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Abstract
Background: Copy number variations (CNVs), which represent a significant source of genetic diversity in mammals, 
have been shown to be associated with phenotypes of clinical relevance and to be causative of disease. 
Notwithstanding, little is known about the extent to which CNV contributes to genetic variation in cattle.

Results: We designed and used a set of NimbleGen CGH arrays that tile across the assayable portion of the cattle 
genome with approximately 6.3 million probes, at a median probe spacing of 301 bp. This study reports the highest 
resolution map of copy number variation in the cattle genome, with 304 CNV regions (CNVRs) being identified among 
the genomes of 20 bovine samples from 4 dairy and beef breeds. The CNVRs identified covered 0.68% (22 Mb) of the 
genome, and ranged in size from 1.7 to 2,031 kb (median size 16.7 kb). About 20% of the CNVs co-localized with 
segmental duplications, while 30% encompass genes, of which the majority is involved in environmental response. 
About 10% of the human orthologous of these genes are associated with human disease susceptibility and, hence, 
may have important phenotypic consequences.

Conclusions: Together, this analysis provides a useful resource for assessment of the impact of CNVs regarding 
variation in bovine health and production traits.

Background
Cattle, part of the Cetartiodactyl order of eutherian
mammals [1], is an important source of human nutrition
worldwide as well as the most studied ruminant model of
metabolism, reproduction, and disease [2]. Following the
milestone publication of the cattle genome assembly
along with annotation of functional elements and varia-
tion [2,3], we are now enabled to search for genomic
regions that impact the genetic variation of important
phenotypic traits.

Genomic structural variation, including insertions,
duplications, deletions, inversions and translocations of
DNA, has long been known to be present in animal
genomes [4,5] but had predominantly been assumed to
be to rare events and often associated with disease. This
notion changed in 2004 when two groups of researchers
published the first genome-wide maps of copy number
variation in seemingly healthy individuals [6,7]. Copy
number variant (CNV) is described as a segment of DNA
> = 1 kb that is copy number variable when compared

with a reference genome [8]. Before these landmark stud-
ies, it was thought that SNPs were the major source of
genetic variation between individuals [9] but genomic
structural genetic variation is now known to cover more
base pairs [10-17], and to have a higher per-locus muta-
tion rate than SNPs do [18].

There are indications that CNVs appear throughout the
genome not only in humans, but also in other primates
[19-21], rodents [22-30], flies [31,32], dogs [33], chickens
[34] and cattle [35]. Nevertheless, other than humans and
mice [29,36-40], little is known about how CNVs contrib-
ute to normal phenotypic variation and disease suscepti-
bility. Up until now, relatively few studies have confirmed
the presence of CNVs in cattle [35,41,42], of which only
one study focused on genome-wide detection of CNVs
[35], but at low resolution using version 3 of bovine
genome assembly [2].

Here we report the use of high-resolution oligonucle-
otide array comparative genomic hybridization (array
CGH) to identify 304 CNV regions in 20 animals (14 Hol-
steins, 2 Red Danish, 3 Simmental and 1 Hereford). With
an average probe spacing of 420 bp relative to the latest
bovine genome assembly (BT4, 2007) [2], this analysis
provides the highest-resolution map of copy number
variation in the cattle genome to date.
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Results
Experiment design
The goal of our study was to characterize levels and pat-
terns of copy number variation among bovine animals.
Therefore, to assess the bovine CNV landscape, the
genomic DNA of 20 bovine samples from two dairy (14
Holsteins, 2 Red Danish) and two beef breeds (3 Simmen-
tal, 1 Hereford) were analyzed. Assessment of copy num-
ber variation between samples was done using a set of
Nimblegen HD2 CGH arrays that tile across the genome
with approximately 6.3 million unique oligo probes with a
mean probe spacing of 420 bp, using the latest genome
assembly (BT4) [2].

We opted for a dye-swap loop array design, rather than
a common reference design, so that each sample was
hybridized to two different samples in two different dye
orientations. Dye swap is used to compensate for dye
bias, while the loop design (known to be more efficient
than the reference design [43,44]) is applied to help assign
the CNV gain and loss status more accurately for each
sample based on the number of samples with the CNV.

Array CGH evaluation
For evaluation of our array CGH platform, four sex-mis-
matched arrays and one self-self hybridization (all in dye
swaps) were used to assess the false positive rate (see
Methods). Probes were interpreted as revealing a copy-
number difference if the standard error of the log-inten-
sity ratio was beyond an intensity-ratio threshold. The
adequacy of this threshold in detecting copy-number dif-
ferences was confirmed by conducting sex-mismatched
hybridizations, comparing the number of X-linked
probes beyond the threshold. From the 88.52 Mb length
of chromosome X, 3.21 Mb were greater than the thresh-
old, yielding an estimate of 3.62% for the rate of false pos-
itives (FP). The false positive rate (FPR) is conservatively
overestimated due to: (1) the assumption that there are
no CNVs in the chromosome X of sex-mismatched
arrays; (2) calling for FP was done at individual arrays
rather than if they were detected in both dye swaps; (3)
and because the self-self hybridization array yielded
much lower FPR at individual array calling (0.0085%), and
zero FPR when calling CNVs detected in both dye swap.

Pattern and frequency of CNV regions
Since copy-number changes are relative for array CGH
data, unambiguous ascertainment of the ancestral state of
a CNV and (subsequent) identification of duplications
and deletions is challenging. We have therefore chosen a
design where a dye swap is coupled with a loop design,
with each animal sample hybridized with two other ani-
mal samples, enabling us to distinguish between a dele-
tion and duplication as well as the animal origin of the
CNV (Figure 1). Since identical CNVs, when called in dif-

ferent animals, might be assigned different boundaries
due to technical and/or biological sources of variability,
overlapping CNVs were handled as a whole and named
copy number variable regions (CNVRs) [10,45].

After applying a stringent CNV calling pipeline with a
theoretical 1.5 kb resolution for CNV detection (Figure 2
and Methods), 304 putative CNVRs were identified, aver-
aging 47 CNVs per animal (Additional file 1, Table S1),
with 70% (212) of the CNVRs observed in more than one
animal. Although CNVRs detected in more than one ani-
mal of different families and/or breeds could be defined
as frequent, the relationship between some of the animals
precludes such classification (Additional file 2, Figure S1).
The relatively poor breakpoint estimation also prevents
information regarding whether these CNVRs are identi-
cal-by-descent (arisen before the divergence of these cat-
tle breeds), or separate events occurred independently in
different breeds (in putative structurally fragile genomic
regions).

CNVRs were detected on all chromosomes, but were
distributed throughout the genome in a non-random
manner (Figure 3) with little correlation between CNVRs
occurrence and chromosome length (Additional file 3,
Figure S2). This is coherent with previous studies on het-
erogeneous distribution of CNVs in primates [10,21], but
the low number of samples used in this study prevents us
from drawing any conclusions regarding putative
genomic CNV hotspots.

Out of the total number of CNVRs detected, 49.7%
(151) partially overlap gaps in the assembly (BT4), which
indicates that the CNVRs have a high probability of being
linked with gaps within the reference cattle genome
assembly (permutation test, p-value < 0.001). This
stresses the need for unraveling of these genomic regions
of high structural complexity. The CNVRs detected vary
in size from 1.7 kb to 2 Mb with a median size of 16.7 kb,
and encompass approximately 23 Mb or 0.68% of the
bovine genome (Table 1 and Figure 4). The biggest region
showing copy loss is 2.03 Mb on chromosome 13 in ani-
mal 16, while the biggest region showing copy number
gain was detected in animals 6 and 7 showing a 417 kb
amplification without overlapping any gene nor SD
(Additional file 1, Table S1).

When comparing the size distribution between the 202
losses and the 102 gains, no significant difference was
found (Wilcoxon rank sum test, p-value > 0.05), although
we detected significantly more losses than gains (exact
binomial test, p-value = 1.01e-08). This bias in detecting
more deletions could be due to both biological and tech-
nical reasons. One of the main mechanisms responsible
for the CNV formation, non-allelic homologous recombi-
nation (NAHR), has been shown to generate more dele-
tions than duplications [46]. As also noted by others
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[10,31,47], a technical bias favoring the detection of dele-
tions may be responsible since our CNV detection pipe-
line have more power to detect a loss (log2(1/2) = -1) than
a gain (log2(3/2) = 0.58). With 69% of the CNVRs
described within 50 kb in size (figure 4), it should be

noted that a significant proportion of the CNVs are near
our effective resolution of 1.5 kb. This indicates that the
experimental detection of 304 CNVRs may greatly under-
estimate the actual number of CNVs in the cattle genome,
and that a substantial proportion of CNVs could be
smaller than 1.5 kb in size. CNVs >2 Mb in size were not
detected, which may be a consequence of the number and
size of sequence gaps in the current outline of the cattle
genome sequence assembly (75 654 gaps spanning 5.8%
of the assembly).

When assessing hybridization signals in the unassem-
bled chromosome (ChrUn), it was verified that only the
male vs. female hybridizations were detecting CNVs in
some regions. Although the number of females in this
study is small (n = 2), the findings suggest that these
regions may be from the bovine chr Y (Additional file 11,
Table S9). It is known that the Bos taurus genome assem-
bly was not only composed by a female animal, but also
had a BAC library sequenced from a male animal, from
which the corresponding Y chromosome scaffolds were
unlabeled and placed in the ChrUn [48]. Consequently,

Figure 1 Example of an identification procedure for CNV gain or loss status. Y axis represents log2ratios and X axis represents genomic positions 
along chromosome 7. (A) animals 2 vs. 19; (B) 19 vs. 6 (gain in 19 or loss in 6); (C) 6 vs. 20 (loss in 6 or gain in 20) and (D) 20 vs. 17. The only plots that show 
a CNV are B and C, and since the only animal common to those hybridizations is animal 6, we classify this CNV as a deletion in animal 6.

Figure 2 CNV calling pipeline (details in Methods section). Data 
analysis procedure to discover copy number variations in array CGH 
data.
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this study highlights regions for future genome assembly
improvements.

In accordance with analyses conducted in humans
[10,11], we detected that the GC content of the CNVRs

(43.6%) are slightly larger than of the whole genome
(41.8%), which supports the notion that CNVs arise more
often in GC rich regions.

Figure 3 Bovine karyotype, with CNVR distribution. Green arrows correspond to gains and red arrows correspond to losses.
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SDs are associated with CNVs
Segmental duplications (SDs), defined as regions of
length > = 1 kb with at least 90% sequence identity [49],
are important elements in the formation of CNVs via
non-allelic homologous recombination (NAHR) through-
out the mammalian lineage [39,50,51]. To test whether
the non-random association between CNVs and SDs was

preserved in our high-resolution data, the overlap of
CNVs with segmental duplications was determined. Seg-
mental duplications were overlapped by 20% (61) of the
CNVRs, which implies that CNVs are enriched near seg-
mental duplication (permutation test, p-value < 0.001). It
should be noted that the enrichment is increased when
testing only the CNVRs bigger than 20 kb, with segmen-

Table 1: Characteristics of the CNV regions, with sizes in base pairs (bp).

Type CNVRs Mean size Median size Size range CNVR
Content

Sequence
covered

% CNVR

Loss 202 77,420 16,543 1,716 - 2,031,343 15,638,770 0.482

Gain 102 62,147 19,580 1,737 - 416,858 6,339,041 3,247,516,410 0.195

All 304 72,295 16,678 1,716 - 2,031,343 21,977,811 0.677

Figure 4 Size range distribution of the CNVRs detected.
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tal duplications overlapping 47% of those CNVRs. This is
also consistent with previous CNV studies reporting a
stronger association between segmental duplications and
long CNVRs [10,45].

Functional analysis
Nearly 30% (90) of the CNVRs encompassed 348 full-
length genes as annotated in Ensembl [52] (Additional
file 4, Table S2), but contrary to segmental duplications,
the enrichment of CNVRs in genic areas is not signifi-
cant. This indicates that the gene content of the CNVRs
does not significantly differ from the whole bovine
genome. The fact that none of the 481 ultraconserved ele-
ments [53], nor the 611 new long conserved noncoding
sequences in vertebrates [54], were found in the CNV
regions (whereas six of them would be expected by
chance, permutation p-value < 0.001), further supports
the notion that CNVs are significantly depleted in highly
conserved functional elements.

In order to determine the likely biological effects of the
348 copy number variant genes, a gene ontology (GO)
analysis was performed with the EasyGO tool [55]. Genes
that were not completely included within the CNVRs
were excluded from the GO analysis, since the breakpoint
definition of CNVRs can be equivocal [56,57]. Table 2
shows that genes involved in environmental response are
over-represented in the bovine CNVRs, as also seen in
other studies of mammalian genomes [10,21,25,33].

The following step was to test if genes unaffected by
CNVs exhibited a different selective constraint than the
ones affected. To test this, the dN/dS ratios for ortholo-
gous genes between the cow and human species were
compared (Table 3 and Additional file 5, Table S3).
Knowing that dN is the number of nucleotide differences
per non synonymous site and dS the number of nucle-
otide differences per synonymous site, dN/dS < 1 sug-
gests that amino acid change is selectively constrained
(purifying selection), while dN/dS ≥ 1 suggests a relax-
ation of that same selection (positive selection). It was
determined that both deleted and duplicated genes have
dN/dS ratios significantly higher than those for non-poly-
morphic genes. This result, as for the over represented
set of 'environmental response' genes, might indicate a
relaxation of constrains due to the redundancy expected
from the variable number of gene copies [58-61].

When examining the human orthologs for the cattle
genes [52] affected by CNV, we studied 167 human
ortholog genes of which 84 overlap with the genomic
coordinates of previously reported human structural
variation, as seen in the Database of Genomic Variants
(DGV) [7]. Since it is unlikely that CNVs in the human-
cow common ancestor would have been conserved, the
overlapping CNVs most probably reflect the existence of
orthologous genomic regions of structural instability that

are prone to recurrently generate polymorphisms in both
species. However, this may also indicate that the CNVs
annotated in DGV, being derived using different techno-
logical and analytical platforms, have a large variance in
CNV resolution which may overestimate CNV sizes [14].
Consequently, even if the annotated CNVs represent true
structural variation it is difficult to estimate the actual
boundaries of the CNV and subsequently the overlap of
DGV CNVs with the CNVs identified here.

CNV affecting genes associated with disease
Querying for copy number variant genes that had an
orthologous human gene with OMIM morbid ID refer-
ence [62], revealed that 19 of these genes have been asso-
ciated in human disease (susceptibility to sarcoidoisis and
Alzheimer's disease, myopathy, encephalopathy, ataxia,
etc - Additional file 6, Table S4). Likewise, when probing
orthologous human genes involved in genome-wide asso-
ciation studies (GWAS) [63], 12 genes associated with
human disease traits were found (Additional file 7, Table
S5). We also queried the Animal QTL database [64] that
holds publicly available QTL data on livestock species.
Retrieving all the bovine QTLs within 2 Mb of our
CNVRs resulted in 110 QTLs, which can hold putative
valuable information for some important traits of interest
(Additional file 8, Table S6). The database of Online Men-
delian Inheritance in Animals (OMIA) [65] was also que-
ried, and 21 cow phenotypes within 2 Mb of CNVRs were
retrieved (Additional file 9, Table S7).

Comparison with other mammalian CNV studies
Next, we compared the number of CNVRs detected here
with CNVRs from other studies (Table 4). To minimize
technical CNV detection biases we: (1) used data only
from the same platform (when available), (2) used data
from the highest resolution genome-wide survey pub-
lished on each species queried and (3) required that the
study was non biased to any particular genomic region.
The main finding of this comparison is that an increased
resolution of the array platform increases the number of
detected CNVs. This supports our finding that the bulk of
CNVs in mammalian genomes are small events, implying
that the characterization of the mammalian CNV land-
scape is far from complete. A comparison with other
non-human CNV studies shows that the number of
CNVRs/sample does not follow the same trend. This is
expected since we have employed a number of related
animals as well as the overall genetic variation in cattle is
known to be reduced relative to mouse and man. Another
contributing factor might be that our stringent CNV call-
ing criteria hampers the detection of putative true CNVs.
Concerning the platform used to assess CNVs in humans
[17]; with a resolution to find CNVs 3 times bigger than
ours, a similar difference when detecting CNVR/sample
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would be expected. This is not the case because CNV
counts are known to be inversely proportional to their
size, as seen here and elsewhere (DGV [7]).

Validation of the CNVRs
To evaluate the accuracy of the copy number assign-
ments, quantitative real time-PCR was used as described

previously [47]. Briefly, two control regions, one site on
the X chromosome and one site on an autosome, plus ten
potential CNV regions were selected. Six quantitative
PCRs immediately confirmed the existence of copy num-
ber variation in these regions (Additional file 10, Table
S8), whereas primer sets in four regions did not work sat-
isfactorily (see Methods). Primer sets were therefore re-

Table 2: Enriched GO terms associated with the CNV regions (FDR p-value ≤ 0.01).

Cellular_Component

GO term GO name p-value

GO:0031224 intrinsic to membrane 3.08e-10

GO:0016021 integral to membrane 3.08e-10

GO:0016020 membrane 2.73e-10

GO:0044425 membrane part 2.16e-10

Molecular_Function

GO term GO name p-value

GO:0060089 molecular transducer activity 1.36e-29

GO:0004867 serine-type endopeptidase inhibitor activity 0.00448

GO:0004984 olfactory receptor activity 1.6e-26

GO:0004872 receptor activity 8.73e-31

GO:0004871 signal transducer activity 1.36e-29

GO:0004930 G-protein coupled receptor activity 1.6e-26

GO:0005044 scavenger receptor activity 1.53e-06

GO:0004888 transmembrane receptor activity 9.94e-32

Biological Process

GO term GO name p-value

GO:0007165 signal transduction 7.62e-16

GO:0007166 cell surface receptor linked signal transduction 3.74e-21

GO:0050789 regulation of biological process 3.84e-10

GO:0065007 biological regulation 9.61e-10

GO:0007186 G-protein coupled receptor protein signaling pathway 1.13e-21

GO:0050794 regulation of cellular process 5.01e-10

GO:0006952 defense response 0.0107

GO:0007154 cell communication 1.82e-15

Table 3: Evolutionary rates for monomorphic and CNV genes.

Duplication CNV Deletion CNV No CNV

dN/dS 0.339 0.392 0.165

Wilcoxon rank-sum test, P value 1.39E-06 < 2.2e-16 -

dN - nonsynonymous rate; dS - synonymous rate; p-value compares CNV genes with monomorphic genes.
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designed within these four CNV regions, and using these
new primers the PCR reactions were performed success-
fully. Thus, the existence of copy number variation in all
ten regions was confirmed by quantitative PCR.

Discussion
The study outlined in this paper yields the highest-resolu-
tion analysis of bovine CNVs to date. Using a genome-
wide tiling oligo array CGH, the largest number of CNV
regions yet reported in cattle (304 CNVRs; average of 47
per genome) have been identified. Almost all (98%) of the
CNV regions discovered here are novel relative to previ-
ous reports [35,42], thereby vastly expanding our insight
of genome structural variation in cattle. With an effective
resolution of 1.5 kb in detecting CNVs, resulting in a
median CNV size of 16.7 kb, our data shows that at least
0.68% of the cattle genome can vary in copy number in
seemingly healthy animals. This is most probably an
underestimate of the true genomic fraction that is toler-
ant to copy number due to the low number of animals
sampled and their close relatedness.

As detected previously, not only in cattle [35] but also
in other species [10,25,27,33], CNVs are strongly associ-
ated with segmental duplications (SDs). This SD relation
creates a lack of probe coverage in and around duplicated
sequences [66], which significantly hampers the applica-
bility of genome-wide association studies using SNP
arrays to tag SDs-driven CNVs.

In addition, our data suggests that smaller CNVs (<50
kb) are much more frequent than larger ones, which is in
agreement with other high resolution studies [14,17,45].
If this can be extrapolated for the whole cattle genome,
the commercially available Illumina 50 k SNP panel (with
an average probe spacing of 54 kb [67]) would not be suf-
ficient to detect the bulk of existing CNVs. Consequently,
further characterization of cattle CNVs should be done
with similar high-density array CGH or using next-gener-
ation sequencing technologies. The latter identifies a

more complete size and class ranges of structural varia-
tion [68-79].

As previously shown, copy number variants can have
an impact on phenotypic variation mainly due to gene-
dosage effects [80], and are often associated with disease
susceptibility [38-40,81]. In this analysis, CNVRs were
found to be enriched for genes with functions related to
environmental response, such as immune and sensory
functions previously noticed in other species
[10,25,27,33,35]. The enrichment aspect is an interesting
finding, since variation in immunity related genes have
been associated with disease. In particular, genes of the
major histocompatibility complex (MHC) http://
www.ebi.ac.uk/ipd/mhc/, of which some are included in
our dataset, are reported to be responsible for differences
in predisposition to diseases like mastitis, dermatophilo-
sis and other tick infections [41]. Concerning the genetics
of milk production and lactation, we found none of the
197 unique milk protein genes and the over 6000 mam-
mary-related genes within our CNV regions. This is
expected since these genes are known to be highly con-
served and evolving more slowly than other genes in the
bovine genome [82].

Many genes and QTLs associated with human and cow
diseases were found to be copy number variable or
located nearby CNV regions. The fact that some bovine
CNVs occurred in regions orthologous to human CNVs,
reflect most likely recurrent CNV formation, rather than
ancestral CNVs maintained in both species. These
regions could be hotspots of CNV genesis due to their
fragile structural architecture that prompts frequent rear-
rangements.

Conclusions
In summary, the data presented here extends and estab-
lish the fact that a significant part of cattle genome is
copy number variable within and between breeds and
that our high-resolution array CGH is a valid method to
detect bovine CNVs in a genome-wide manner. With a

Table 4: Comparison between this and other mammalian CNV studies using array CGH.

Species Samples CNVRs CNVR/
sample

Mean
size

Platform Mean
spacing

Resoluti
on

Ref

Cow 20 304 15 72 3*2.1 M 0.4 2 This

Cow 5 25 5 128 385 k 6 28.8 [35]

Dog 9 60 7 310 385 k 4.7 23.5 [33]

Mouse 20 1333 66 64 2.1 M 1 5 [45]

Rat 3 33 11 256 385 k 5 25 [30]

Macaque 10 123 12 102 385 k 6.5 32.5 [21]

Human 40 8599 215 20 20*2.1 M 0.06 0.5 [17]

Mean size, Mean spacing and Resolution are given in kilobases (kb).

http://www.ebi.ac.uk/ipd/mhc/
http://www.ebi.ac.uk/ipd/mhc/
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limited amount of sampled animals and breeds, and a
stringent CNV calling criteria, the CNV regions reported
here are believed to be highly reliable, but the number
might greatly underestimate true number of CNVs in cat-
tle populations. Consequently, future studies are required
to assess the functional significance of CNVs and their
impact on health and productive efficiency in cattle.

Methods
Sample preparation
The genomic DNA of 20 bovine samples was obtained
from 4 dairy and beef breeds (14 Holsteins, 3 Simmental
2 Red danish and 1 Hereford). The pedigree scheme for
the related animals is in Additional file 2, Figure S1. DNA
was extracted and purified from blood as described else-
where [47], in order to pass Nimblegen quality control
requirements. We adhered to our national and institu-
tional guidelines for the ethical use and treatment of ani-
mals in experiments.

Array CGH
DNA fragmentation, labeling, hybridization, washing and
array imaging were carried out according to the manufac-
turer's protocol and done as previously described [83].
Briefly, the genomic DNA samples were fragmented by
sonication and labeled with fluorescent dyes Cy3 and
Cy5. According to the dye swap loop design (Additional
file 12, Table S10), samples were co-hybridized with a
MAUI hybridization system (BioMicro Systems) to cus-
tom-made cattle CGH 2.1 M (HD2) arrays (Roche Nim-
bleGen, Madison, WI). In order to cover the latest bovine
genome assembly (bt4) with high density, the custom
CGH arrays were planned in 3 designs. Each design cov-
ered a specific set of chromosomes with 2.1 million
probes, which yielded 420 bp of average probe spacing
(301 bp median probe spacing). The probe design funda-
mentals are described by the array manufacturer and
elsewhere [47].

The arrays were scanned using a 5 μm scanner, and
Nimblescan software (Roche Nimblegen, Madison, WI)
was used to retrieve fluorescent intensity raw data from
the scanned images of the oligonucleotide tiling arrays.
For each spot on the array, log2-ratios of the Cy3-labeled
test sample versus Cy-5 reference sample were computed.
Before normalization and segmentation analysis, spatial
correction was applied. Spatial correction reduces some
artifacts observed in CGH data from 2.1 M arrays, adjust-
ing position-dependent non-uniformity of signals across
the array. Specifically, locally weighted polynomial
regression (loess) was used to adjust signal intensities
based on X, Y feature position [84]. Normalization was
then performed using the q-spline method [85], followed
by segmentation using the CNV calling algorithm seg-
MNT [86]. This algorithm is shown to outperform both

DNACopy [87], which is one of the most widely used
CNV calling algorithm in the literature, and StepGram
[88], the algorithm used by Agilent for CGH arrays. The
segments with mean log2ratio ≥ |0.4| and at least 5 con-
secutive probes were retained. From these, a CNV was
called if it was detected in both dye swap arrays and
detected at least in two different dye swap hybridizations
(i.e. in two hybridizations with an animal in common).
Since the CNV calling pipeline requires at least 5 consec-
utive probes before calling a region copy number variant,
our theoretical resolution for CNV detection is 1465 bp
(median spacing*4 + median oligo length*5).

False positive rate
The false positive rate was calculated based on the 8 sex-
mismatched arrays in this study: the length of chromo-
some × (from all the 8 hybs.) having a log2-ratio with a
different signal than it should (given the sex-mismatched
hybridization), dividing by the length of chrX multiplied
by the number of sex-mismatched arrays (25,694,212/
(88,516,663*8) = 3.62%). Since the FPR can be overesti-
mated from sex-mismatched arrays, due to the assump-
tion that no CNV exist in the chrX of sex-mismatched
arrays, the FPR was also calculated from the self-self
experiment and was determined as the length of
sequence that would normally be called a CNV with our
CNV calling pipeline. The FPR was determined as being
0.0085%.

Enrichment analysis
Bovine segmental duplication (SD) data was retrieved
from [89]. They used two independent approaches to
detect segmental duplications: WGAC (whole-genome
assembly comparison), which is a BLAST-based analysis
of all assembled sequence that detects self alignments
(>90% and 1 kb); and WSSD (whole-genome shotgun
sequence detection), which is an assembly-independent
approach that examines the reference sequence for an
increase in WGS read depth-of-coverage. This strategy
has been used previously to map SDs in the human [49]
and mouse [27] genomes. From their global data we
choose to filter out those SDs bigger than 94% identity
using WGAC if they were not also confirmed by WSSD.
The reason for this relates to the fact that the assembly of
highly similar duplicated sequences will often be missed,
collapsed or mis-assigned [90,91].

The association of CNVRs with genomic features (SDs,
assembly gaps, genes and conserved elements) was tested
by randomly permuting the genomic position of each
CNVR 10 000 times and determining the sequence con-
tent of the resulting region or flanking regions.

Real-Time PCR
Validation with RT-PCR was executed as previously
described [47], with the Applied Biosystems 7900HT
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Sequence Detection System used for the Taqman assays,
and downstream analysis performed with SDS 2.2 soft-
ware. The full sequence of the CNVR was BLASTN-
searched against the bovine genome sequence in order to
identify a subregion that was unique and specific to the
chromosomal location of the CNVR. PCR primers and
probes were designed in this subregion of the CNVR
using the ProbeFinder software from Roche Applied Sci-
ence (Additional file 10, Table S8). Criteria for classifying
a "not working" primer involved two parameters: reaction
efficiency below 85%, and Pearson correlation of each
standard curve below 0.95. Only ten of the original
twenty bovine samples were used due to lack of DNA
availability. For each target, the relative quantification
analysis with a reference female sample was done to cal-
culate estimated copy numbers of each sample.

Data availability
The full data set and designs from the oligo array CGH
experiments have been submitted to GEO [92] under the
accession ID GSE18174.
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