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Abstract
Background: Animal mitochondrial genomes are potential models for molecular evolution and markers for 
phylogenetic and population studies. Previous research has shown interesting features in hymenopteran 
mitochondrial genomes. Here, we conducted a comparative study of mitochondrial genomes of the family Braconidae, 
one of the largest families of Hymenoptera, and assessed the utility of mitochondrial genomic data for phylogenetic 
inference at three different hierarchical levels, i.e., Braconidae, Hymenoptera, and Holometabola.

Results: Seven mitochondrial genomes from seven subfamilies of Braconidae were sequenced. Three of the four 
sequenced A+T-rich regions are shown to be inverted. Furthermore, all species showed reversal of strand asymmetry, 
suggesting that inversion of the A+T-rich region might be a synapomorphy of the Braconidae. Gene rearrangement 
events occurred in all braconid species, but gene rearrangement rates were not taxonomically correlated. Most 
rearranged genes were tRNAs, except those of Cotesia vestalis, in which 13 protein-coding genes and 14 tRNA genes 
changed positions or/and directions through three kinds of gene rearrangement events. Remote inversion is posited 
to be the result of two independent recombination events. Evolutionary rates were lower in species of the cyclostome 
group than those of noncyclostomes. Phylogenetic analyses based on complete mitochondrial genomes and 
secondary structure of rrnS supported a sister-group relationship between Aphidiinae and cyclostomes. Many well 
accepted relationships within Hymenoptera, such as paraphyly of Symphyta and Evaniomorpha, a sister-group 
relationship between Orussoidea and Apocrita, and monophyly of Proctotrupomorpha, Ichneumonoidea and Aculeata 
were robustly confirmed. New hypotheses, such as a sister-group relationship between Evanioidea and Aculeata, were 
generated. Among holometabolous insects, Hymenoptera was shown to be the sister to all other orders. Mecoptera 
was recovered as the sister-group of Diptera. Neuropterida (Neuroptera + Megaloptera), and a sister-group relationship 
with (Diptera + Mecoptera) were supported across all analyses.

Conclusions: Our comparative studies indicate that mitochondrial genomes are a useful phylogenetic tool at the 
ordinal level within Holometabola, at the superfamily within Hymenoptera and at the subfamily level within 
Braconidae. Variation at all of these hierarchical levels suggests that the utility of mitochondrial genomes is likely to be 
a valuable tool for systematics in other groups of arthropods.

Background
Most animal mitochondrial genomes are about 16 Kb in
size and contain 37 genes: 13 protein-coding genes, 22
transfer RNA genes (tRNA) and two ribosomal RNA

genes (rRNA) [1]. Additionally, an A+T-rich region is
present which contains essential regulatory elements for
transcription and replication. It is therefore referred to as
the control region [2]. Complete mitochondrial genomes
provide good models for molecular evolution and abun-
dant molecular markers for phylogenetic and population
studies [3-6].
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Because mitochondrial genomes are highly econo-
mized, with few intergenic regions, gene rearrangements
are rare [1]. However in some lineages they are more
common. For example amongst arthropods, the following
groups show significant gene rearrangements: Myriapoda
[7], Hymenoptera [8], hemipteroids [9-11], Acari [12,13],
Araneae [14,15], and Isopoda [16,17]. These lineages
therefore make ideal candidates for the study of gene
rearrangement mechanisms [8,18-21].

Mitogenomic studies of the Hymenoptera have
revealed many interesting features: (i) gene arrangements
are conserved in the basal Hymenoptera, i.e., the grade
Symphyta, whereas frequent gene rearrangements are
observed in the derived clade, Apocrita [8,22] with
approximately equal amounts of gene shuffling, inver-
sion, and translocation [8]; (ii) tRNA positions are selec-
tively neutral in all studied hymenopteran mitochondrial
genomes [23]; (iii) various gene rearrangement mecha-
nisms are necessary to explain the derived gene arrange-
ment patterns in Hymenoptera [8,24], whereas amongst
vertebrates, most gene rearrangement events are best
explained by tandem duplication [25]; (v) nucleotide sub-
stitution rates are extremely high in the mitochondrial
genomes of three Nasonia (Hymenoptera: Chalcidoidea)
species, about 30 times faster than nuclear protein-cod-
ing genes [26].

The number of hymenopteran mitochondrial genomes,
though high relative to other taxa, is rather limited, espe-
cially in relation to the species-richness of the order
[24,26-31]. The characterization of more hymenopteran
mitochondrial genomes has promise in answering evolu-
tionary questions such as mechanisms of remote inver-
sion events of gene rearrangement [8] and the variation of
strand-specific compositional bias between Braconidae
and Ichneumonidae [8,32].

Here we sequenced seven complete mitochondrial
genomes of members of Braconidae, representing the
subfamilies, Doryctinae, Opiinae, Microgastrinae, Che-
loninae, Aphidiinae, Macrocentrinae and Euphorinae.
Braconidae was selected because it is one of the largest
families in Hymenoptera, second only to Ichneu-
monoidea, and because no complete mitochondrial
genome has been reported for the family, although one of
the reported mitochondrial gene rearrangement hot
spots has been examined in this family [8,20]; Due to
variation within the family, Braconidae is an ideal group
to study the evolution of modes of parasitism [33]. Mem-
bers of the subfamily Doryctinae are mostly ectoparasitic
idiobionts (the host does not recover after paralysis by an
ovipositing wasp and the wasp larvae feeds immediately),
whereas member of the other six subfamilies are endop-
arasitic koinobionts (the host recovers after oviposition
and develops normally for some time before it is con-
sumed by the parasitoid). Though many efforts have been

focused on the phylogeny of Braconidae, it is still a prob-
lematic group with many unresolved relationships [34-
41].

Holometabolous insects represent the most successful
lineages of Metazoa with 11 orders encompassing more
than half of all known animal species. However, the phy-
logenetic relationships among orders in holometabolous
insects are still controversial. Studies based on morphol-
ogy or single molecular markers are limited by character
quantity and quality respectively [42,43], whereas those
based on complete mitochondrial genome sequences or
nuclear genomes are limited by taxon sampling [44,45].

In this study, we explored some evolutionary traits of
braconid mitochondrial genomes, and consequently
assessed the phylogenetic utility of mitogenomics at three
hierarchical levels, i.e., Braconidae, Hymenoptera and
Holometabola.

Results and Discussion
General description Braconidae mitochondrial genomes
Two complete mitochondrial genomes from Spathius
agrili Yang and Cotesia vestalis Haliday and five nearly
complete mitochondrial genomes from Aphidius gifuen-
sis (Ashmead), Diachasmimorpha longicaudata (Ash-
mead), Phanerotoma flava Ashmead, Macrocentrus
camphoraphilus He & Chen, and Meteorus pulchricornis
(Wesmael) were sequenced, representing seven subfami-
lies of Braconidae (Table 1). The regions that we failed to
sequence were usually located in or around gene nad2
and the A+T-rich region, where extremely high A+T con-
tent, frequent gene rearrangement and stable stem-and-
loop structures may have disrupted PCR and sequencing
reactions. This is a common problem in sequencing of
hymenopteran mitochondrial genomes [28,29,46].

All genes identified in the seven mitochondrial
genomes are typical animal mitochondrial genes with
normal gene sizes. In all, 37 genes and an A+T-rich
region were identified in the two completely sequenced
mitochondrial genomes of S. agrili and C. vestalis. In the
mitochondrial genome of M. camphoraphilus, a region
spanning partial sequence of cob and nad1 was dupli-
cated and inserted downstream of the rrnS - trnM - trnI -
A+T-rich region and reversed. This is the first report of
protein-coding gene sequence duplication in
Hymenoptera mitochondrial genomes. The duplicated
region led to the failure of amplification of the sequence
further downstream.

All protein-coding genes start with ATN start codons
and stop with TAA termination codons or truncated ter-
mination codons TA or T. Gene nad1 has been found to
employ TTG as a start codon in some species of
Hymenoptera, Coleoptera and Lepidoptera, thus mini-
mizing intergenic spacing and avoiding overlap with adja-
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cent genes [47-49], however, we did not discover TTG
start codons in nad1 genes for any Braconidae.

Most transfer RNA (tRNA) genes have the usual clover-
leaf structure and anticodons commonly found in insects.
All trnK and trnS2 use TTT and TCT as anticodons
rather than the normal CTT and GCT, respectively. The
use of abnormal anticodons in these two tRNAs appears
to be correlated with gene rearrangement [24].

Two typical animal mitochondrial ribosomal RNAs
(rrnL and rrnS) were sequenced in five species, i.e., A.
gifuensis, S. agrili, D. longicaudata, C. vestalis, M. cam-
phoraphilus. All of their rRNA genes conform to the sec-
ondary structure models proposed for other insects
[24,50]. Compared to the secondary structure of D. semi-
clausum (Hymenoptera: Ichneumonidae) [24], these five
species of Braconidae lack H9 and H17 in rrnS suggesting
that it may be a widespread feature in Braconidae. In
domain I, H37, H47 and H367 were variable among these
five species. All the above three structures were present
in A. gifuensis, S. agrili and D. longicaudata, as in D. semi-
clausum, but there was a big internal bulge at the bottom
of H47 in A. gifuensis. In C. vestalis and M. camphoraphi-
lus, H39 is formed by a continuous segment. The struc-
tures of H37, H47 and H367, suggest that Cyclostomes
and Noncyclostomes are monophyletic and that Aphidii-
nae are the sister-group to the cyclostomes (Figure 1),
congruent with the structures inferred from all protein
coding genes (see below).

A+T-rich region
The A+T-rich region is believed to be involved in the reg-
ulation of transcription and control of DNA replication,
characterized by five elements: (1) a polyT stretch at the
5'end of the A+T-rich region, which may be involved in
the control of transcription and/or replication initiation;
(2) a [TA(A)]n-like stretch following the polyT stretch; (3)
a stem and loop structure, which may be associated with

the second strand-replication origin; (4) a TATA motif
and a G (A)nT motif flanking the stem and loop structure
and (5) a G+A rich sequence downstream of the stem and
loop structure [2].

A+T-rich regions were successfully sequenced for spe-
cies, S. agrili, D. longicaudata, C. vestalis and M. cam-
phoraphilus. Elements presumed to be involved in
genome replication and transcription were found in all
sequenced A+T-rich regions except that of M. cam-
phoraphilus (Figure 2). The A+T-rich region in the mito-
chondrial genome of S. agrili is 578 bp long, with an A+T
content of 93.6%, whereas in C. vestalis it is 571 bp long,
with an A+T content of 92.6%. In the A+T-rich region of
S. agrili, three repeat sequences are present downstream
of the identified elements. In the A+T-rich region of D.
longicaudata, identified elements are included in five
repeat elements. However, all identified elements in the
A+T-rich region of these three braconid species were
found to be located in opposite directions and strands
relative to those of other insects [2,30], indicating an
inversion of the A+T-rich region in these species [16].
This is the first time that an inversion of the A+T-rich
region has been demonstrated structurally for insects.

Gene rearrangement
Gene rearrangement events occurred in all seven species
of Braconidae (Figure 3). All rearranged genes were
tRNA, except for C. vestalis, in which seven of the 13 pro-
tein-coding genes and 14 tRNA genes changed their posi-
tions or/and directions. Hymenoptera have been shown
to have an accelerated rate of mitochondrial gene rear-
rangement [8,21], however, protein-coding gene rear-
rangement has only been found in the mitochondrial
genomes of three Nasonia (Chalcidoidea:Pteromalidae)
species, in which at least a large segment including six
protein-coding genes and three tRNAs are inverted [26].
Gene rearrangement events in C. vestalis and the three

Table 1: General information of the mitochondrial genomes from Ichneumonoidea

Species Length (bp) Completeness Family Subfamily Accession 
number

Resources

Diadegma semiclausum 18728 Complete Ichneumonidae Campopleginae EU871947 Wei et al., 2009

Enicospilus sp. 15300 Incomplete Ichneumonidae Ophioninae FJ478177 Dowton et al., 2009

Cotesia vestalis 15543 Complete Braconidae Microgastrinae FJ154897 This study

Spathius agrili 15425 Complete Braconidae Doryctinae FJ387020 This study

Phanerotoma flava 10171 Incomplete Braconidae Cheloninae GU097654 This study

Diachasmimorpha longicaudata 13850 Incomplete Braconidae Opiinae GU097655 This study

Macrocentrus camphoraphilus 15801 Incomplete Braconidae Macrocentrinae GU097656 This study

Meteorus pulchricornis 10186 Incomplete Braconidae Euphorinae GU097657 This study

Aphidius gifuensis 11996 Incomplete Braconidae Aphidiinae GU097658 This study
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Nasonia species indicate that large-scale protein-coding
gene rearrangement are probably independent events in
Hymenoptera.

We compared gene rearrangement rates among bra-
conid mitochondrial genomes in the region from cox1 to
trnH, which was successfully sequenced in all seven spe-
cies; gene rearrangement rates were unequal among
them. Gene arrangement pattern was conserved in A.
gifuensis and P. flava, and derived in the other five spe-
cies. Of the two microgastroid species P. flava and C. ves-
talis [20,41,51], the former is conserved while the latter
was markedly rearranged in gene pattern. In conclusion,
mitochondrial gene rearrangement rate was not taxo-
nomically correlated at our level of investigation of the
Braconidae.

Gene rearrangement events comprise three classes, i.e.,
translocation, local inversion (inverted but remaining in
the position), and shuffling with remote inversion (trans-
located and inverted) [21]. All determined trnI and trnM
were inverted and translocated, forming the arrangement
pattern trnI(-) - trnM(-) - A+T-rich region - trnQ in S.
agrili. D. longicaudata and C. vestalis, and trnM(-) -
trnI(-) - A+T-rich region - trnQ in M. camphoraphilus.

In the three species S. agrili, D. longicaudata and C.
vestalis, trnH was inverted and translocated (remote
inversion) to the junction of cox2 and atp8. The arrange-
ment pattern, trnD(-) - trnH - trnK or trnH(-) - trnD -

trnK, has been found in many subfamilies of Braconidae.
It has been reported that both the inversion of trnD and
the remote inversion of trnH are independent evolution-
ary events in this family [8,20]. In the two reported spe-
cies of Doryctinae, Jarra phorocantha and Heterospilus
sp., the ancestral arrangement pattern of trnK - trnD
occurs [8], which suggests that the gene rearrangement
event in S. agrili occurred after the origin of the subfam-
ily.

Gene rearrangement mechanism
Mechanisms for the three classes of gene rearrangement
events in hymenopteran mitochondrial genomes are
widely discussed [8,21]. Inter/intro mitochondrial
genome combination is presumed to be the most plausi-
ble explanation for local inversions. trnY in C. vestalis is
the only locally inverted gene in these seven braconid
species, except for the region from trnE to cob in C. vesta-
lis. The duplication/random loss model, and the intrami-
tochondrial genome recombination and duplication/
nonrandom loss model are possible mechanisms to
explain translocation. Of these, intramitochondrial
genome recombination is presumed to be more common.
Shuffling is thought to be the result of duplication/ran-
dom loss. The tRNA clusters trnW - trnC - trnY and trnK
- trnD are frequently shuffled regions. trnD was not only
shuffled but also inverted. This may have been the result

Figure 1 Predicted phylogenetic relationships among five braconid species based on the secondary structures of H39, H47 and H367 in 
Domain I of rrnS. Base-pairing is indicated as follows: Watson-Crick pairs by lines, wobble GU pairs by dots and other noncanonical pairs by circles.
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Figure 2 Structural elements of A+T-rich region in three braconid mitochondrial genomes. (A) Structure of Spathius agrili mitochondrial A+T-
rich region. Three repeat sequences are aligned. (B) Structure of Diachasmimorpha longicaudata mitochondrial A+T-rich region. Five repeat sequences 
including three elements were aligned. (C) Structure of Cotesia vestalis mitochondrial A+T-rich region. PolyT stretches were compared in C. vestalis and 
Bombus ignitus. Short dashes indicate gaps; underlines of the PolyT stretch sequence indicate conserved region between C. vestalis and B. ignitus.
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of two independent events caused by separate mecha-
nisms.

Remote inversion is a common rearrangement event in
braconid mitochondrial genomes (trnH, trnI and trnM).
However, remote inversion could not be deduced in pre-
vious studies due to incompleteness of sequence data
[8,21]. In S. agrili, an inverted pseudo-trnH sequence is
located between nad4 and nad5, the ancestral position of
trnH (Figure 4A,B). Pseudo-genes are usually considered
to be genomic evidence for the duplication and loss
model of rearrangement [52-54]. The presence of the
pseudo-trnH sequence in the same position and opposite
direction to the ancestral trnH indicates that trnH was
inverted before translocation. Both the inversion and
translocation events may be the result of recombination
as detailed above. During the inversion process, the two
recombined sequences occur in opposite directions,
whereas during translocation, the directions of the two
recombined sequences are the same (Figure 4C). In C.
vestalis, a 23 bp and in D. longicaudata a 52 bp intergenic
region were found in the ancestral location of trnH,
which might indicate a similar rearrangement process as
trnH in S. agrili. The pseudo-trnH sequence in S. agrili is
well conserved, whereas the ancestral sequence of trnH in
C. vestalis and D. longicaudata were eliminated some-
time after the loss of gene function [55]. Our results indi-
cate that remote inversion may be caused by two separate
recombination events.

Since trnI, trnM and the A+T-rich region were all
inverted, separated remote inversions would make the
rearrangement in this region extremely complicated.
Therefore, it is more likely that trnI and trnM were
inverted simultaneously. Thus, before the inversion of
this region, trnQ would have been shuffled to form an
intermediate pattern of A+T-rich region - trnM - trnI -
trnQ. We observed a trnM - trnI - trnQ arrangement pat-
tern in the mitochondrial genome of Diadegma semi-
clausum, an Ichneumonidae, the sister-group of
Braconidae [24]. This suggests that trnM - trnI - trnQ is
ancestral, and trnM - trnI - A+T-rich region is a derived
pattern in Braconidae. Recombination is more likely to
explain the inversion of A+T-rich region - trnM - trnI -
trnQ based on the parsimony criterion.

In C. vestalis, it seems that all gene rearrangement
events at atp6 - trnS1 junction are difficult to trace; how-
ever the parsimony criterion implies that three types of
rearrangement events may have occurred (Figure 5): (1)
Early large-scale inversion. Genes from trnE to cob were
inverted as a whole before changing their relative posi-
tions. A large-scale inversion is present in the three
sequenced Nasonia species, where either region nad3 to
cox1 or trnF to cob is inverted. If an inverted region from
trnE to cob is present in Ichneumonoidea, it may be a case
of convergent evolution between the mitochondrial
genomes of Chalcidoidea and Ichneumonoidea, because
gene arrangement of this region is conserved in D. semi-
clausum (Ichneumonoidea) [24]. Since inversion cannot

Figure 3 Gene arrangement of seven braconid mitochondrial genomes sequenced in this study. Abbreviations for the genes are as follows: 
cox1, cox2, and cox3 refer to the cytochrome oxidase subunits, cob refers to cytochrome b, and nad1-nad6 refer to NADH dehydrogenase components, 
rrnL and rrnS refer to ribosomal RNAs. Transfer RNA genes are denoted by one letter symbols according to the IPUC-IUB one-letter amino acid codes. 
L1, L2, S1, S2 denote tRNALeu(CUN), tRNALeu(UUR), tRNASer(AGY), tRNASer(UCN), respectively. Boxes with underscores indicate that the gene is encoded in minority 
strand. Shaded boxes indicate that the gene was rearranged compared with ancestral arrangement of Hexapoda.
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be explained by replication-slippage-based models [19],
recombination is the most likely mechanism for this rear-
rangement event.

(2) tRNA translocations. The six tRNA genes between
nad3 and nad5 in their ancestral position are heavily
rearranged. And the most apparently conserved order of
this tRNA cluster is trnA - trnR - trnN, which indicates
that the derived relative positions of these tRNA genes
are most likely the result of translocations of trnF and
trnE and shuffling of trnS2. Nevertheless, trnH may have
been inverted and translocated to the junction of cox2
and atp8 before the large-scale inversion event. The most
possible mechanisms of gene translocation and shuffling
are recombination, rather than tandem duplication fol-
lowed by deletion (TDRL), which might change the rem-
nant order of tRNA and the neighbouring protein-coding
genes.

(3) Small-scale translocations. Four gene boundaries,
i.e., nad4 - nad5, trnT - nad4l, cox3 - trnG - nad3 and cob
- nad6 - trnP, were translocated after the large-scale
inversion at the junction of atp6 - trnS1. Although tRNA

gene rearrangement is more frequent than that of pro-
tein-coding genes, translocation of three gene boundaries
is more parsimonious than tRNA gene rearrangement.
Recombination is also favoured in these small-scale
translocation events, because neither pseudo-genes nor
large intergenic spacers are present in the boundaries of
these rearranged genes, which are the intermediate state
of the TDRL model [52].

Nucleotide composition
Braconidae mitochondrial genomes have high A+T con-
tent, a characteristic typical of other hymenopterans,
with values from 82.4% to 87.2%.

Strand asymmetry (strand compositional bias) are usu-
ally reflected by AT skew, as expressed by (A-T)/(A+T),
and GC skew, as expressed by (G-C)/(G+C) [56]. Strands
of insect mitochondrial genome are discriminated as
majority strand (encoding most genes) and minority
strand (the other strand) [57]. In all braconid mitochon-
drial genomes, the signs of GC skew on the entire major-

Figure 4 Mechanism of trnH remote inversion in Spathius agrili mitochondrial genome. (A) Presumed pseudo-trnH sequence (HO) and 10 hy-
menopteran trnH sequences are aligned according to their secondary structures. AM: Accepter arm, DA: D-loop arm, DL: D-loop, AA: Anticodon arm, 
AL: Anticodon loop, VL: Variable loop, TA: T Ψ C arm, TL: T Ψ C loop. (B) Secondary structure trnH is predicted in tRNAscan-SE search server [82] and HO 
is predicted manually. The inserted uracil in the anticodon is showed by a circle. (C) Recombination of two strands with opposite orientations leads 
the inversion of trnH, and the following recombination events lead the duplication of trnH. DS: Diadegma semiclausum, PS: Primeuchroeus spp., BI: Bom-
bus ignites; PH: Polistes humilis, CV: Cotesia vestalis, VE: Vanhornia eucnemidarum, MB: Melipona bicolor, PC: Perga condei, NG: Nasonia giraulti, AM: Apis 
mellifera, SA: Spathius agrili.
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ity strand and all protein-coding genes were reversed
relative to those of Ichneumonidae (Table 2).

Hassanin et al. (2005) suggested that strand asymmetry
is best reflected in the GC skew. Hence, all braconid spe-
cies in the present study show reversal of strand asymme-
try, as in some other arthropods [16,58-61], flatworms
[62], brachiopods [63], echinoderms [64] and fish [65].

Inversion of replication origin located in the A+T-rich
region would lead to reversal of strand asymmetry
[16,59,66], which were proved by examination of regula-
tory elements in A+T rich region in three sequenced bra-
conid mitochondrial genomes. Although further
sampling is necessary the present evidence suggests that

reversal of strand asymmetry and inversion of the A+T-
rich region is a synapomorphy for members of Braconi-
dae.

Evolutionary rate
The rate of non-synonymous substitutions (Ka), the rate
of synonymous substitutions (Ks) and the ratio of the rate
of non-synonymous substitutions to the rate of synony-
mous substitutions (Ka/Ks) were calculated for each bra-
conid mitochondrial genome using D. semiclausum or
Enicospilus sp. (Hymenoptera: Ichneumonidae) as refer-
ence sequences (Figure 6). Species of non-cyclostomes
showed higher evolutionary rates than those of cyclos-
tomes. C. vestalis, P. flava and M. camphoraphilus

Table 2: Nucleotide composition of Ichneumonoidea mitochondrial genomes

Species Whole genome sequences All protein-coding genes

AT skew GC skew A+T% AT skew GC skew A+T%

Diadegma semiclausum 0.01 -0.20 87.40 -0.12 -0.03 84.75

Enicospilus sp. -0.02 -0.18 85.10 -0.11 -0.02 85.12

Aphidius gifuensis -0.06 0.05 84.70 -0.16 0.09 84.80

Spathius agrili -0.07 0.19 84.00 -0.15 0.16 83.25

Diachasmimorpha longicaudata -0.09 0.22 82.40 -0.16 0.11 81.52

Cotesia vestalis -0.09 0.10 87.20 -0.16 0.06 86.81

Phanerotoma flava -0.07 0.28 84.50 -0.16 0.19 85.38

Macrocentrus camphoraphilus -0.05 0.09 86.60 -0.13 0.10 86.47

Meteorus pulchricornis -0.06 0.14 83.30 -0.16 0.11 83.10

Figure 5 Putative gene rearrangement events in Cotesia vestalis mitochondrial genome. Four regions underwent gene rearrangements. Rear-
ranged genes are shown in gray. The region from cox3 to cob experienced protein-coding gene rearrangements, and three types of rearrangement 
events might happen: large-scale inversion, tRNA rearrangement and small region rearrangement. The intermediate statuses are used to show differ-
ent types of gene rearrangement events, but not the rearrangement process.
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showed the highest Ka/Ks ratios, indicating that the
mitochondrial genomes with high gene rearrangement
rates have high evolutionary rates, but those with low
gene rearrangement rate are not constrained in their evo-
lutionary rate.

Phylogenomics of Braconidae
A sister-group relationship between S. agrili (subfamily
Doryctinae) and D. longicaudata (subfamily Opiinae)
were recovered in all analyses employing different infer-
ence methods and data. This is consistent with the widely
accepted group, the cyclostomes. A. gifuensis (subfamily
Aphidiinae) are firmly placed as the sister-group to the
cyclostomes. Four species C. vestalis (Microgastrinae), P.
flava (Cheloninae), M. camphoraphilus (Macrocentrinae)
and M. pulchricornis (Euphorinae) constitute the other
major group, the noncyclostomes. However, the internal
relationships among noncyclostome subfamilies were not
well resolved. In previous studies, Microgastrinae and
Cheloninae were generally recovered in a clade referred
to as microgastroids, while Macrocentrinae and Euphori-
nae form part of the clade, helconoids [20]. The latter
group was recovered in our study in our Bayes analyses
based on all amino acid sequences and it was also recov-
ered in most likelihood analyses based on the first and
second codon positions of protein-coding genes. In other
analysis, Cheloninae was recovered as the sister-group of
Macrocentrinae or Euphorinae, with Microgastrinae sis-
ter to the remaining noncyclostomes. Support values for
the relationships Cheloninae + Euphorinae or Cheloninae
+ Macrocentrinae were higher than Microgastrinae +
Cheloninae (well corroborated in many other analyses)

and Macrocentrinae + Euphorinae. When M. cam-
phoraphilus or P. flava were excluded from the Bayes
analyses, both microgastroids and helconoids were recov-
ered with improved support values (Figure 7, Additional
file 1).

Subfamilies of braconid have traditionally been divided
into two groups, cyclostomes and noncyclostomes
[20,35,39]. These clades were firmly resolved in all our
analyses of seven representative subfamilies. Aphidiinae
was also recovered as sister-group to cyclostomes by
Dowton (2002) and Zaldivar-Riverón (2006). Our results
obviously support the sister group relationship between
Aphidiinae and cyclostomes. Sampling of only seven of
the 40 subfamilies of Braconidae may be the cause of the
misplacement of Cheloninae in some analyses. Our anal-
yses indicate that mitochondrial genome sequence data
has the potential to resolve the phylogenetic relationships
among braconid subfamilies with increased taxon sam-
pling.

Phylogenomics of Holometabola with an emphasis on 
Hymenoptera
We performed 12 phylogenetic analyses using combina-
tions of four datasets and three analytical methods to test
the utility of mitochondrial genome sequences among
hymenopteran superfamilies and holometabolus orders
(Additional file 2). The third codon position has proved
to be less restricted by purifying selection [67] and easily
saturated with substitutions, thus it is usually ignored in
phylogenetic analyses [68], and, Cameron et al. (2007b)
found it to be a major source of homoplasy. In our analy-
ses, the exclusion of the third codon improved the topol-

Figure 6 Evolutionary rates of braconid mitochondrial genomes. The ration of the number of nonsynonymous substitutions per nonsynony-
mous site (Ka) and the number of synonymous substitutions per synonymous site (Ks) for each braconid mitochondrial genomes, using that of Dia-
degma semiclausum or Enicospilus sp. as reference sequences.
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Figure 7 Braconidae phylogeny based on complete mitochondrial genome sequences. Bayes phylogenetic trees for all seven braconid species 
based on amino acid sequence (aa) and nucleotide sequences of first and second codon positions (Pos12-BI) of all protein-coding genes except nad2, 
for species without Macrocentrus camphoraphilus (Pos12-noMC-BI) or Phanerotoma flava (Pos12-noPF-BI) were present. Bootstrap support values fol-
lowed by Bayesian posterior probabilities (BPP) are shown at the right of respective nodes.
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ogy of the tree, furthermore, the recoding of purines and
pyrimidines into R and Y showed improvement of both
topology and support values (Figure 8). Baysian (BI) trees
tend to reflect accepted topologies better than maximum
likelihood (ML) and maximum parsimony (MP) trees. In
the MP trees, many nodes were unresolved, and in ML,
many nodes had low support values.

Monophyly of the seven in-group orders was recovered
in most analysis. Hymenoptera was recovered at the base
of all homometabolous lineages, except in most likeli-
hood analyses based on amino acid and protein-coding
positions, in which Hymenoptera and Lepidoptera were
recovered as sister-groups with low support value. In this
study, we included mitochondrial genome sequences
from Neuroptera and Mecoptera for the first time.
Mecoptera was recovered as a sister-group of Diptera.
Neuropterida (Neuroptera + Megaloptera in this study) is
supported across all analyses, forming the sister-group to
(Diptera + Mecoptera), differing from the presently pre-
ferred sister-group relationship of Neuropterida and
Coleoptera [43].

In the previous analysis using complete mitochondrial
genome sequence data, the relationships among holome-
tabolous orders were not well resolved [45,68]. Here,
increased taxon sampling generated more stable phyloge-
netic relationships. The basal position of Hymenoptera is
congruent with the analysis based on whole nuclear
genome sequences [44].

Within Hymenoptera, three species of Symphyta repre-
senting three superfamilies and three families and 17 spe-
cies of Apocrita representing seven superfamilies and
eight families were used in analysis. Symphyta was shown
to be paraphyletic; Apocrita was monophyletic with
Orussoidea as its sister-group. Two major clades were
recovered within Apocrita: Stephanoidea + Proctotrupo-
morpha, and Ichneumonoidea + (Evanioidea + Aculeata).
Proctotrupomorpha (Proctotrupoidea + Chalcidoidea in
this study), Ichneumonoidea (Ichneumonidae + Braconi-
dae) and Aculeata ((Eumeninae + Vespinae) + Apoidea)
in this study) were strongly supported in all analysis.
Evaniomorpha proposed in [69] was not recovered:
Evanoidea was recovered as sister-group to Aculeata,
while Stephanoidea was sister to Proctotrupomorpha.
Ichneumonoidea was the sister group of (Evanoidea +
Aculeata). All nodes among Hymenoptera were perfectly
supported in BI analyses except that of Stephanoidea +
Proctotrupomorpha. In the topology based on amino
acid sequences using BI, Stephanoidea was recovered as
the sister-group of (Ichneumonoidea + (Evanoidea +
Aculeata)), with a low support value of 0.54. In all analy-
ses the ancestral position of Nasonia vitripennis among
three Nasonia species is supported, which is congruent
with the analyses based on nuclear gene sequence data

and phylogeny of Wolbachia bacteria that they host
[26,70].

Phylogenetic relationships among Hymenoptera at the
superfamily level remain controversial [71]. Many well
accepted phylogenetic relationships were recovered, such
as the sister group relationship between Orussoidea and
Apocrita, Apocrita, Proctotrupomorpha, Aculeata (or
Vespomorpha) [69,72-78]. Evaniomorpha was frequently
recovered as polyphyletic [71,75,76,79]. Castro and Dow-
ton (2006) recovered a similar relationship among Ich-
neumonoidea, Evaniidae and Aculeata. The difference is
that a group including Stephanidae was sister to Aculeata.

Within Diptera, well established relationships were
recovered in nearly all of the analyses. Suborder relation-
ships within Coleoptera were less stable. Adephaga and
Myxophaga were recovered as sister group and then sister
to Polyphaga. However, Archostemata was either recov-
ered as sister-group to Polyphaga, or to Adephaga.
Monophyly of the suborder Polyphaga is recovered in
most analyses with internal relationships of Cyphon +
(Elateroidea + (Chaetosoma + (Tribolium+ (Priasilpha +
(Anoplophora + Crioceris))))). The intraordinal relation-
ships of Lepidoptera are also unstable among datasets
and methods. BI analyses supported early divergent of
Rhopalocera (Lycaenidae + Pieridae in this study) most
ML and MP analyses supported that of Tortricidae (Tor-
tricoidea). Monophyly of Bombycoidea (Saturniidae +
(Sphingidae + Bombycidae) in this study) was firmly sup-
ported in most analysis. The position of Lepidoptera and
its internal relationships is likely negatively affected that
the small sample of all taxa all of which were restricted to
the clade Apoditrysia. We will not discuss the relation-
ships among Coleoptera and Lepidoptera further since
phylogenetic relationships are not robustly supported.
However, our results might be of service to future
researchers.

Conclusions
In this study, we reported seven complete or nearly com-
plete mitochondrial genomes representing seven subfam-
ilies of Braconidae. Four sequenced A+T-rich regions
were shown to be inverted, as reported for species of
Philopteridae (Phthiraptera) and Aleyrodidae
(Hemiptera). Reversal of strand asymmetry was found in
all seven sequenced mitochondrial genomes, which is
correlated with the inversion of the A+T-rich region,
indicating that inversion of A+T-rich region might be a
ground-plan feature of braconid mitochondrial genomes.
Mitochondrial gene rearrangement rates differed mark-
edly among Braconidae, revealing that gene rearrange-
ment might be more diverse than that previously
reported [8,21,22,29]. Among different rearrangement
events, remote inversion was common in Braconidae.
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Figure 8 A combined holometabolous phylogenetic tree based on all mitochondrial protein-coding genes. Bootstrap support values for the 
nodes inferred from four analyses (by Bayes inference method based on first, second and RY-coded third codon positions, first and second codon 
positions, and amino acid sequences, and by most likelihood method based on first, second and RY-coded third codon positions of all mitochondrial 
protein-coding genes) were shown sequentially separated by "/". "*" indicates that the node were fully supported by all four inferences; "-" indicates 
that the node was not recovered by the corresponding inference.
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Noncyclostome species have a higher evolutionary rate
in mitochondrial genome sequences than those of cyclos-
tome species. Those species with high gene rearrange-
ment rates also have high nucleotide sequence
evolutionary rates.

Phylogenetic analysis using complete mitochondrial
genomes sequences recovered most of the well corrobo-
rated phylogenetic relationships among major lineages of
Braconidae, depending on the method and data matrix
used. Cyclostomes and noncyclostomes were recovered
in all analysis, and Aphidiinae was firmly recovered as be
a sister-group to the cyclostomes.

Within Hymenoptera, many well accepted relation-
ships, such as the paraphyly of Symphyta and Evaniomor-
pha, the sister-group relationship between Orussoidea
and Apocrita, and the taxa Proctotrupomorpha, Ichneu-
monoidea and Aculeata, were recovered with high sup-
port values. New views among major groups in
Hymenoptera are suggested, such as the sister-group
relationship between Evaniidae and Aculeata. Within
Diptera, relationships were very stable across analysis,
but not stable among suborders of Coleoptera and major
lineages of Lepidoptera.

Relationships among holometabolous orders were
improved with the increase of sampling based on com-
plete mitochondrial genome sequences and the recently
suggested basal position of Hymenoptera was supported
in most analysis.

In conclusion, complete mitochondrial genome data
have obvious potential to infer phylogenetic relationships
at the subfamily, family, ordinal levels.

Methods
DNA extraction, PCR amplification and sequencing
For each species, one male adult or a leg was homoge-
nized in liquid nitrogen and total genomic DNA was
extracted using the DNeasy tissue kit (Qiagen, Hilden,
Germany) following manufacturer protocols.

A range of universal insect mitochondrial primers and
hymenopteran mitochondrial primers modified from
universal insect mitochondrial primers were used
[40,57,80,81]. When necessary, species-specific primers
were designed based on sequenced fragments and com-
bined in various ways to bridge gaps. PCR and sequenc-
ing reactions were conducted following Wei at al. (2009).

Genome annotation
Protein-coding and rRNA genes were initially identified
using BLAST searches in GenBank and subsequently by
alignment with genes of other insects. Protein-coding
genes were translated using invertebrate mitochondrial
genetic code. The tRNA searches were carried out with
tRNAscan-SE search server [82]. The parameters for the
tRNA scan were set for Mito/Chloromast as the source,

and the Invertebrate Mito genetic code was used. When
long tracts of non-coding sequence were apparent and
tRNA genes were not detected using default settings, the
cove cutoff score was reduced and the search repeated.
Finally, those tRNA genes that could not be identified by
tRNAscan-SE were inspected by eye. rRNA structures
were constructed by comparison with those in other
insects and algorithm-based methods as in [24,49]. All
secondary structures were drawn in XRNA (developed by
B. Weiser and available at http://rna.ucsc.edu/rnacenter/
xrna/xrna.html).

Evolutionary rates
The software packages DnaSP 4.0 (Rozas et al. 2003) was
used to compute the number of synonymous substitu-
tions per synonymous site (Ks) and the number of non-
synonymous substitutions per nonsynonymous site (Ka)
for each braconid mitochondrial genomes, using that of
D. semiclausum or Enicospilus sp. as reference sequences.

Phylogenetic inference
For construction of the phylogenetic relationships among
Braconidae, seven species with mitochondrial genomes
sequenced in this study were used, representing seven
subfamilies of Braconidae. D. semiclausum and Enicospi-
lus sp., both Ichneumonidae, the family commonly
accepted as the sister-group of the Braconidae, were
employed as outgroups.

For construction of phylogenetic relationships among
holometabolous insects, 69 species with complete or
nearly complete mitochondrial genome sequences were
used (Additional file 2). Twenty species were chosen from
Hymenoptera, representing 10 superfamilies and 11 fam-
ilies [71]. Among Braconidae, S. agrili representing the
cyclostomes and C. vestalis representing the noncyclos-
tomes were used. Twelve species in nine families of the
Lepidoptera, 14 species in 14 families of Coleoptera and
14 species in nine families of Diptera were included.
Additionally, three species of Neuroptera, three species of
Megaloptera and one species of Mecoptera were used to
improve the sampling of orders among Holometabola.
Hydaropsis longirostris and Triatoma dimidiata
(Hemiptera) were used as outgroup taxa.

Amino acid sequences of protein-coding genes were
aligned independently using ClustalX version 2.0.7 [83]
with default parameters. Alignment of protein-coding
genes was inferred from amino acid alignment using
RevTrans [84]. Regions especially in the boundaries of
genes that were aligned ambiguously were excluded in
MacClade ver4.06 [85]. All protein-coding genes were
concatenated following their ancestral order in insect
mitochondrial genomes. Data were partitioned based on
first, second and third codon positions.

Four datasets were employed in the phylogenetic analy-
ses: amino acid sequence (aa), nucleotide sequences of

http://rna.ucsc.edu/rnacenter/xrna/xrna.html
http://rna.ucsc.edu/rnacenter/xrna/xrna.html
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first and second codon positions (Pos12), all codon posi-
tions (Pos123), first and second codon positions, and RY-
coded (purines coded by R and pyrimidines coded by Y)
third codon position (Pos12RY3) of all protein-coding
genes. Gene nad2 was excluded in construction of the
phylogenetic relationships of braconid subfamilies,
because this gene failed to amplify in four of the seven
braconid species.

Phylogenetic analyses were performed using Maximum
Parsimony (MP) with PAUP* 4.0b10 [86], Maximum
Likelihood (ML) with PhyML [87,88], and Bayesian Infer-
ence (BI) with MrBayes v3.1.2 [89]. The MP analyses were
run with default heuristic search options except that 100
replicates of random stepwise additions were used. Boot-
strap proportions (BPs) were obtained after 1000 repli-
cates by using 10 replicates of random stepwise additions
of taxa. Models of DNA substitution were estimated in
Modeltest 3.7 [90]. For ML, we used a GTR+I+G model
for nucleotide sequences and MtArt model for amino
acid sequences with all parameters estimated. For BI, we
used GTR+I+G model for four-state nucleotide
sequences and a two-state substitution model with
parameter I+G for RY-coded third codon position. All
Bayesian analyses were conducted with four independent
Markov chains run for 1,000,000 to 5,000,000 metropolis-
coupled MCMC generations, with tree sampling every
100 to 500 generations and a burn-in of 2500 trees.
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