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Abstract
Background: Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the 
autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the 
reappearance of self-sustained plateau potentials in the absence of modulatory inputs from the brain correlates with 
the development of spasticity.

Results: Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves 
over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use a 
rat-tail-model with complete spinal cord transection causing injury-induced spasticity, where gene expression profiles 
are obtained from labeled motor neurons extracted with laser microdissection 0, 2, 7, 21 and 60 days post injury. 
Consensus clustering identifies 12 gene clusters with distinct time expression profiles. Analysis of these gene clusters 
identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes 
relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance 
of plateau potentials in the late phase of the injury response. Transcription factor motif analysis identifies differentially 
expressed transcription factors involved in the regulation of each gene cluster, shaping the expression of the identified 
biological processes and their associated genes underlying the changes in motor neuron excitability.

Conclusions: This analysis provides important clues to the underlying mechanisms of transcriptional regulation 
responsible for the increased excitability observed in motor neurons in the late chronic phase of spinal cord injury 
suggesting alternative targets for treatment of spinal cord injury. Several transcription factors were identified as 
potential regulators of gene clusters containing elements related to motor neuron hyper-excitability, the manipulation 
of which potentially could be used to alter the transcriptional response to prevent the motor neurons from entering a 
state of hyper-excitability.

Background
The mammalian central nervous system has limited capa-
bility for regeneration. Spinal cord injury therefore leads
to neurological dysfunctions affecting the motor, sensory
as well as the autonomic systems [1]. In the immediate
phase following spinal cord injury the excitability of the
motor networks caudal to the injury becomes depressed.
This initial state of motor depression is often followed by
a maladaptive increase in network excitability resulting in

spasticity and/or pain [2-6]. The injury-induced spasticity
is characterized by a disturbing hyper-reflexia causing
prolonged muscle activity upon short activation of sen-
sory afferents [7,8]. Increased excitability of spinal motor
neurons, the cells that transduce the reflex response to
the muscles, has been implicated in this pathophysiologi-
cal state.

Under normal physiological conditions the motor out-
put (gain) can be modulated by activation of channels in
the motor neurons that conduct persistent inward cur-
rents, resulting in plateau potentials and sustained firing,
leading to enhanced and prolonged muscle contraction

* Correspondence: jesper.ryge@epfl.ch, O.Kiehn@ki.se
Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska 
Institutet, Retzius väg 8, 171 77 Stockholm, Sweden
Full list of author information is available at the end of the article
© 2010 Ryge et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20534130


Ryge et al. BMC Genomics 2010, 11:365
http://www.biomedcentral.com/1471-2164/11/365

Page 2 of 22
[9-14]. The expression of plateau potentials depends on
metabotropic receptor activation including activation of
noradrenergic and/or serotonergic receptors. The neuro-
modulators that activate these receptors primarily origi-
nate from neurons located in the brainstem, which
project descending fibers to the spinal cord. The ability to
generate plateau potentials therefore disappears in motor
neurons located caudal to a spinal cord injury [10,15-21].
They spontaneously reappear two to three weeks after
injury due to chronic changes in motor neuron properties
that parallel development of injury-induced spasticity
[22-24]. To investigate the molecular mechanisms under-
lying the reappearance of plateau potentials after spinal
cord injury we recently undertook a global gene expres-
sion study of motor neurons in the late phase of injury-
induced spasticity [25] using the rat-tail-model with a
complete spinal cord transection at the S2 segment,
developed by Bennett and coworkers [6]. This work iden-
tified differential expression of genes relating to ion chan-
nels, neurotransmitter receptors and intracellular
pathways 21 and 60 days post injury, supporting the
observed increase in motor neuron excitability and the
reappearance of plateau potentials [25]. In the present
work we investigate the dynamic transcriptional response
of motor neurons following spinal cord injury 0, 2, 7, 21
and 60 days post injury, enabling us to dissect out some of
the regulatory mechanisms of transcription underlying
the observed hyper-excitability. In the brain, such
dynamic transcriptome analyses have been used to ana-
lyze the gene expression pattern of well-defined cell pop-
ulations during development [26,27]. Comprehensive
studies on the mechanisms of transcriptional regulation
have mostly been conducted on simpler model systems
with homogenous cell populations such as cell cultures
[28-31]. In the present study the transcriptional response
of motor neurons over time constitute a direct measure of
cell-specific processes in a complex anatomical structure,
allowing us in a similar fashion to examine the expression
patterns and the underlying regulatory mechanisms of
this response.

Cluster analysis of the gene expression time series iden-
tifies 12 time profiles reflecting combinations of early and
late transcriptional regulations. Ontology analysis shows
that these clusters contain groups of genes that define
over-represented ontologies, indicating that each cluster
profile reflects the timing of distinct biological processes
as the motor neurons respond to the injury. Genes previ-
ously implicated in the development of the plateau poten-
tials in injury-induced spasticity [32] are also identified as
differentially expressed over time. The general injury
response is paralleled by a response in the regulatory net-
works of transcription factors. Transcription factor motif
analysis of the gene promoter sequences belonging to
each time profile indicates a complex regulatory control

of the different time profiles. Such transcription factors
could prove to be potential targets for treatment of
injury-induced spasticity as well as other aspects of the
injury response, where experimental manipulation of
their expression could be used to alter the transcriptional
response of motor neurons preventing them from enter-
ing a state of hyper-excitability.

Results
Transcriptional response of motor neurons to injury
Spinal cord injury was inflicted by a complete spinal cord
transection at the second sacral segment (S2), in effect
disconnecting the spinal networks caudal to the lesion
from the remaining part of the central nervous system.
The injury causes complete paralysis of the tail, with no
effect on bladder, bowel or hind limb functions [6,32].
The motor paralysis of the tail is followed by a slowly
developing spasticity [33] in the weeks and months after
injury. Clinical as well as electrophysiological evaluation
of tail spasticity was performed at each time point, show-
ing a progressive development of spasticity (or hyper-
reflexia) saturating between 21 and 60 days post injury
(Figure 2 in [32]).

To examine and compare the transcriptional response
of the motor neurons in early and late post-injury phases
GeneChip® Rat Genome 230_2.0 Arrays (Affymetrix,
RAT230 2 chip) were hybridized with RNA samples origi-
nating from motor neurons of uninjured control animals
(n = 4) as well as animals 2 (n = 6), 7 (n = 5), 21 (n = 8) and
60 (n = 8) days post injury. A conglomerate classifier
based on three well-established adjusted ANOVA test-
statistics for microarray analysis (limma, Cyber-T and
SAM) was used to identify significantly differentially
expressed genes used for subsequent clustering, identify-
ing 3,708 genes with a set false discovery rate (FDR)
threshold of 0.02 [34].

Consensus clustering unravels distinct gene expression 
time profiles
In order to identify common expression profiles across
time among the differentially expressed genes, transcripts
were grouped into clusters of similar expression patterns
using a robust consensus cluster algorithm developed by
Grotkjaer et al. 2006 [35]. The consensus cluster algo-
rithm is based on an averaging procedure conducted on
multiple runs of K-means clustering (see "Methods"). This
procedure amplifies common patterns in the expression
profiles while suppressing non-reproducible features. To
reduce miss-classification due to noise in the expression
data (of non-differentially expressed genes) we use the
consensus clustering on the most likely differentially
expressed genes. With a 0.02 FDR level of significance
3,708 probe sets were included in the consensus cluster
analysis. The analysis revealed the existence of 12 distinct
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Figure 1 Consensus clustering define distinct time profiles of gene expression. Consensus clusters of the 3,708 most differentially expressed 
genes. A. Heatmaps of each consensus cluster illustrating the expression pattern of the genes contained in each cluster. The gene wise expression 
has been normalized according to eq. 1 resulting in expression between -1 and +1. Color Code: Red signifies up-regulation and green down-regula-
tion compared to the gene-wise average (see color bar). The alternating colored bars below each heatmap illustrate the microarrays of each time point 
0, 2, 7, 21 and 60 days post injury. B. The average expression time profile of each consensus cluster, plus/minus one standard deviation. C. Optimal leaf 
ordered dendrogram showing the Ward distance between each consensus cluster. D. Contour map of the (leaf ordered) co-occurrence matrix. The 
consensus clusters are indicated along the diagonal with numbers. This figure illustrates the gene overlap between clusters for the consecutive cluster 
runs with randomized initial settings.
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time profiles (Figure 1A-1B) each containing 178-574
genes. Increasing the amount of consensus clusters
beyond 12 did not reveal new patterns of expressions but
rather breaks down the existing time profiles into sub-
categories with very similar features. Heatmaps of each of
the 12 consensus clusters, Figure 1A, show how their con-
stituent genes change expression over time across all the
microarrays in the study, where the expression levels for
each transcript have been centered and normalized
according to eq 1. Red color signifying expression above
the average for a given transcript and green color signifies
below average (see color bar). For each cluster the average
level of (normalized) expression across all its constituent
genes was calculated for each time point producing clus-
ter-specific time profiles of expression, shown in Figure
1B- in the following termed cluster profiles. The similar-
ity between cluster profiles is illustrated by the dendro-
gram of Figure 1C as well as in the contour map of the
optimal leaf ordered co-occurrence matrix shown in Fig-
ure 1D. The co-occurrence contour map illustrates the
degrees of gene overlap between the clusters in all the K-
means cluster runs, where well defined squares repre-
sents very robust clusters while points falling outside
these areas represents genes that occasionally fall into
other clusters. The co-occurrence contour map is fairly
well defined along the diagonal where overlapping genes
for the most part are limited to neighboring clusters.

The expression time profiles fall into two main
branches in the dendrogram, with profiles 1-4 in one
branch and profiles 5-12 in the other. The first group
(profiles 1-4) shares a pattern of late (21 and 60 days)
down-regulation, whereas their early response varies (2
and 7 days). In the other group (profiles 5-12), all but pro-
file 12 are characterized by an up-regulation either early
(profile 5), late (profiles 8-10) or both (profiles 6-7). Pro-
files 10 and 11 have an early down-regulation followed by
a subsequent up-regulation. Cluster profile 12 is charac-
terized by a very substantial early down-regulation fol-
lowed by a slight progressive increase in expression that
remains below control levels. This makes it somewhat
similar to cluster profiles 10 and 11, though as it remains
below control levels even in the late phase its biological
classification rather belongs to the group of down-regu-
lated cluster profiles 1-4. The co-occurrence plot, Figure
1D, also illustrates this fact, where genes of profile 12
occasionally overlap with cluster profiles 1 and 2 as well
as with cluster profiles 10 and 11. The full list of differen-
tially expressed genes grouped according to their cluster
identification is provided in Additional file 1.

The consensus clustering of the differentially expressed
genes thus unravels gene clusters with distinct expression
time profiles. We used these clusters for ontology analysis
as well as to ascribe expression profiles to genes related to
motor neuron excitability changes. Analysis of transcrip-

tion factor regulation was performed on each cluster to
identify potential mechanisms of regulation for the iden-
tified genes and ontologies.

Ontology analysis of gene expression time profiles
Genes may be annotated according to well-defined ontol-
ogies such as biological processes, cellular location, bio-
chemical pathways, protein families etc. highlighting
different aspect of their function. Over-representation of
genes within a cluster profile that share an ontology term
strongly suggests that the cluster represents a set of genes
that engage in or represent the identified ontology [36].
The ontology database maintained by the gene ontology
(GO) consortium annotating genes according to biologi-
cal processes (BP), molecular functions (MF) and cellular
compartments (CC) as well as INTERPRO and KEGG
pathways were all used in this analysis. Each ontology
highlights a different aspect of gene functions, making it
desirable to group together over-represented ontologies
containing a predefined degree of gene overlap in order
to fully appreciate the functional role of each of the 12
time profiles. Furthermore, since gene ontologies are
structured as acyclic directed graphs where a gene is
annotated from its most descriptive (lowest) level all the
way up through the graph, it may also be desirable to
group together the annotation terms within each branch
in the ontology graph that share the same genes and
within these extract the most representative ontology
(the lowest level) to exclude redundant representations.
DAVID functional ontology clustering accomplishes this
task. The ontology analysis was run on each time profile
with the total set of differentially expressed genes as
background. The most representative term of each ontol-
ogy cluster with a p-value below 0.03 was extracted,
shown in Table 1. It is clear from this analysis that profiles
1-4 and 12, all signified by a late down-regulation, have
several overlapping terms. Among the over-represented
ontologies defined by the down-regulated genes con-
tained in each of these clusters, we find "cell-cell adhe-
sion" and "zinc finger" shared between profiles 1 and 3,
ontologies relating to ribosomal processes shared in pro-
files 2 and 3, and ontologies relating to metabolic pro-
cesses shared in profiles 3 and 4. Profile 12 contains genes
that seem to be involved in mitochondrial energy produc-
tion (ATP) and regulation of anion concentrations and
signaling. There are some terms in cluster profiles 1-4
that also seem to indicate a down-regulation of mito-
chondrial processes and overall metabolism. The profiles
signified by an up-regulation of transcripts somewhere
along the time profile (cluster profiles 5-11) engage in dif-
ferent processes from those observed for cluster profiles
1-4 and 12. Profile 5 represents an early response of up-
regulated genes primarily seen two days post injury
involving processes of immunological and inflammatory
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Table 1: Over-represented ontologies of each gene cluster

Ontology Term Class Count Total Terms

Cluster 1: 574 transcripts

Cell-cell adhesion BP 18 34 9

Ensheathment of neurons BP 7 7 4

Zinc finger, C2H2-type INTERPRO 11 11 4

L-amino acid transmembrane transporter activity MF 7 9 8

Solute:cation symporter activity MF 6 9 6

Nucleosome assembly BP 6 14 10

Cluster 2: 244 transcripts

Ribonucleoprotein complex CC 31 54 16

Translation BP 23 54 16

Intracellular part CC 143 162 8

RNA splicing BP 9 14 9

Ribonucleoprotein complex biogenesis BP 10 14 4

Macromolecule metabolic process BP 95 110 4

Mitochondrial ribosome CC 4 4 4

Regulation of apoptosis BP 16 37 12

Cluster 3: 494 transcripts

Cell-cell adhesion BP 22 44 11

Metal ion binding MF 97 98 4

Cellular metabolic process BP 198 217 4

Regulation of biosynthetic process BP 12 19 4

Macromolecule biosynthetic process BP 37 52 4

Ribosome KEGG 12 38 9

Cell part CC 294 294 8

Peptidase M, neutral zinc metallopeptidase, zinc binding INTERPRO 5 8 4

Zinc finger, C2H2-type INTERPRO 10 10 4

Ligase activity, forming carbon-nitrogen bonds MF 13 19 6

Cytosolic large ribosomal subunit CC 6 11 5

Cluster 4: 254 transcripts

RNA metabolic process BP 43 85 14

Cellular metabolic process BP 108 117 4

Monooxygenase activity MF 5 9 7

Cluster 5: 358 transcripts

Inflammatory response BP 21 50 4

Adaptive immune response BP 8 12 16
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Pancreatitis-associated protein INTERPRO 4 7 6

Chemokine activity MF 5 10 10

Ras INTERPRO 10 20 8

GTP binding MF 19 19 8

Biopolymer modification BP 5 6 5

Immunoglobulin subtype INTERPRO 9 12 8

Cytokine production BP 6 10 8

Cluster 6: 186 transcripts

Glycosyltransferase PIR 8 10 12

Ribonucleotide binding MF 32 37 8

Contractile fiber part CC 4 4 4

Ras INTERPRO 6 10 8

Tyrosine-specific protein kinase PIR 4 10 9

Kinase activity MF 18 25 19

Hydrolase activity, hydrolysing O-glycosyl compounds MF 5 9 4

Biopolymer modification BP 28 60 6

Cluster 7: 178 transcripts

Positive regulation of transcription from RNA polymerase II BP 7 45 25

Cluster 8: 238 transcripts

EGF-like INTERPRO 7 7 10

Anatomical structure development BP 43 66 6

Membrane part CC 75 75 4

Transporter activity MF 32 35 8

Transcription coactivator activity MF 8 14 4

Intracellular transport BP 23 26 8

Integral to endoplasmic reticulum membrane CC 5 8 7

Coated vesicle CC 9 11 6

Cluster 9: 335 transcripts

Protein amino acid phosphorylation BP 28 64 14

Plasma membrane part CC 31 53 4

Protein kinase, core INTERPRO 16 22 6

Immunoglobulin-like INTERPRO 13 13 5

Neurotransmitter transporter activity MF 5 12 14

System development BP 52 72 5

Gated channel activity MF 13 28 28

Neurological system process BP 29 30 4

ATP binding MF 37 45 8

Cation transmembrane transporter activity MF 19 39 8

Negative regulation of fibroblast proliferation BP 4 10 11

Table 1: Over-represented ontologies of each gene cluster (Continued)
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Axogenesis BP 9 18 14

Regulation of neurotransmitter levels BP 9 14 6

Cluster 10: 263 transcripts

Membrane part CC 98 111 4

Glycolysis BP 13 37 25

Transporter activity MF 40 40 6

Purine ribonucleotide binding MF 45 48 9

Positive regulation of nucleobase, nucleoside, nucleotide BP 13 15 5

Synaptic transmission BP 17 31 5

Phosphorylation activity BP 24 49 25

Active transmembrane transporter activity MF 16 31 47

Phosphorylation activity MF 22 35 6

Neuron differentation BP 14 20 14

Cell development BP 34 37 11

Monovalent inorganic cation homeostasis BP 5 12 10

Amine transport BP 7 12 4

Ion exchanger activity BP 10 10 11

Cluster 11: 251 transcripts

Calycin INTERPRO 10 10 6

Synaptic transmission BP 18 27 5

DNA repair BP 10 21 4

Neuron projection development BP 11 24 17

Developmental process BP 61 61 4

Glycealdehyde-3-phosphate dehydrogenase () MF 5 20 21

Activation of adenylatecyclase activity by G-protein signaling 
pathway

BP 4 9 7

Cluster 12: 333 transcripts

Mitochondrial ATP synthesis coupled electron transport BP 10 19 9

Mitochondrial part CC 31 44 8

Oxidative phosphorylation KEGG 21 28 5

Primary active transmembrane transporter activity MF 15 26 13

Tricarboxylic acid cycle BP 6 9 11

Ion transmembrane transporter activity MF 23 37 10

ATPase activity, coupled to transmembrane movement of 
substances

MF 12 23 39

Alkali metal ion binding (K+) MF 8 14 23

Anion channel activity MF 5 14 23

Class Ontology: MF = molecular function, BP = biological process, CC = cellular component, PIR = protein information resource. Count: Number 
of genes in ontology. Total: Number of genes in ontology cluster. Terms: number of ontology terms in ontology cluster.

Table 1: Over-represented ontologies of each gene cluster (Continued)
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responses. Profiles 6 and 7, though being similar in their
expression pattern, have little overlap in their over-repre-
sented ontologies. Profile 6 seems to reflect activation of
a broad repertoire of kinase signaling pathways as well as
modification of the ribosomal machinery, which might
correlate with the only over-represented term in profile 7,
indicating a positive regulation of the transcriptional
machinery relating to polymerase II. Profiles 8-11 all
seem to contain ontologies relating to membrane bound
activities such as active transport and neuronal signaling
as well ontologies pertaining to engagement into neu-
ronal developmental processes.

In conclusion, the ontology analysis ascribes several
general functions to each time profile identifying their
timing across the injury response and suggesting a com-
mon regulatory control of these.

Differential expression of genes affecting motor neuron 
excitability
While the ontology analysis may identify general terms
subject to regulation, a manifest focus of our study was to
correlate changes in gene expression that can be linked to
increased motor neuron excitability and injury-induced
spasticity. In a previous study we examined the late (21
and 60 days post-injury) transcriptional response of
motor neurons to their sham-operated counterpart [32].
That study focused on changes in three main categories:
ion channels, receptors of neurotransmitters and intrac-
ellular pathways capable of modulating these. Here we
extract the same categories of significantly differentially
expressed genes. These genes are shown in Table 2 along
with the cluster identity. The majority of these differen-
tially expressed genes are identical to the genes reported
in our previous study [32], with the two primary differ-
ences being that in the present case they are, 1) identified
based on their differential expression across time as
opposed to a static comparison to their sham-operated
counterpart at each time point and 2) each gene is associ-
ated with a pattern of expression over time. Most impor-
tantly, we thus identify the same gene candidates subject
to regulation with two different strategies for the choice
of reference, supporting the robustness of our findings.
But, in contrast to the static study (25), the dynamic
response over time now enables us to expand our analysis
and start unraveling some of the underlying regulatory
mechanism shaping the observed patterns of gene
expression within each cluster profile.

To summarize the regulation of genes directly relating
to motor neuron excitability, we find that most of the
neuromodulator pathways (serotonergic, dopaminergic
and adrenergic) seem to have a response of late up-regu-
lation (clusters 8-10) while inhibitory neurotransmitter
pathways (GABAergic and glycinergic) are in general
down-regulated in the late phase of the injury response

Table 2: Differentially expressed genes relating to motor 
neuron excitability

Probe IDs Gene ID Protein ID Cluster

Calcium Channels

1371039_at Cacnb4 CAB4 4

1368398_at Cacna1h Cav3.2 8

1371175_a_at Cacna1b Cav2.2 9

1369706_at Cacng1 Cacng1 10

1386939_a_at Cacna1a Cav2.1 11

Sodim Channels

1379307_at Sap1 SAP1 1

1369662_at Scn2a1 Nav1.2 3

1368539_at Scn9a Nav1.7 5

1383435_at Scn3b SCN3B 5

1370850_at Scn3b SCN3B 5

1387010_s_at Scn1b SCN1B 8

1368351_at Scn10a Nav1.8 8

1388035_a_at Scn5a Nav1.5 9

Potassium Channels

1370439_a_at Kcnc2 Kv3.2 1

1369043_at Kcna4 Kv1.4 2

1386770_x_at Kcne2 KCNE2 2

1385226_at Kctd11 KCD11 3

1387264_at Kcnk6 TASK-1 5

1370958_at Kcnc3 Kv3.3 8

1389120_at Kcnc3 Kv3.3 9
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1369847_at Kcnab1 KCAB1 9

1369280_at Kcnk9 TASK-3 9

1370595_a_at Kcnip4 KCIP4 9

1370558_a_at Kcnc2 Kv3.2 9

1387477_at Kcnk12 THIK-2 10

1370545_at Kcna1 Kv1.1 11

1368343_at Kcnh2 Kv11.2 11

1368751_at Kcns3 Kv9.3 12

1374582_at Kctd9 KCD9 12

1368524_at Kcnc1 Kv3.1 12

1370076_at Kcnj16 Kir5.1 12

Chloride Channels

1367772_at Clns1a ICLN 1

1367893_a_at Clcc1 CLCC1 2

1378658_at Clca6 CLCA6 9

1392453_at Clcn3 CLCN3 10

1380547_at Clcn3 CLCN3 10

1379932_at Clcn4-2 CLCN4-2 12

Calmodulin and CaM kinase

1369993_at Camk2g KCC2G 9

1398251_a_at Camk2b KCC2B 9

1369937_at Calm1 CALM 11

1370853_at Camk2n1 CK2N1 11

1368101_at Calm3 CALM 12

Table 2: Differentially expressed genes relating to motor 
neuron excitability (Continued)
Calcium binding proteins

1369886_a_at Cabp1 CaBP1 11

IP3

1368005_at It r3 ITPR3 7

Glutamate Receptors

1387286_at Grm1 mGluR1 1

1398889_at Grinl1a GL1AD 1

1396696_at Gria4 GluR4 3

1369036_at Grik2 GRIK2 4

1368572_a_at Grin1 NR1 8

1368759_at Cacng2 CCG2/TARP 10

1372724_at Grina NMDARA1 10

1369128_at Grik5 GRIK5 10

1387559_at Grin3b NMDA3B 11

GABA Receptors

1368170_at Slc6a1 GAT1 1

1380170_at Gabarapl2 GBRL2 1

1380828_at Gabra1 GBRA1 1

1391653_at Gabrg2 GBRG2 1

1370702_at Gabrr3 GBRR3 9

1370804_at Gabarap GBRAP 10

1378842_at Gabarapl1 GBRL1 11

1387383_at Gabbr2 GBRR2 12

1369904_at Gabrb1 GBRB1 12

Table 2: Differentially expressed genes relating to motor 
neuron excitability (Continued)
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1367783_at Gabarapl2 GBRL2 12

Glycine Receptors

1387696_a_at Glra2 GLRA2 2

Cholinergic Receptors

1370607_a_at Nrg1 NRG1 9

1369845_at Chrna6 ACHA6 9

1369252_a_at Chrna4 ACHA4 9

1368615_a_at Slc18a3 VAChT 10

1368734_at Chrnd ACHD 10

Serotonin Recoptors

1369456_at Htr2b 5HT2BR 5

1369119_a_at Htr7 5HT7BR 11

Adrenergic Receptors

1368534_at Adra1d ADA1D 8

1388757_at Adrbk1 ARBK1 10

1369797_at Adra1a ADA1A 11

Dopamin Receptors

1368602_at Slc6a3 DAT 6

1368601_at Slc6a3 DAT 9

1387520_at Drd4 DRD4 9

1369856_at Drd5 DRD5 11

1376345_at Drd1ip (Caly) CALY 12

Cannabinoid Receptor

1369677_at Cnr1 CB1 1

Table 2: Differentially expressed genes relating to motor 
neuron excitability (Continued)
Anion Transporters

1367853_at Slc12a2 NKCC1 1

1368082_at Slc4a2 AE2 10

1368772_at Slc4a3 AE3 10

Table 2: Differentially expressed genes relating to motor 
neuron excitability (Continued)

(clusters 1-2 and 12). The time series analysis also reveals

regulation of genes coding for serotonergic (Htr7) and
adrenergic (Adrala) receptors, which were not seen in the
analysis of the late injury response [32] because they
belong to time profile 11 with an initial suppression fol-
lowed by a return to control levels. Other adrenergic
receptor related genes overlap in the two studies, alpha
1D adrenoreceptor (Adrald, profile 8) and beta-adrener-
gic receptor kinase 1 (Adrbkl, profile 10) being up-regu-
lated in the late phase. The dopamine reuptake
transporter DAT (profiles 6 and 9) together with the gene
coding for the dopamine receptor 4 (Drd4, profile 9) are
up-regulated while a gene coding for the dopamine inter-
acting protein Caly (profile 12) is down-regulated. The
gene coding for dopamine receptor 5 (Drd5, profile 11) is
subject to early down-regulation 2 and 7 days post injury,
but returns to control levels in the late phase 60 days post
injury. As in the preceding study [32] we find genes cod-
ing for GABAA subunits involved in channel trafficking
and membrane incorporation to respond to the injury
(Gabarap, profile10; Gaparapll, profile 11; Gaparapl2,
profiles 1 and 12) in synergy with the down-regulation of
the receptor subunits GABAA α1 (Gabral, profile 1),
GABAA γ2 (Gabrg2, profile 1) and GABAA receptor β1
(Gabrbl, profile 12). One additional gene relating to
GABA transmission is down-regulated, the GABAB
receptor 2 (Gabbr2, profile 12).

The time analysis showed in accordance with [32] that
the glutamatergic receptors seem to undergo a complex
regulation, where several genes coding for different com-
ponents of the NMDA receptor undergo regulation in
late stages: Grinl (profile 8) and Grina (profile 10) are up-
regulated and Grinlla (profile 1) is down-regulated.
Grin3b also belong to the NMDA receptor complex, but
seems to undergo early modulation with early down-reg-
ulation and a return to control levels in late phases (pro-
file 11). The gene coding for the AMPA receptor
regulator protein TARP is up-regulated (Cacng2 (star-
gazine), profile 10), suggesting an increased AMPA
receptor mediated conductance.

With respect to the cholinergic system the time series
analysis revealed similar patterns as was seen in the anal-
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ysis of the late injury response [32], all genes being up-
regulated in the late phases of the response. The up-regu-
lation of genes coding for nicotinic alpha receptors 4 and
6 (Chrna4 and Chrana6, profile 9) together with the
receptor subunit delta (Chrnd, profile 10) suggest an
increased sensitivity to acetylcholine, while the up-regu-
lation of the genes coding for vesicular acetylcholine
transporter (VAChT, profile 10) as well as for NRG1
(Nrg1, profile 10) know to be involved in synaptic matu-
ration suggest and increased release of acetylcholine.

Among the voltage gated ion channels, genes coding for
Ca2+ and Na+ channel subunits are largely up-regulated in
the late phase, while genes relating to K+ have a more
complex response with a balanced up- and down regula-
tion of channel subunits. The genes coding for the Ca2+

channel α subunits Cav3.2, Cav2.2 and the γ1 subunit
(Cacng1, profile 10; Caclh, profile 8; Cacna1b, profile 9)
are up-regulated in the late phase of the injury response,
while only the gene coding for the Ca2+ channel subunit
β4 (Cacnb4, profile 4) exhibit a late down-regulation. Sev-
eral genes of the Na+ subunits also undergo regulation,
where the genes coding for Na+ a subunits Nav1.8 and
Nav1.5 together with the β1 subunit (Scn10a, profile 8;
Scn5a, profile 9; Scn1b, profile 8) exhibit late up-regula-
tion, while only the gene coding for the a subunit Nav1.2
(Scn2a1) is down-regulated. Both the genes coding for
the a subunit Nav1.7 (Scn9a) and the β3 subunit (Scnb3)
belong to profile 5 with an early up-regulation and a
return to control levels in the late phases. Ca2+ binding
proteins also exhibit a trend towards late phase up-regu-
lation, i.e. CaM kinase related genes (Camk2g and
Camk2b, profile 9) as well as one IP3 receptor (Itpr3, pro-
file 7) and the Ca2+ binding protein caldendrin (Cabp1,
profile 11) are up-regulated. Two genes relating to calm-
odulin and CaM kinase (Calm1 and Camk2n1, profile 11)
are transiently down-regulated in the early injury
response, returning to control levels in the late part of the
injury-response. The Cl- reversal potential also seems to
be subject to regulation towards a more depolarizing
effect, suggested by the down-regulation of the gene cod-
ing for the Cl- transporter NKCC1 (Slc12a2, profile 1)
responsible for Cl- extrusion and the up-regulation of the
gene coding for the Cl- symporters AE2 and AE3 (Slc4a2
and Slc4a3, profile 10) involved in Cl-accumulation inside
the cell.

The transcriptional regulation exerted by differentially 
expressed transcription factors
The common expression patterns of each consensus clus-
ter suggest a common regulatory control of their associ-
ated genes. To reveal such common regulatory control,
we looked for over-representation of transcription factor
DNA binding sites in their proximal promoter regions,

here set to 1000 base pairs (bp) upstream and 200 bp
downstream of the coding region.

We focused the analysis on transcription factors that
were associated with genes that exhibit differential
expression in the time series. We find 34 genes coding for
transcription factors to be differentially expressed in our
data set out of the 119 transcription factor genes con-
tained on the RAT230 2 chip. These genes are listed in
Table 3 along with their cluster identity. To evaluate if
these factors are likely to exert an influence on the regula-
tion of the genes in each cluster, we predict their binding
sites in respective gene promoters using computational
models (see [37] for a review). Over-represented binding
sites suggest a possible role for the corresponding tran-
scription factor in the regulation of the tested set of
genes. For this analysis we use ASAP [38] with position
weight matrices (PWM) obtained from either JASPAR
[39] or TRANSFAC [40] and the set of differentially
expressed gene promoter sequences as background.

There is presently little overlap between the transcrip-
tion factors associated with the genes included on the
RAT230 2 chip and the two databases containing their
binding motifs, only 29 overlap with TRANSFAC and 10
with JASPAR (Figure 2A-B). Of these transcription fac-
tors (with both expression data and motif annotation),
the ones associated with genes that do not display differ-
ential expression were excluded from the analysis, reduc-
ing the two sets of transcription factors to six for
TRANSFAC (ATF3, ATF4, MYC, FOXO1, SP1 and E2F1)
and two for JASPAR (SP1 and E2F1). We therefore used
the TRANSFAC motifs for the promoter analysis.
Because many of the TRANFAC motifs describe the same
factor, this analysis includes 16 motifs. Patterns with a
substantial enrichments are reported (Z score > 3, as in
[38]), since these are likely to exert an influence in the
regulation of the gene clusters, Table 3. Under-repre-
sented binding motifs signify that the corresponding
transcription factor is very unlikely to exert any regula-
tory influence on the gene cluster under examination (Z
score < -3, not included in this table).

To illustrate the balance between over- and under-rep-
resentation of binding sites across gene clusters we next
take advantage of the continuous range of Z scores,
instead of only treating them as binary classifiers (over-
representation or not). In combination across the gene
clusters these values say something about the regulatory
landscape, i.e. what binding sites are unchanged in most
clusters, and what factors can explain the difference
between clusters? We choose to visualize this as a hierar-
chical heatmap, where rows constitute the motif models
and columns the gene clusters. In this representation the
Z scores are organized by two-way hierarchical cluster-
ing, such that motifs that behave similarly in terms of
over-representation will cluster together, as will the gene
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Table 3: Differentially expressed genes of transcription factors (TF) and over-representation (over-rep) of TF binding 
sequences within each gene cluster

DEG of TF

Clusters Gene ID Protein ID TF over-rep Motifs

Cluster 1 Gtf2e2 T2EB E2F1 E2F1_Q3_01

Nfyc NFYC FOXO1 E2F1_Q2_01

Olig1 OLIG1 E2F1_Q6_01

Pbx3 PBX3 FOXO1_01

Tfb2m TFB2M FOXO1_02

Cluster 2 E2f5 E2F5 FOXO1 FOXO1_01

Morf4l1 MO4L1 FOXO1_02

Cluster 3 Aatf AATF FOXO1 FOXO1_01

Btf3 BTF3 FOXO1_02

Klf10 KLF10

Cluster 4 Arid1b ARID1B E2F1 E2F1_Q3_01

Gtf2ird1 GT2D1 FOXO1 FOXO1_01

Irf9 IRF9 FOXO1_02

Cluster 5 Atf3 ATF3 ATF4 ATF4_Q2

Myc MYC

Tceb3 ELOA1

Ybx1 YBX1

Cluster 6 ATF4 ATF4_Q2

E2F1 E2F1_Q3

MYC MYC_Q2

SP1 SP1_01

SP1_Q2_01

SP1_Q4_01

SP1_Q6

SP1_Q6_01

Cluster 7 E2f1 E2F1 ATF3 ATF3_Q6

Foxo1 FOXO1 ATF4 ATF4_Q2

Gtf3c1 TF3C1 E2F1 E2F1_Q3

Sp1 SP1 MYC E2F1_Q3_01

SP1 E2F1_Q4

E2F1_Q4_01

E2F1_Q6

E2F1_Q6_01

MYC_Q2

SP1_01

SP1_Q2_01

SP1_Q4_01
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SP1_Q6

SP1_Q6_01

Cluster 8 Hsf4 HSF4 ATF3 ATF3_Q6

Tbx3 TBX3 ATF4 ATF4_Q2

E2F1 E2F1_Q3

MYC E2F1_Q3_01

SP1 E2F1_Q6

MYC_Q2

SP1_01

SP1_Q2_01

SP1_Q4_01

SP1_Q6

SP1_Q6_01

Cluster 9 Arid1b ARID1B ATF3 ATF3_Q6

Nr2f2 COT2 E2F1 E2F1_Q3

Pou2f3 PO2F3 SP1 E2F1_Q6

Runx3 RUNX3 SP1_01

SP1_Q2_01

SP1_Q4_01

SP1_Q6

SP1_Q6_01

Cluster 10 Atf4 ATF4 ATF4 ATF4_Q2

Srebf1 SRBP1 E2F1 E2F1_Q3

MYC E2F1_Q3_01

SP1 E2F1_Q4

E2F1_Q4_01

E2F1_Q6

E2F1_Q6_01

MYC_Q2

SP1_01

SP1_Q2_01

SP1_Q4_01

SP1_Q6

SP1_Q6_01

Cluster 11 Dmrt1 DMRT1 AFT3 ATF3_Q6

Gtf2h4 GTF2H4 E2F1 E2F1_Q3

Zeb1 ZEB1 MYC MYC_Q2

SP1 SP1_01

SP1_Q2_01

SP1_Q4_01

SP1_Q6

SP1_Q6_01

Table 3: Differentially expressed genes of transcription factors (TF) and over-representation (over-rep) of TF binding 
sequences within each gene cluster (Continued)
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clusters with similar bindings site landscapes, Figure 3A.
For plotting purposes each Z score vector (column) was
normalized to unit variance. The heatmap of Z scores
shows a clear pattern separating the expression profiles
into groups sharing over-represented (red) as well as
under-represented (green) sites. Motifs whose sites are
over-represented in the group of clusters 1-4 are under-
represented in the other major group clusters 6-11, and
vise versa. The patterns of transcription factor binding
site over- and under-representation are not identical for
each of the consensus clusters, perhaps alluding to some
degree of specific regulation within each cluster. Cluster
profiles 5 and 12 have slightly separate motif binding pat-
terns, though resembling clusters 6-11 and 1-4, respec-
tively. The first two principal components of the Z score
vectors of each time profile also reflect this clear separa-
tion, again reproducing the relationships obtained from
the consensus clustering (Figure 1C), where profiles 1-4
and 6-11 group together, while clusters 5 and 12 are

somewhat separated from these two main groups of regu-
lation, Figure 3B.

By comparing the expression pattern of the differen-
tially expressed genes coding for transcription factors
(which cluster they belong to) with the time profile of the
clusters where their binding sites are over-represented
(target cluster) some general picture emerges. The differ-
entially expressed genes of SP1 (Sp1) and E2F1 (E2f1)
belong to cluster 7, which show an early up-regulation
that is maintained throughout the injury response. The
pattern of binding site over-representation suggests that
SP1 may have an auto regulatory role, as its binding sites
are over-represented in cluster profiles 6-11 and under-
represented in cluster profiles 1-4 and 12. It thus seems to
enhance expression of genes in clusters 6-11. The pattern
of over-representation for the binding site of E2F1 on the
other hand suggest that this transcription factor has a
very broad activation potential as it seems to target clus-
ters 1, 4 and 6-12. The expression of the gene coding for

Cluster 12 Nfia NFIA AFT3 ATF3_Q6

Nkx6-2 NKX6-2 E2F1 E2F1_Q3_01

FOXO1 E2F1_Q4_01

E2F1_Q6

E2F1_Q6_01

FOXO1_01

DEG TF: Differentially expressed genes (DEG) of transcription factors (TF). Genes of TF with annotated TRANSFAC motifs are highlighted in 
boldface. TF over-rep: TFs with over-represented binding sites in the set of genes belonging to the specified gene cluster. Motifs: Individual 
TRANSFAC motifs with Z scores above 3 based on ASAP conducted on the set of genes belonging to the specified gene cluster.

Table 3: Differentially expressed genes of transcription factors (TF) and over-representation (over-rep) of TF binding 
sequences within each gene cluster (Continued)

Figure 2 Overlap between transcription factors and their binding motifs. Transcription factor overlap between the 119 transcription factors in-
cluded on the RAT230 2 chip and their binding motifs contained in TRANSFAC or JASPAR. A. Circle to the left represents the set of transcription factors 
included on the RAT230 2 chip, in total 119 of which 34 are differentially expressed. TRANFAC contains DNA binding motifs of 541 distinct transcription 
factors, 29 of which are on the array. Of these 6 are differentially expressed (green) and 23 are non-differentially expressed (red). Thus 28 (grey) differ-
entially expressed transcription factors do not have binding motifs in TRANFAC, which on the other hand contains binding motifs of 512 transcription 
factors not contained on the microarray (yellow). B. Overlap between the transcription factors included on the RAT230 2 chip and their biding motifs 
contained in JASPAR. Same color code as in A.
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FOXO1 (Foxo1) follows time profile 7, and the over-rep-
resented binding sites of this transcription factor in clus-
ters 1-4 and 12 suggests that it suppress the expression of
genes in these clusters as they are mainly down-regu-
lated. The gene of transcription factor ATF4 (Atf4)
belongs to cluster profile 10 showing a late up-regulation.
The binding sites of ATF4 are over-represented in cluster
profile 5 so its late expression may be involved in the late
suppression of genes in cluster profile 5. Cluster profile 5
on the other hand contains two differentially expressed
genes coding for transcription factors, MYC (Myc) and
ATF3 (Atf3). The binding sites of MYC are over-repre-
sented in the promoters of genes belonging to cluster
profiles 6, 7, 8, 10 and 11. This could indicate a role for
MYC in the positive regulation in the early response (2
and 7 days post injury) of cluster profiles 6-8, while it
would have the opposite effect suppressing the expres-
sion of genes in clusters 10 and 11 (see Discussion). As the
genes of cluster profile 5 reside to control levels in the late
phase of the injury response (21 and 60 days post injury),
it seems unlikely that transcription factors following this
time profile exert any effect on gene regulation at these
late time points. The binding sites of ATF3 are over-rep-
resented in profiles 7, 8, 9, 11 and 12, suggesting that this
transcription factor affects the early up-regulation in
clusters 7 and 8 while the profile of cluster 9 doesn't seem
to undergo any significant regulation at these time points
compared to control (day 0). As for transcription factor
MYC it seems likely that ATF3 participate in the suppres-
sion of gene expression in the early response in clusters
11 and 12.

This analysis showed that although we could only
ascribe motifs to 6 of the 34 transcription factors
encoded by differentially expressed genes, the complex
correlation between the timing of their gene expression
and the down- or up-regulation of their putative cluster
targets suggests an intricate interaction between the tran-
scription factors in shaping the transcriptional response.

Discussion
Excitability changes in motor neurons have been strongly
implicated with the emergence of pathophysiological
hyper-reflexia in late stages of spinal cord injury, since
self-sustained activity can be induced in motor neurons
upon brief stimuli of sensory afferents in the complete
absence of descending fibers from the brain [3,5,9,23]. By
focusing on the transcriptional time course of these cells
in combination with transcription factor motif analysis
we shed light on the regulatory mechanisms underlying
the re-expression of these plateau potentials, a key mech-
anism behind the pathophysiology of spasticity. In partic-
ular, we use a robust consensus cluster algorithm [35] to
identify distinct expression time profiles. This consensus
cluster algorithm conducted on the 3,708 most differen-

tially expressed genes identified 12 distinct time profiles.
These expression time profiles separate the differentially
expressed genes into groups that most likely are under
common regulatory control and enable us to associate
individual genes with a specific pattern of expression over
time.

Cluster analysis identify distinct time profiles that define 
the timing of general biological responses to injury
The 12 time profiles divide into two main groups relating
to the late response, one of down-regulation (time pro-
files 1-4 and 12) and one of up-regulation (time profiles
6-10), Figure 1B and 1C. Besides these two main catego-
ries of late regulation expression patterns there are two
clusters with a predominant early response, time profile 5
with an early up-regulation at day 2 and time profile 11
with an early down-regulation at days 2 and 7, which both
falls back towards control levels 21 and 60 days post
injury.

Ontology analysis of the genes associated with each
cluster profile shows that the motor neurons engage in
different biological processes as the transcriptional
response evolves over time. In particular time profile 5
signifies a marked immunological and inflammatory
response of the motor neurons in the early phase after
injury, which return to control levels in the late phases.
Such immunological processes are known to be pro-
nounced in the early phase of spinal cord injury from
studies conducted on entire spinal cord tissue [1,41-43],
but have not previously been identified at the motor neu-
ron level. This finding corroborate recent studies, indi-
cating that a neuronal immune response is included in
the repertoire of processes motor neurons can engage as
a means of protection against damage [44]. Cluster pro-
files 1-4 as well as 12 all describe different patterns of
transcript down-regulation. "Cell-cell adhesion" is clearly
down-regulated in profiles 1 and 3, suggesting that the
direct interaction of motor neurons with their neighbor-
ing cells are reduced. Synapse stripping, including the
removal of synapses from the perikaryon and dendrites,
is a pronounced phenomenon after axonal damage to
motor neurons [44]. The down-regulation of genes
related to "ensheathment of neurons" in cluster profile 1
suggests an effect of the injury on the myelination of
motor neurons not previously associated with this neu-
ronal population. Another prominent down-regulated
mechanism involves mitochondrial related energy metab-
olism (time profile 12). The translational machinery is
also down-regulated (profiles 2-3). The down-regulation
of chromatin structures (profile 1) suggests that the DNA
could be unfolding towards a more favorable transcrip-
tional state, while "RNA splicing" of profile 2 suggests a
reduction in the mRNA processing. Among the promi-
nent up-regulated profiles, pathways relating to neuronal
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development (profiles 8-10), suggest that injury induce
developmental processes as a late response. This finding
indicates that a differentiated and mature neural popula-
tion in the spinal cord is capable of re-engaging in devel-
opmental pathways, presumably attempting to ameliorate
the conditions of the damaged spinal cord and compen-
sate for the lack of inputs. It is also clear that plasma
membrane transporter activity of various kinds are signif-
icantly up-regulated suggesting a very strong control of
the electro-chemical transmembrane gradients, possibly
also reflecting the changing chemical requirements of the
motor neurons. The motor neurons also up-regulate pro-
cesses directly relating to membrane excitability and neu-
ral transmission, suggesting that the motor neurons
change their synaptic strength, both pre-synaptically
through modulation of axon terminals with increased
machinery for acetylcholine release and post-synaptically
through modulation of receptor channels as well as
changed membrane excitability.

Differentially expressed genes relating to motor neuron 
excitability and injury-induced spasticity
Ontology analysis provides general terms of activity sug-
gesting some biological functions of each cluster profile,

but the over-represented ontologies only represent a rela-
tive small proportion of the genes contained in each clus-
ter. To dissect out all the gene constituents that relate to
changes in motor neuron excitability and injury-induced
spasticity we therefore focused on genes involved in neu-
ral transmission. In a previous study we examined the late
transcriptional response of motor neurons compared to
their sham-operated counterparts 21 and 60 days post
injury [32]. From this study it was clear that the motor
neurons change their post-synaptic receptor composition
moving towards a more excitable state through a reduc-
tion of the ionotropic GABAergic receptors and an
increase of the ionotropic glutamatergic, adrenergic and
cholinergic receptors. Ca2+ and Na+ ion channels also
responded to the injury, where the most noticeable
changes related to the modulation of persistent inward
currents involved the ancillary subunits possibly chang-
ing the conductivity and membrane incorporation of
existing ion channels. The functional consequences of
these changes are discussed extensively in [32].

Extracting the differentially expressed genes affecting
motor neuron excitability based on their changed expres-
sion over time identifies many of the same candidates,

Figure 3 Motif over-representation of differentially expressed transcription factors. Over-representation statistics for each cluster profile of the 
16 binding motifs contained in TRANSFAC representing the 6 differentially expressed transcription factors: ATF3, ATF4, E2F1, FOXO1, MYC, SP1. A. 
Heatmap of Z scores organized by two-way hierarchical clustering according to the Z score pattern across binding motifs and cluster profiles. For plot-
ting purposes each Z score vector was normalized to unit variance. Over-represented genes are highlighted in red while under-represented transcrip-
tion factors are shown in green (see color bar). It is clear that consensus clusters 1-4 and 6-11 group together, sharing common over- as well as under-
represented transcription factor motifs. It is also striking that motifs over-represented in these groups typically will be under-represented in the other 
and vice versa. Consensus clusters 5 and 12 have different patterns of binding motifs Z scores. B. Principal components of the Z score vectors of each 
consensus cluster (columns of A) validate the pattern observed in A: cluster profiles 1-4 and 6-11 are closely grouped while cluster profiles 5 and 12 
are separated from these.
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though the differential expression in the present case is
based on mutual reference across the time points rather
than pair wise comparisons within each time point with
time-matched sham controls. The fact that the two differ-
ent strategies of analysis identify many of the same gene
candidates affecting motor neuron excitability supports
the robustness of our findings. The time series analysis
clearly shows that most of the genes relating to motor
neuron excitability and injury-induced spasticity are
found in clusters with late regulation, where genes coding
for receptors and channels with excitatory effects are pre-
dominantly up-regulated while inhibitory receptors are
primarily down-regulated. This shows that the observed
progressive increase of the hyper-reflexia strongly corre-
lates with the increased expression of genes enhancing
motor neuron excitability and reversely correlates with
the decreasing expression of the GABAA receptor system.
This pattern of expression was also reflected in the ontol-
ogy analysis, where late phase up-regulation of time pro-
files 9 and 10 contains terms of "gated channel activity",
"regulation of neurotransmitter levels", "synaptic trans-
mission" and "ion exchanger activity", while time profile
12 showing a general down-regulation as a response to
the injury contains "alkali metal ion binding" and "anion
channel activity" reflecting a decrease in anion channel
signaling (K+ and Cl-).

The apparent conclusion from this analysis is that many
of the genes affecting motor neuron excitability share
expression patterns, where the majority having an excit-
atory effect are up-regulated in late stages of the injury
response (21 and 60 days post injury) falling into clusters
6-10 while the majority of the genes relating to inhibition
are down-regulated in the late phases of the response fall-
ing into cluster profiles 1-4 and 12.

Transcriptional control of gene clusters
The distinct expression pattern shared by the genes of
each consensus cluster and their associated ontology
terms suggest a common regulatory control of each gene
cluster. This possibility was examined by matching tran-
scription factor binding sites with core promoter
sequences of the genes associated with each cluster using
ASAP [38] with motifs obtained from the TRANSFAC
database. This database is at present not fully annotated
for all know transcriptions factors, and at the time of
writing TRANSFAC contained motifs for 6 of the 34 tran-
scription factors encoded by genes identified in the pres-
ent study as differentially expressed (SP1, E2F1, FOXO1,
ATF3, ATF4, MYC). Based on over-representation analy-
sis of their binding sites we find that the expression pat-
tern for the genes of these six transcription factors
correlate nicely with the time profiles of their putative
target gene clusters. The genes of SP1 (Spl), E2F1 (E2fl)
and FOXO1 (Foxo1) all belong to time profile 7 with a

common up-regulation throughout the injury response,
but have different targets clusters.

The binding sites of SP1 are over-represented in pro-
files 6-11 suggesting a positive regulation by this tran-
scription factor of the genes associated with these
profiles. The binding sites of E2F1 are over-represented
in gene clusters 1, 4 and 6-12 suggesting the interaction of
this transcription factor with other proteins to focus its
regulatory effect to fewer transcript targets. Interestingly
the non-specific general activator proteins SP1 and E2F1
have been shown to interact to promote transcription
[45] and in motor neurons they can drive the transcrip-
tion of the motor neuron specific transcription factor
HB9 [46]. Their common binding site over-representa-
tion in cluster profiles 6-11 therefore suggest that they
participate in a general activation of transcription of their
associated genes.

The binding sites of FOXO1 are over-represented in
cluster profiles 1-4 plus 12 and it thus seems to have a
suppressive effect. The fork-head transcription factor
FOXO1 has not previously been associated with the spi-
nal cord, but it has been found in other parts of the devel-
oping and adult brain [47].

ATF3 and ATF4 both belong to the mammalian activa-
tion transcription factor/cAMP responsive element-bind-
ing (CREB) protein family of transcription factors and
they have both been associated with trauma relating to
the spinal cord. ATF3 has been shown to be up-regulated
in motor and sensory neurons subject to axotomy [48] as
well as in spinal neurons post injury [49]. The up-regula-
tion of ATF4 has been associated with ischemia of both
brain and spinal cord [49]. The genes of these two tran-
scription factors follow different expression profiles. The
gene of ATF4 (Atf4) belongs to expression profile 10 and
thus is subject to an initial repression followed by a late
up-regulation. The binding site of ATF4 is over-repre-
sented in time profile 5 suggesting that its late expression
is suppressing the genes of cluster 5 as they return to con-
trol levels after the initial up-regulation. Since the gene of
ATF3 (Atf3) belongs to cluster 5 it therefore seems to be
subject to the repression of ATF4. The early up-regula-
tion of the gene coding for ATF3 (Atf3) on the other hand
might correlate with initial up-regulation of expression in
clusters with over-representation of its binding site, clus-
ters 7, 8, and 9. The binding site of ATF3 is also over-rep-
resented in gene clusters 11 and 12 with early down-
regulation of expression, thus ATF3 must work together
with other transcription factors to explain this apparent
opposing effect on the expression of its target genes.

MYC, a member of the myc-family of transcription fac-
tors, is a complex regulator of general transcriptional
activation [50] and has been associated with immediate
early injury response of neurons in the spinal cord [51].
The gene of this transcription factor belongs to cluster
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profile 5 together with the gene of ATF3. The binding site
for MYC is over-represented in gene clusters 6-8 and 10-
11 suggesting a role in the early regulation of the genes in
these clusters.

The motif analysis could not be conducted on the full
set of transcription factors with differential expression of
their associated genes as not all of these were contained
in TRANSFAC, which otherwise would have enabled us
to make a more complete estimate of the regulatory net-
work underlying the expression patterns observed in the
motor neurons as a response to the injury. Apart from the
six transcription factors with know motifs, we note that
several of the other transcription factors with differential
expression of their associated genes have been implicated
with central nervous system development or its response
to trauma. These include the down-regulated genes of the
transcription factors E2F5 (E2f5) [51], GT2D1 (Gtf2ird1,
synonymous with BEN) [52] and NFIA (Nfia) [53] as well
as the up-regulated genes of transcription factors PBX3
(Pbx3) [54] and NRF2F (Nrf2f) [55]. In particular OLIG1
and NKX6-2 have been implicated in motor neuron dif-
ferentiation early in development [56-58]. The down-reg-
ulation of their genes (Olig1 and Nkx6-2) compared to the
un-injured state also suggests a role for these in the main-
tenance of normal motor neuron function and identity.

There is growing supporting evidence for a model
where the pattern of neurogenesis is achieved through a
mechanism of controlled repression of transcription
upon a background of non-specific transcriptional activa-
tion [46,59,60]. It therefore seems like the developing ner-
vous system is subject to general transcriptional
activation by non-specific general-activator transcrip-
tion factors while the cell specific processes are directed
by controlled inhibition of transcription. If this mecha-
nism applies to the adult organism, and in particular to
the injury response of motor neurons observed in the
present case, the down-regulation of a suppressor tran-
scription factor could have the same effect as the up-reg-
ulation of a transcription factor enhancer targeting the
same genes, i.e. induce transcription. The expression pat-
tern of the genes coding for SP1, E2F1 and MYC together
with their broad cluster targets suggest that these un-spe-
cific activators of transcription enhance the general tran-
scriptional capacity of the motor neurons, while the
expression pattern of genes coding for other more spe-
cific regulators of transcription like OLIG1 or NKX6-2
could function to shape the response by relief or activa-
tion of targeted suppression of specific sets of genes, sup-
porting the hypothesis of suppressor mediated
transcriptional specificity.

The observed combination of up- and down-regulated
transcription factors therefore suggests a redirection of
the transcriptional program, where the transcription fac-
tors of clusters 1-4 and 12 must be involved in the main-

tenance of normal motor neuron function and their
down-regulation together with the up-regulated tran-
scription factors of cluster profiles 5-10 suggest a
dynamic transition to a new transcriptional state. It is
also clear from our analysis that these transitions through
different transcriptional states across time are mediated
by the interactions of several transcription factors.

Conclusion
The present study expand our previous work on the late
transcriptional response of motor neurons following spi-
nal cord injury by adding data from the early phase,
resulting in a data set comprising days 0, 2, 7, 21 and 60
post injury. The consensus clustering with the subse-
quent ontology analysis enabled us to identify distinct
expression time profiles from which we can describe the
biological processes as they progress over time and corre-
late them to the pathophysiologal development of spinal
cord injury. Extracting genes directly relating to motor
neuron excitability further focus the analysis towards
changes associated with injury-induced hyper-reflexia.
The cluster identity of these genes in complement with
the over-representation analysis on GO terms and tran-
scription factor binding sites indicate some general
mechanism of how the motor neurons regulate their
membrane excitability as a response to the injury.

Our analysis clearly suggests that the transcriptional
response of the motor neurons to injury is complex, and
that the observed increased excitability is the result of
many interacting factors. This study therefore provides a
first step towards an understanding of the correlation
between the transcriptional regulation in an individual
cell population and the physiological state of a biologi-
cally complex system. In this light it therefore seems
unlikely that the suppression of a single gene or protein
relating to ion channels or receptors will have a signifi-
cant effect in reducing motor neuron excitability to alle-
viate injury-induced spasticity. We therefore suggest an
alternative approach, where the manipulation of the tran-
scriptional regulators such as the identified transcription
factors could be used to alter the transcriptional response
to prevent the motor neurons from entering a state of
hyper-excitability.

Methods
Spinal cord preparation
All handling of animals was approved by the Danish Ani-
mal Experiments Inspectorate. The handling and experi-
mental procedures of the animals were conducted at
University of Copenhagen (Denmark) and the isolated
spinal cord tissue was further processed at Karolinska
Institutet in Stockholm (Sweden).

Adult male Wistar rats (325-480 g) were used in this
study. The animals used for microarray hybridization
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were separated into five groups: controls of un-injured
animals (Control; n = 4), spinalized for 2 days (Spi-2; n =
6), spinalized for 7 days (Spi-7; n = 5), spinalized for 21
days (Spi-21; n = 8) and spinalized for 60 days (Spi-60, n =
8). The Spi-21 and Spi-60 samples were obtained from a
previous study [32] and the remaining samples were pro-
duced as described therein. In short, laminectomy was
performed on animals under anesthesia between the
lumbar L2 and L3 vertebras and injury was inflicted on
the spinal cord by removing 1-2 mm tissue at the sacral
S2 segment. After spinalization, the wound was closed
suturing muscles, muscle fascia and skin separately. Care
was taken to relieve pain post-operatively. Until termina-
tion of the experiment the welfare of the rats were rou-
tinely checked (e.g. for signs of infections, motor loss or
bladder dysfunction) and rats that showed signs of dis-
tress were immediately euthanized. Since the spinal cord
injury was inflicted at the S2 level only the motor and
sensory functions of the tail were affected leaving the
bladder, bowel as well as hind limb functions intact.
Motor neurons were labeled in vivo with Fluoro-Gold
(Fluorochrome) as described in [25]. At the day of termi-
nation animals were anesthetized with pentobarbital (ini-
tially 20 mg/kg and then 5 mg/kg every 30 minute,
Mebumal®, SA - Sygehus Apotekerne) and the sacrocau-
dal spinal cords were removed, snap-frozen in liquid
nitrogen and stored at -80°C until further processed.

Motor neuron extraction and microarray preparation
Fluoro-Gold labeled motor neurons (at the S3-S4 level)
were laser microdissected and their RNA extracted and
amplified as previously described [32]. In short, retro-
gradely Fluoro-Gold labeled motor neurons were isolated
from 10 thin spinal cord cryosections using the Leica AS
laser microdissection system (Leica Microsystems) at
room temperature. From each rat the total RNA was iso-
lated from 70-200 laser microdissected motor neurons
using the PicoPure™ RNA Isolation Kit (Arcturus) and the
messenger RNA (mRNA) fraction was amplified in a two
round T7 linear amplification process using the Ribo-
Amp™ HS RNA Amplification Kit (Arcturus). The com-
plementary DNA (cDNA) product from the 2nd round of
the amplification process was used to generate biotin-
labelled antisense RNA (aRNA) (GeneChip® Expression
3'-Amplification Reagents for IVT Labeling, Affymetrix).
The integrity and concentration of the amplified and
biotinylated aRNA was assessed on an Agilent RNA chip
with the Agilent 2100 bioanalyzer (Agilent Technologies)
both before and after fragmentation. Only samples of
good integrity were further used and 15 μg of the frag-
mented samples were hybridized to GeneChip® Rat
Genome 230 2.0 Arrays (RAT230_2 chip, Affymetrix)
and subsequently scanned. Each array always originated
from a single animal. The Agilent analysis and microarray

hybridizations were conducted at the Affymetrix core
facility at Novum (Bioinformatics and Expression Analy-
sis core facility, Department of Biosciences and Nutrition,
Karolinska Institutet, Huddinge, Sweden).

Microarray preprocessing
The microarray normalization and the analysis for detec-
tion of significantly differentially expressed genes was
adopted from Ryge and colleagues [34]. We used the
Affymetrix probe sets verbatim, but discarded those not
included in the Ensembl database for the RAT230 2 chip
prior to the statistical analysis, reducing the set of probes
from 31,099 to 12,919. The microarrays were then back-
ground compensated, normalized and RMA (Robust
Multi-array Average) expression summaries were calcu-
lated [34,61]. Additional background compensation was
carried out on the expression summaries as described in
[25]. Inspection of the normalized distributions showed
that all microarray RMA profiles followed the average
distribution throughout the intensity range, validating the
microarray pre-processing steps (Additional file 2). The
RMA expression summaries together with the raw CEL
files for all microarrays were submitted to the Gene
Expression Omnibus (GEO; http://www.ncbi.nlm.
nih.gov/geo/) hosted by the National Center for Biotech-
nology Information and can be accesses under accession
number GSE19701.

Differentially expressed genes
To determine the significantly differentially expressed
genes across the five time points adjusted ANOVA analy-
sis' were performed using three different statistical proce-
dures: Cyber-T, limma and SAM (described in [62-65]).
Each time point was treated as a separate "biological con-
dition", in essence identifying genes violating the null
hypothesis of equal mean across all conditions. The
resulting test statistics of all three procedures were then
used to create a conglomerate ranking of each gene
reflecting their degree of significance across all three tests
as described in [34]. For the purpose of clustering a FDR
cut-off of 0.02 was chosen classifying 3,708 out of 12,919
genes as differentially expressed. To compensate for mul-
tiple testing the p-values of Cyber-T and limma were con-
verted to FDRs using the approach of Allison and
colleagues [66], whereas the FDRs of SAM are based on a
methodology of permutation and re-sampling of the data
(i.e. these FDRs are output from the SAM analysis
directly).

Consensus Cluster analysis
ClusterLustre, a robust consensus clustering method, was
used to group the set of differentially expressed genes
into clusters of reliably classified gene expression patterns
[35]. To avoid clustering according to magnitude but
rather on common patterns of expression, the expression

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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level of each transcript were normalized prior to cluster-
ing:

for gene n = 1,...,N and microarray m = 1,...,N. Here ynm
represents the RMA expression value of transcript n on

chip m and  the average expression level of transcript
n across all M microarrays. The denominator is used to
confine the expression variance to the interval [-1,1]. The
consensus clustering algorithm aims at producing robust
clustering results by averaging over multiple clustering
runs such that the sensitivity to settings and initialization
are diminished. The algorithm works as follows (for more
details see [35]). Initially, 30 scans with k-means in the
interval k = 6...14, leading to a total of 9 * 30 = 270 clus-
tering runs are performed. From these a co-occurrence
matrix reflecting the pair wise probability of transcripts
falling in the same cluster is made. The resulting co-
occurrence matrix thus describes the pair wise empirical
probability of transcripts falling in the same cluster
throughout the 270 clustering runs. In the final step, one
minus the co-occurrence matrix (= the dissimilarity
matrix) is used as input to hierarchical clustering. This
gives a robust clustering because genes that fall in the
same cluster across most cluster runs will have a small
dissimilarity and thus be grouped together, whereas this
is not the case for genes that infrequently by chance are in
the same cluster. So, consensus clustering gives clearer
clusters than a direct application of hierarchical cluster-
ing on the data [35].

In the present study, we found 12 consensus clusters to
be optimal in terms of representing distinct expression
time profiles (each containing approximately 150-600
genes). A full list of the differentially expressed genes
grouped according to their cluster ID is provided in Addi-
tional file 1.

Over-representation analysis on identified gene clusters
Ontologies
The DAVID online ontology-cluster tool [67,68] was used
on each of the 12 identified gene clusters to identity
groups of over-represented ontologies sharing a gene
overlap of minimum 70%, from which a significant repre-
sentative term was extracted. Ontology clusters were
deemed significant if they contained ontologies with p-
values below 0.03.
Transcription factors
To identify transcription factors that may be involved in
regulation of the identified gene clusters we performed

motif analysis on each cluster looking for transcription
factor binding sites in the core promoter sequences of
their constituent genes. For this analysis we obtained the
sequences from the Ensembl database of 1000 bp
upstream and 200 bp downstream of the coding region of
all differentially expressed genes using biomaRt. Each set
of promoter sequences pertaining to a distinct time pro-
file was analyzed for over- and under-represented tran-
scription factor binding sites using ASAP [38] with
position weight matrices (PWM) obtained from JASPAR
[39] or TRANSFAC [40]. ASAP searches the set of pro-
moter sequences using a transcription factor motif (i.e.
PWM) and calculates the number of times a given bind-
ing site appears, producing a Z score reflecting the likeli-
hood of its over-representation (positive) or under-
representation (negative) compared to the amount of
times it appears in a pre-defined background. In the pres-
ent case the 3,708 differentially expressed genes were
used as background for each cluster.

We note that the presented findings resting on this
methodology are based on predictions and that more
than one transcription factors may bind to the same tar-
get. This means that over-representation of a certain
binding site for one transcription factor in a gene pro-
moter region may not always predict the binding of the
exact same factor.

Differentially expressed genes relating to motor neuron 
excitability
Significantly differentially expressed genes relating to
motor neuron excitability were extracted along with their
corresponding cluster ID, belonging to the same catego-
ries of ion channels and neurotransmitter receptors as
described in [25]. In particular genes relating to Ca2+,
Na+, Cl- and K+ channels as well as genes relating to gluta-
matergic, GABAergic, glycinergic, cholinergic, serotoner-
gic, adrenergic and dopaminergic receptors were
identified and are shown in Table 3. Ca2+ binding genes
relating to calmodulin and IP3 were also included in this
table.

Software
The microarray analysis was done using R http://www.r-
project.org/ and Bioconductor http://bioconductor.org.
Cyber-T source code was obtained from the website
http://cybert.microarray.ics.uci.edu/. Open source soft-
ware was used for clustering (ClustreLustre, http://
eivind.imm.dtu.dk/staff/winther/software.html) and pro-
moter analysis (ASAP, http://asap.binf.ku.dk/Asap/
Home.html). Separate scripts for integration of R and
bioconductor data formats with these programs were
developed and are included as supplementary material
(Additional files 3 and 4).
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Additional material
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