue (to be published separately), were designed
using Primer 3.0 software [44]. The parents of the map-
ping population were screened for ESTPs (length poly-
morphism). Most EST primers resolved multilocus
patterns. Only five ESTP markers, showing inter-paren-
tal polymorphism, displayed unambiguous single-locus
patterns and therefore, were used to genotype the map-
ping population. The primer sequences and annealing
temperatures for these mapped ESTP markers are pro-
vided in the Additional File 2. The PCR amplification
profile consisted of initial denaturation at 94°C for 5
min, 40 cycles each of denaturation at 94°C for 1 min,
annealing at 55°C for 1 min, and extension at 72°C for
1.3 min, followed by final extension at 72°C for 10 min.
The ESTP markers were resolved by electrophoresis on
either 2% agarose or 6% polyacrylamide gels.

Nomenclature or labeling of markers on the genetic maps
The AFLP and SAMPL markers were named, starting
with letters A, and S, respectively, followed by the pri-
mer number, and then the size of the fragment. The
AFLP and SAMPL fragment sizes reported in this
manuscript are without adapter sequences. The SSR
markers were named with a prefix of five letters. The
first letter represents the Principal Investigator/Lab (R =
Rajora), the next two letters the species name (PG =
Picea glauca, PM = Picea mariana) from which the
markers were developed, the next letter S representing
SSR, and the last letter denoting the source of sequences
or library type (E = EST; G = Genomic; A = AFLP-SSR
genomic). These prefix letters were followed by the mar-
ker number. Thus, SSR markers developed from the
white spruce EST database have a prefix of RPGSE, SSR
markers developed from black spruce EST sequences a
prefix of RPMSE, SSR markers developed from the
genomic library a prefix of RPMSG, and SSR markers
developed from the black spruce SSR-enriched AFLP
sequences a prefix of RPMSA. The ESTP markers devel-
oped from the EST sequences from the black spruce
cDNA library were named starting with RPMEP, fol-
lowed by the marker number.

Statistical analysis
Segregation analysis and map construction
Individual paternal and maternal maps were constructed
according to two-way pseudo-testcross mapping strategy
[45]. All linkage analysis and genetic map construction,

including marker order and map length estimations,
were performed using JOINMAP® 3.0 software [46] with
the maximal threshold jump value of 5 and ripple value
of 1. The Kosambi [47] mapping function was used for
map length estimations. Our marker data set for genetic
linkage mapping included three different segregation
patterns: 1:1 for markers heterozygous in one parent
and homozygous or null in the other, 3:1 for dominant
markers heterozygous in both parents, and 1:2:1 or
1:1:1:1 for co-dominant markers heterozygous in both
parents. The JOINMAP command “similarity of loci”
was used to identify the similar loci. Only one of the
markers was kept from the similar loci for linkage map-
ping analysis.
For framework, preliminary linkage grouping of

AFLPs, SAMPL, SSRs, and ESTPs markers were ordered
using the “Group” command, with LOD (log of odds)
threshold maximum 5.0, minimum 4.0, recombination
ratio 0.35. The map orders were found by calculating
pairwise recombination frequencies, and map distances
were estimated by a least-squares procedure. The two
parental maps based on segregating markers were
grouped and ordered using a minimum LOD score of
3.0 and recombination fraction of 0.4 as the grouping
criterion. The marker order obtained from the third
round of analysis was retained with the JOINMAP com-
mand “calculate map”. This order was fixed to allow
positioning of additional markers. To construct consen-
sus maps, the maternal maps and paternal were aligned
based on the co-dominant markers (1:2:1, 1:1:1:1 and
1:1) and intercross markers (3:1), and then consensus
maps were constructed by using JoinMap function
“Combine Groups for Map Integration” command. The
maternal, paternal and consensus genetic maps were
aligned using the JOINMAP. Graphic presentation of
the individual linkage groups was drawn using Map-
chart® version 2.0 software [48].
Estimation of genome length and map coverage
The length of the black spruce genome (G) was esti-
mated using the Method 4 of Chakravarti et al. [15]
after each length had been adjusted by the factor m+1/
m-1, where m is the number of framework markers on
the linkage group, as well by the method described by
Fishmann et al. [16] that twice the value of map density
(d) was added to the length of each linkage group to
account for chromosome ends beyond the terminal mar-
kers, and G was calculated by summing up the resulting
lengths of 12 linkage groups. The observed genome
length was obtained by summing up the map lengths of
the 12 individual linkage groups. The map coverage was
calculated as the ratio of the observed to the estimated
genome length. The number of markers required to
cover the whole genome of black spruce was calculated
according to Lange and Boehnke [49].
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Marker distribution analysis
To evaluate whether the mapped markers were ran-
domly distributed on the linkage map, the linkage
groups were divided into 2.5, 5, 10, 20, and 40 cM
blocks, and the number of markers per block was
counted. Observed frequencies of the number of mar-
kers per block were compared with the expected ones
by performing a Chi-square test [30,36,50], using a Pois-
son distribution function, P(x) = e-μμx/x!, where x is the
number of markers per block and μ is the average mar-
ker density in the consensus map. Average marker den-
sity (μ) was used to calculate the expected binomial
frequencies for each marker class per block interval for
all the linkage groups. The distribution of markers on
the linkage groups was also evaluated separately for the
AFLP and SAMPL markers. The SSR and ESTP markers
could not be considered independently for this analysis
because of their small numbers or low frequencies on
each linkage group.

Additional material

Additional file 1: Figure S1 Alignment of the maternal (Maternal),
paternal (Paternal) and consensus (PM643) linkage maps of black
spruce. Names of the markers are provided on the right side of the
linkage groups, with the DNA fragment size in bp. Genetic map
distances, in cM, are provided on the left side of the linkage groups.
AFLP markers start with A, SAMPL markers with S. The SSR and ESTP
markers are italicized and are in red color.

Additional file 2: Table S1 Expressed sequence tag polymorphism
(ESTP) and EST-based microsatellite (SSR) markers developed from
black spruce ESTs and mapped on the black spruce genetic map in
this study.
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