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Abstract

Background: Recently, microRNAs (miRNAs) have taken centre stage in the field of human
molecular oncology. Several studies have shown that miRNA profiling analyses offer new
possibilities in cancer classification, diagnosis and prognosis. However, the function of miRNAs that
are dysregulated in tumours remains largely a mystery. Global analysis of miRNA-target gene
expression has helped illuminate the role of miRNAs in developmental gene expression programs,
but such an approach has not been reported in cancer transcriptomics.

Results: In this study, we globally analysed the expression patterns of miRNA target genes in
prostate cancer by using several public microarray datasets. Intriguingly, we found that, in contrast
to global mMRNA transcript levels, putative miRNA targets showed a reduced abundance in prostate
tumours relative to benign prostate tissue. Additionally, the down-regulation of these miRNA
targets positively correlated with the number of types of miRNA target-sites in the 3' untranslated
regions of these targets. Further investigation revealed that the globally low expression was mainly
driven by the targets of 36 specific miRNAs that were reported to be up-regulated in prostate
cancer by a miRNA expression profiling study. We also found that the transcript levels of miRNA
targets were lower in androgen-independent prostate cancer than in androgen-dependent prostate
cancer. Moreover, when the global analysis was extended to four other cancers, significant
differences in transcript levels between miRNA targets and total mMRNA backgrounds were found.

Conclusion: Global gene expression analysis, along with further investigation, suggests that
miRNA targets have a significantly reduced transcript abundance in prostate cancer, when
compared with the combined pool of all mMRNAs. The abnormal expression pattern of miRNA
targets in human cancer could be a common feature of the human cancer transcriptome. Our study
may help to shed new light on the functional roles of miRNAs in cancer transcriptomics.

Background

MicroRNAs are endogenous, approximately 22 nt single-
stranded non-coding RNAs that negatively regulate pro-
tein expression by binding to the 3' untranslated regions
(3' UTR) of messenger RNAs (mRNAs) and inhibiting
translation or inducing mRNA degradation or deadenyla-

tion [1]. MiRNA genes are expressed as large precursor
RNAs, called pri-mRNAs, which may encode multiple
miRNAs in a polycistronic arrangement. These precursors
are converted into mature miRNAs of 19 to 25 nucleotides
by the RNase III enzymes, Drosha (nuclear) and Dicer
(cytosolic). MiRNAs have been identified in the genomes
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of plants, animals and viruses. Human miRNAs have been
implicated in a variety of biological processes, and it is
estimated that 30% of protein coding genes are regulated
by miRNAs [2].

Recently, the potential role of miRNAs in human cancers
has been indicated by several studies, which suggest that
aberrations in miRNA expression in cancers may be
involved in tumour genesis and progression [3]. Abnor-
mal expression of miRNAs has been found in various can-
cers, and profiling of miRNAs has been shown to be a
more accurate method of classifying cancer subtypes than
profiling protein-coding genes. In the case of prostate can-
cer, a highly prevalent disease in the western world, sev-
eral miRNA expression profiles have been reported [4-8].
Although some of these studies are not consistent, poten-
tially due to differences in samples or chip platforms, all
of them confirmed the widespread dysregulation of miR-
NAs in prostate cancer. However, the disruption of
miRNA expression observed in human cancers needs to be
understood by analysing the causes and consequences of
the miRNA alterations. Thus far, the causes of miRNA dys-
regulation are partially known to be the results of three
mechanisms: (1) miRNA genes tend to locate in cancer
related genomic regions; (2) miRNA expression is epige-
netically regulated in cancers; and (3) miRNA processing
genes such as Drosha and Dicer are de-regulated in cancers.
However, little is known about the consequences of
improper regulation of miRNA expression. More work
needs to be done to show whether these miRNAs have a
direct function in cancer progression or are simply differ-
entially modulated in tumours.

Identifying the genes targeted by miRNA is crucial for
understanding the functions of the miRNAs. Based on the
conservation of 3' UTRs, which are complementary to the
"seed" region (nucleotides 2-7 from the 5' end) of miR-
NAs, several computational methods have been devel-
oped to search for miRNA targets. Some of these methods
have been biologically validated and proven to be accu-
rate [2,9]. According to single miRNA-mRNA target pair
information, miRNAs are thought to function as either
tumour suppressors or oncogenes. For example, the let-7
family has been shown to target the RAS gene [10]. Down-
regulation of the let-7 has been found in lung cancer, and
this finding is correlated with a poor prognosis. Thus,
reduced expression of let-7 is predicted to promote lung
cancer progression. However, the situation is complicated
by the fact that miRNAs regulate multiple genes, and a sin-
gle mRNA can be targeted by several different miRNAs.
Therefore, the impact of changes in miRNA expression in
cancers is likely to be dependent on the cellular context.

Evidence is emerging that miRNAs can not only repress
translation of mRNAs but can also induce their degrada-
tion, even if the mRNA target sites have only partial com-
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plementarity to the miRNAs. For example, several studies
have revealed a correlation between the expression of
miRNAs and that of their targets through analysis of
mRNA target gene expression profiles and in situ hybridi-
sation [11-13]. A recent publication has reported the
impact of miRNAs on global mRNA and protein expres-
sion and showed that the regulation of protein-coding
genes by miRNAs is quite similar at both the transcript
and protein levels [14]. Moreover, Wu et al. have reported
that miRNAs increase target mRNA decay rates by promot-
ing rapid deadenylation [1]. Assuming that the miRNAs
dysregulated in prostate cancer have an influence on the
expression of their targets, analysis of target gene expres-
sion may provide clues to the functions of miRNAs in
prostate cancer.

In this study, we computationally explored the global
expression patterns of miRNA targets in human prostate
cancer using several published microarray datasets. Inter-
estingly, in contrast to all the mRNAs with altered expres-
sion in prostate cancer relative to benign prostate tissue,
the transcript levels of miRNA targets were significantly
lower. Closer examination revealed a positive correlation
between the reduced abundance of miRNA targets and the
number of target-site-types in the 3' UTRs of the target
mRNAs. Remarkably, we found that the predicted targets
of the up-regulated miRNAs in prostate cancer, reported
by a miRNA profiling study, were significantly more likely
to be down-regulated in prostate tumours than the pre-
dicted targets of all other miRNAs. We also found that the
transcript levels of miRNA targets were lower in androgen-
independent prostate cancer than in androgen-dependent
prostate cancer. Furthermore, the abnormal expression
pattern of miRNA targets could be a common feature of
the human cancer transcriptome.

Results

Globally reduced transcript levels of miRNA targets
relative to total mRNAs in prostate tumours

Using the gene expression atlas published by three inde-
pendent groups (Table 1) [15-17], and the conserved
miRNA target predictions from PicTar [9] and TargetScanS
[2], we generated a global view of the transcript levels of
miRNA targets in prostate cancer. First, the expression val-
ues of each mRNA were compared between localised pros-
tate cancer and benign prostate tissue in each dataset, to
determine if the mRNA had a higher or lower expression
level in the cancer tissue. After sorting total mRNAs into
three groups (high expression, low expression and
unchanged), we calculated the R ;, R, and RR values
(see Methods). The RR value is a surrogate for an increased
or decreased abundance of miRNA targets relative to total
mRNAs. Notably, for all three datasets, RR values were less
than 1 when comparing localised prostate cancer with
benign prostate tissue (Figure 1A and [see Additional file
1]). Resampling statistical tests indicated that the differ-

Page 2 of 14

(page number not for citation purposes)



BMC Genomics 2009, 10:93

Table I: Gene expression datasets used in this global analysis
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Number of samples

Cancer Dataset Refs. Array type Probe Benign Localised Metastatic
Type sets
Prostate cancer | [15] Affyt 37690 58 66 25
2 [l6] <DNA 26260 41 6l 9
3 [17] c<DNA 9984 19 14 20
Correlation analysis [19] Affyt 22277 10 10
AD and Al analysis [21] c<DNA 13314 3 17 AD/8 Al
Breast cancer 4 [33] Affyt 47000 7 40
Lung adeno-carcinoma 5 [34] Affyt 7129 10 86
Acute myeloid leukaemia 6 [35] cDNA 21370 6% 238
Liver 7 [36] c<DNA 23075 76 104

cancer

1: Affymetrix oligo nucleotide microarray. ¥ Normal Bone Marrow. §: Acute Myeloid Leukaemia. Correlation analysis: The dataset used in the
correlation analysis between the transcript levels of individual miRNAs and those of their putative targets. AD and Al analysis: The dataset used in
the analysis of the transcript levels of miRNA targets in androgen-dependent and androgen-independent prostate cancer.

ences were significant (P < 0.05). To confirm this observa-
tion, we used the Hyper-Geometric distribution to
evaluate the enrichment levels of miRNA targets in the
three mRNA pools and found a unique and significant
enrichment in the low expression pool across all three
datasets (Enrichment P < 0.05) [see Additional file 1]. Fur-
thermore, the average expression ratio of miRNA targets
(0.997) was significantly lower than that of the non-
miRNA-target genes (1.021, P < 10-199, t test, dataset 1).
These findings reveal that miRNA targets have a high pro-
pensity to fall in the low expression mRNA group in local-
ised prostate cancer, an observation that is robust across
different datasets. Similar results were observed when
comparing metastatic prostate tumours or all prostate
tumours with benign tissues [see Additional file 1].
Through the rest of this study, we focused on the compar-
ison between localised prostate tumour and benign pros-
tate. To determine whether the low expression of miRNA
targets occurred in benign tissues, we randomly divided
the benign samples from dataset 1 into two classes and
undertook a benign-benign comparison. In this case,
there was no significant difference between miRNA targets
and total mRNAs (P > 0.05). The absolute R_;; and R,
value variation in the three datasets might result from dif-
ferences in the chip platforms or from intrinsic differences
in the samples. Nonetheless, the fact that RR ratios were
always less than 1 for tumour when compared with
benign prostate indicates that, in contrast to total mRNA,
the transcript abundances of miRNA targets are signifi-

cantly lower in prostate cancer than in benign prostate tis-
sue.

Given the considerable noise of the gene expression data
and miRNA target prediction, we ensured the validity of
the above observations using three approaches. Firstly,
because microarray results may vary depending on quality
of the samples, we collected the gene expression profiles
that contained a relatively large number of samples and
classified the tissues adjacent to the tumours as benign
prostate tissues for all three datasets. Secondly, to rule out
the influence of different methods on determining the
high, low and unchanged expression groups, two different
methods, a and b, were adopted for datasets 1 and 2,
where the measurements of matched samples were pro-
vided. We also adopted three different cut-off values to
determine the mRNAs with altered expression. As shown
in Figure 1A, the global low expression of miRNA targets
did not vanish when we changed methods or cut-offs, and
the RR values actually decreased with the raised cut-offs.
For example, in dataset 1, RR = 0.79, 0.76, and 0.71 for
low, medium and high cut-offs, respectively (Method a,
PicTar targets). Finally, to determine if this observation is
robust for different miRNA target predictions, we carried
out the same analysis using two different target predic-
tions, which are the leading programs in this field, and
obtained similar results. Figure 1C shows that the RR val-
ues obtained using the two predictions were highly corre-
lated (Pearson correlation = 0.9691). Additionally, since
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Comparison of transcript levels of miRNA targets between in prostate cancer and in benign tissues. (A) The
transcript levels of miRNA targets in prostate tumours were compared with those of total MRNAs using R .;., R...,yand RR val-
ues (see methods). The R values of all miRNA targets (R,;,) and total altered mRNAs (R..)) are represented as black and
white bars, respectively. Also plotted are the RR (R,,;/R...,) values (colored dots, right axis). The RR value is a surrogate for an
increased or decreased abundance of miRNA targets relative to total mMRNAs. Blue color denotes RR < | and red denotes RR
> |. Three gene expression microarray datasets (Dataset |, 2 and 3) were used for this comparison. Three different cut-off val-
ues (L: Low; M: Medium; and H: High) and two methods a and b (for dataset | and 2) were chosen to rule out the bias of single
method. Asterisk represents the statistical significance of each comparison (resampling statistical test, see methods). One
asterisk means P < 0.05; two asterisks, P < 0.01; three asterisks, P < 0.0002. The complete data are reported [see Additional
file 1]. (B) Analysis of the protein levels of miRNA targets using a small proteomic dataset. Black and green cycles represent the
numbers of increased and decreased proteins in prostate tumours relative to benign prostate tissues, respectively. Small cycles
represent the number of miRNA targets mapped into these two protein groups. Areas of the cycles are scaled to the proteins

number. (C) Correlation between the RR values obtained using two different miRNA target predictions.

repression by miRNAs also result in decreased translation,
we analysed the protein levels of several miRNA targets
using a small proteomic dataset. In this dataset, 64 pro-
teins were reported to be dysregulated in prostate cancer,
relative to benign prostate, by employing a high-through-
put immunoblot approach [18]. After converting the
names of these proteins into RefSeq mRNA IDs (some
proteins have more than one RefSeq ID), we mapped all
miRNA targets to them. As shown in Figure 1B, the
miRNA targets showed a propensity to fall in the
decreased protein group (RR < 1), suggesting a reduced
protein level of miRNA targets in prostate tumour. Taken
together, our data indicate that miRNA target genes are

expressed at lower levels in prostate cancer than normal
prostate tissue.

Association between transcript abundance of miRNAs and
their target mRNAEs in prostate cancer

To further investigate the globally low expression of all
miRNA targets, we calculated the RR values of the targets
of 120 individual miRNAs. These miRNAs had more than
50 PicTar targets with altered expression (with an average
of 125 targets per miRNA) in comparing localised prostate
tumours with benign tissues (Method a, Medium cut-off,
Dataset 1). If we were to randomly select a set of mRNAs
same as the number of targets of each miRNA found in
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dataset 1, the distribution of RR values generated by the
random sets would approximate a background distribu-
tion. The distribution of individual miRNAs clearly dif-
fered from the background distribution: the RR values
obtained for individual miRNAs clustered in the range of
0.4 to 0.8 (Figure 2A), suggesting that these miRNAs may
down-regulate their predicted targets in prostate tumours.
We also found that the distribution of mean expression
values of the target genes of individual miRNAs clearly dif-
fered from the mean expression value of total mRNAs
(Figure 2B). Among the 120 individual miRNAs studied,
miR-194, miR-193 and miR-29a showed the lowest RR val-
ues (0.414, 0.423 and 0.435). It should be mentioned
that a few target groups preferentially show a relatively
high expression level. For example, miR-133a, which was
recently reported to be down-regulated in prostate
tumours [19], had an RRvalue > 1 (1.194). Similarly, miR-
125b, which was validated to be down-regulated in pros-
tate cancer by quantitative RT-PCR assays [8], had a rela-
tively high RR value (0.958).

We next asked whether there was an association between
the low expression of general targets and the dysregula-
tion of miRNAs in prostate cancer. Currently, the litera-
ture shows that the expression of miRNAs and their targets
are expected to be inversely correlated [12]. Namely, the
low expression of miRNA targets might imply a concur-
rently high expression of these miRNAs in prostate cancer.
This trend was seen in a miRNA expression profiling
study, which showed a significant up-regulation of many
miRNAs in prostate cancer [4]. As expected, when relating
the expression of miRNA targets to that of the miRNAs
using this miRNA expression profile, we found a weak
negative correlation between the differential expression
scores of individual miRNAs and the RR values of their
targets (Spearman correlation, Ry =-0.342, P = 0.025, N =
43) [see Additional file 2]. In contrast to the studies using
over-expression (or knockdown) of a single miRNA to
detect correlation between the expression of the miRNA
and its targets, cancer cells show alterations of many miR-
NAs with overlapping targets, and thus, it is hard to judge
the contributions of individual miRNAs to the low expres-
sion of their targets. To facilitate a more global view, we
divided all PicTar targets into two groups. Group I con-
tained 5514 targets of 39 significantly up-regulated miR-
NAs in prostate cancer reported by Volinia et al. (36 of the
39 had conserved PicTar targets). Group II contained all
other predicted miRNA targets (2663 targets). After map-
ping these two groups to the mRNAs with altered expres-
sion (Medium cut-off, Method a), we found that the
predicted targets of the 36 up-regulated miRNAs were sig-
nificantly more likely to be down-regulated in prostate
tumours than the predicted targets of all other miRNAs
(Figure 3, P = 0.001, 0.007, 0.013 for Dataset 1-3, respec-
tively). In all three datasets, there was no difference in the
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Transcript levels of the target groups of individual
miRNA:s in prostate cancer. (A) Count distribution of RR
values of the targets of 120 individual miRNAs is shown
above. Count distribution of RR values of random mRNA
sets is shown below. Blue color denotes RR < | and red
denote RR > |. (B) Density distribution (green line) of mean
expression values (log ratio) of the targets of individual miR-
NAs clearly departed from the mean expression value of
total MRNAs (blue line) and that of non target mRNAs (red
line).

relative transcript abundance between mRNA from group
IT and total mRNAs (P > 0.05). The RR values for the puta-
tive targets of the 36 up-regulated miRNAs (group I tar-
gets) were significantly lower than the RR values for the
group II targets in these datasets, indicating a selective
down-regulation of group I targets in prostate tumours for
all three datasets. We then constructed a gene set contain-
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ing 8177 genes (the same number of PicTar targets) by
keeping the group I genes as a seed, added randomly pick
up genes (100 times) which were not miRNA targets, and
repeated the analysis for each set. The reduced abundance
of mRNAs targeted by the 36 up-regulated miRNAs
remained significant for each random gene set (RR < 1, P
< 0.05), suggesting that the targets of these miRNAs make
a strong contribution to the low expression of general
miRNA targets.

To further investigate the relationship between the abun-
dance of individual miRNAs and their targets in prostate
cancer, we performed a correlation analysis between the
transcript levels of individual miRNAs and those of their
putative targets using a dataset containing the expression
measurements of both miRNAs and mRNAs in ten pros-
tate tumours and ten corresponding surrounding non-
tumour tissues [19]. Of the 137 studied miRNAs with
more than 50 targets found in the mRNA expression pro-
files, 67% (92) showed negative mean Pearson correla-
tion coefficients with their targets, 18% (24, including
miR-125b, miR-29a, and miR-194) and 7% (9, including
let-7i, and miR-138) showed significantly stronger nega-
tive and positive, respectively, mean correlations with
their targets than with all mRNAs (P < 0.05) [see Addi-
tional file 3]. These results suggest that while binding of
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Figure 3

Transcript levels of the targets of up-regulated miR-
NAs and of all other miRNAs. All PicTar targets were
divided into two groups. Group | contained the targets of 39
significantly up-regulated miRNAs in prostate cancer
reported by Volinia et al. (36 of the 39 had conserved PicTar
targets). Group Il contained all other miRNA targets. Pink
and yellow bars represent R ;. values of group | targets and
group Il targets, respectively. Black and white bars represent
R values of all miRNA targets and total mRNAs, respectively.
RR values and P values are analyzed as in Figure |A.
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miRNAs to their target sequences may largely lead to the
reduction of the transcript levels of target mRNAs, it may
sometimes lead to mRNA sequestration and cellular accu-
mulation of the inhibited mRNAs in prostate tumours
[19]. We also determined the global distribution of the
Pearson correlation coefficient between each miRNA of
interest and either all mRNAs or the putative targets of the
miRNA. For three miRNAs, miR-125b, miR-29a and let-7i,
the distribution of the correlation coefficients was notably
different between all mRNAs and the miRNA-target
mRNAs (Figure 4A, B, C). The density distribution curves
for targets of miR-125b and miR-29a extended toward neg-
ative correlation coefficients, indicating that the transcript
levels of some target mRNAs may be reduced by miR-125b
and miR-29a. On the contrary, the distribution curves for
targets of let-7i extended toward positive correlation coef-
ficients, indicating that the overall effect of binding of let-
7i to its target sequence in prostate tumours may be
mRNA sequestration. A list of differentially expressed
miRNAs (in prostate cancer) that not only showed distinct
mean correlations between with their targets and with all
mRNAs but also had concordant RR values is shown in
Figure 4D. For example, miR-29a, which was reported to
be up-regulated in prostate tumour and showed strong
negative mean correlation with its targets, had a very low
RR value (0.435). let-7i, which was reported to be down-
regulated and showed strong positive mean correlation
with its targets, also had a low RR value (0.767). miR-
125b, which was reported to be down-regulated and
showed strong negative mean correlation with its targets,
had a relatively high RR value (0.958). These miRNAs may
be of special interest in future prostate cancer research.

Positive correlation between the reduced abundance of
miRNA targets and the number of target-site types in their
3' UTRs in prostate cancer

MiRNA target predictions rely strongly on the sequence
characteristics of 3' UTRs, which have known functions in
the stability, localisation, and translation of mRNA [20].
Most miRNA targets contain more than one type of target
site in their 3' UTRs, implying that stringent regulation by
one miRNA is rare. For example, the target mRNAs of the
36 up-regulated miRNAs included a major fraction of all
PicTar targets (5514 of 8177) which were shared by 168
miRNAs. Interestingly, we found that the average number
of target-site types in the target mRNAs of up-regulated
miRNAs (= 10) was significantly larger than the average
number found in the target mRNAs of all other miRNAs
(= 2, P <1019, Wilcoxon-Man-Whitney test).

It has been suggested that multiple miRNAs may act
together to regulate a target mRNA [9]. However, it is still
unclear if different miRNAs act in vivo in any kind of syn-
ergistic style. To further study the relationship between
the reduced abundance of miRNA targets and the regula-
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Relationship between the transcript levels of individual miRNAs and their targets in prostate cancer. Global
density distribution of the Pearson correlation coefficients between the expression of mRNAs and the expression of miR-125b
(A), miR-29a (B) and let-7i (C). The black-lined curves show the distribution of the correlation coefficients for all mMRNAs and
the orange-lined curves show the correlation coefficient distribution for only PicTar target mMRNAs of miR-125b, miR-29a and
let-7i. (D) A list of differential expressed miRNAs (ref: reference) that not only show distinct mean correlation coefficients
between with their targets and with all mMRNAs (asterisk denotes P < 0.05) but also have concordant RR values.

tory complexity of miRNAs (the number of miRNA target-
site types in the 3' UTRs of the targets) in prostate cancer,
we divided the PicTar targets into eight groups (= 1022
miRNA targets per group), according to the number of
miRNA target-site types the mRNAs contain, and calcu-
lated the RR value for each group. Interestingly, a signifi-
cant positive correlation was found between the
propensity for low expression and the number of miRNA
target-site types in each group (Spearman's rank correla-
tion, Ry> 0.7, P < 0.05, N = 8). As shown in Figure 5A, the
propensity for low expression of the target groups
increased with the number of target-site types.

We found that the down-regulation of miRNA targets in
tumour extracts correlated with the length of the 3' UTRs
of these mRNAs (Figure 5B). It is not surprising to find
more sites just by chance if the 3' UTR is longer. To ask

whether this positive correlation is a side effect of the var-
iations of 3' UTR length, we divided the PicTar targets into
eight groups according to the length of their 3' UTRs and
calculated the average number of target-site types for each
group. Since genes with more miRNA sites would have
not only relatively longer 3' UTRs but also significantly
higher site densities (sites/kb) of 3' UTR sequence [12],
the longer 3' UTRs does not always contain more target
sites. This was seen in Figure 5B, where group 7 and 8 con-
tained a similar average number of target-site types
though they have distinct average 3' UTR length. If the
reduced abundance of miRNA targets simply results from
the variation of 3' UTR length, one would expect that the
group with longest 3' UTRs would show the lowest RR
value. However, group 7, which contained the most tar-
get-site types, but not the longest 3' UTRs, showed the
lowest RR value for most datasets (all except dataset 3,
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Figure 5

Correlation between the reduced abundance and the
number of target-site types. PicTar targets were divided
into eight groups according to the number of target-site
types or the length of 3' UTRs. (A) A positive correlation
between the reduced abundance of miRNA targets and the
number of target-site types the target mMRNAs contain. (B) A
positive correlation between the propensity for low expres-
sion and the length of 3' UTRs of miRNA-target mRNA:s.
Average number of miRNA target-site types in each group
divided by 3' UTR length is shown above.

which contained a relatively small number of mRNAs for
calculation). Therefore, the positive correlation cannot
simply be explained by variations in 3' UTR length, but is
more likely due to the increasing number of target-site
types.

It is well known that cancer cells epigenetically silence a
number of genes by CpG island methylation. We next
asked if the global down-regulation of miRNA targets in
prostate cancer was a side effect of gene silencing by CpG
island methylation. We found that the miRNA targets had
significantly more CpG islands (average: 1.55) than all
mRNAs (average: 1.38, P < 0.01, Wilcoxon-Man-Whitney
test). However, randomly chosen groups of non-miRNA-
target mRNAs with the same (or more) number of CpG
islands as the targets, did not exhibit the same global
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down-regulation as the miRNA targets (RR > 1, P > 0.05).
Moreover, we did not find correlations between the 3'
UTR length (or miRNA target-site types) and the number
of CpG islands (P > 0.05, spearman correlation test).
Thus, the global down-regulation of miRNA targets can-
not simply be explained by gene silencing due to CpG
islands methylation.

Reduced transcript levels of miRNA targets in androgen-
independent prostate cancer when compared with
androgen-dependent prostate cancer

The main treatment for prostate cancer is androgen abla-
tion or chemical castration. Despite the general success of
anti-androgen therapy, a negative outcome of this treat-
ment is the appearance of androgen-refractory tumours
with an eventually fatal prognosis. Thus, understanding
the molecular mechanisms of the transition of prostate
cancers from androgen dependence to independence
remains an important challenge. In this study, we investi-
gated the expression levels of miRNA targets in androgen-
dependent (AD) prostate cancer and androgen-independ-
ent (Al) prostate cancer using a dataset previously pub-
lished by our group [21]. As shown in Figure 6, the
miRNA target genes showed lower transcript abundance
in all prostate cancer (AD+AlI), Al or AD prostate cancer
than in normal prostate tissue (RR < 1, P < 0.05). Intrigu-
ingly, we found that the transcript levels of miRNA targets
were significantly lower in Al prostate cancer than in AD
prostate cancer (RR< 1, P < 0.05). Since some miRNAs are
androgen regulated, we further investigated the transcript
levels of the target group of androgen-repressed miRNAs
(miRNAs that were down-regulated after androgen treat-
ment in androgen-sensitive LNCaP cells) reported by S.
Ambs et al. [19]. Using the aforementioned method, we
divided all PicTar targets into two groups. Group I con-
tained 1012 targets of 6 androgen-repressed miRNAs (5 of
the 6 had conserved PicTar targets). Group II contained all
other predicted miRNA targets (7165 targets). We found
that the predicted targets of the 5 androgen-repressed
miRNAs were significantly more likely to be down-regu-
lated in Al prostate cancer (when compared with AD pros-
tate cancer) than the predicted targets of all other miRNAs
(P = 0.01). This result suggests that these androgen-
repressed miRNAs may have an important influence on
the expression of their targets in Al prostate cancer. Fur-
ther, they may play an unknown function in the transition
of prostate cancers from androgen dependence to inde-
pendence.

Down-regulation of miRNA targets in other cancer types
and predicted function of these protein-coding genes in
prostate cancer

To assess the basic function of down-regulated miRNA tar-
gets in prostate cancer, we used GO term analysis to iden-
tify the overrepresented biological processes in the group
of down-regulated miRNA targets (referred to as "tar-
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Transcript levels of miRNA targets in androgen-inde-
pendent and androgen-dependent prostate cancer.
The transcript levels of all miRNA targets in androgen-
dependent (AD) prostate cancer, androgen-independent (Al)
prostate cancer and normal prostate tissues (N) were com-
pared with each other. The transcript level of the targets of
androgen repressed miRNAs in Al prostate cancer was also
investigated. Black and white bars represent R values of all
miRNA targets and total mRNAs, respectively. Green bar
represents R value of PicTar target mRNAs of androgen-
repressed miRNAs. RR values and P values are analyzed as in
Figure IA.

gets"), as well as the other reduced mRNAs that lacked
conserved miRNA sites (referred to as "antitargets"). We
used the mRNA list from dataset 1 (Method b, Medium
cut-off), which contained a relatively large number of
altered mRNAs, for this analysis. As shown in Table 2, the
enrichment level in the targets was much higher than in
the antitargets in most categories, especially "regulation of
biological process" (adjusted enrichment P value = 7E-67
for targets versus 2E-08 for antitargets) and "multicellular
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organismal development" (adjusted enrichment P value =
4E-83 for targets versus 4E-19 for antitargets). For a more
in-depth pathway analysis, we performed a KEGG path-
way database query using the down-regulated targets and
the antitargets (Table 3). At an adjusted P value < 0.05, 9
pathways were found to be enriched in the down-regu-
lated miRNA targets, such as "regulation of action
cytoskeleton”, "Wnt signalling pathway", "Focal adhe-
sion", "MAPK signalling pathway" and "ECM-receptor
interaction". These dysregulated pathways are implicated
in cell motility, cell proliferation, cell differentiation, cell
migration and signal transduction. In contrast, the anti-
targets were not found to be enriched in any pathway.
Since the low expression pattern observed here is largely
seen in the targets containing multiple target-site types,
our data may suggest that down-regulated targets in pros-
tate cancer consist mostly of key cellular regulators and
such regulators are themselves highly regulated at multi-
ple levels, including regulation by miRNAs, which may
result in the coordinate repression of the target mRNAs
involved in regulatory systems and developmental proc-
esses.

To determine whether the global down-regulation of
miRNA targets is common in human cancers, we extended
the global analysis to four other prevalent cancers, includ-
ing three solid tumours and one leukaemia (Table 1). Sig-
nificant differences in transcript levels between miRNA
targets and total mRNAs were observed for all four cancers
[see Additional file 1]. Strikingly, the expression levels of
miRNA targets were significantly lower in breast cancer,
lung adenocarcinoma and acute myeloid leukaemia than
in corresponding normal tissues (RR < 1, P < 0.05). In
contrast, the comparison of hepatocellular carcinoma and
non-tumour liver tissue yielded an opposite relationship
between the abundance of miRNA target and total mRNAs
(RR > 1, P < 0.05). In this analysis, an RR value greater
than 1 indicated an increased abundance of miRNA tar-
gets when compared with all mRNAs. The globally
increased abundance of miRNA targets may reflect differ-

Table 2: Biological processes of down-regulated miRNA targets and antitargets in prostate cancer

Targets (1296) AntiTargets (1293)

GO Term Biological Process mRNAs P (over)t mRNAs P (over)t
GO:0009987 Cellular process 1000 1.E-47 874 I.E-11
GO:0008152 Metabolic process 627 2.E-04 627 2.E-04
GO:0043170 Macromolecule metabolic process 545 4.E-12 473 2.E-02
GO:0050789 Regulation of biological process 494 71.E-67 317 2.E-08
GO:0007154 Cell communication 405 2.E-39 254 2.E-02
GO0:0007275 Multicellular organismal development 302 4.E-83 180 4.E-19
GO:0030154 Cell differentiation 202 4.E-43 133 4.E-12
GO:0008219 Cell death 107 4.E-24 67 4.E-06

1: Over-represent P value was calculated using Hyper-Geometric (HG) distribution and adjusted. P values < 1E-20 (for mRNAs overrepresentation

in each category) are in bold.
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Table 3: KEGG pathway analysis of down-regulated miRNA targets and antitargets in prostate cancer

KEGG Term Pathway
hsa04810 Regulation of actin cytoskeleton
hsa04360 Axon guidance
hsa04310 Wht signaling pathway
hsa04510 Focal adhesion
hsa04010 MAPK signaling pathway
hsa04512 ECM-receptor interaction
hsa04916 Melanogenesis
hsa04070 Phosphatidylinositol

signaling system
hsa05130 Pathogenic

Escherichia coli infection

Targets (3167) AntiTargets (4341)

InMapt P value$ InMap# P value$
37 6.25E-06 23 0.86
25 7.96E-05 9 |
26 2.98E-04 9 |
31 3.13E-04 32 0.11
36 1.05E-03 24 0.96
17 1.64E-03 14 0.32
16 3.20E-02 7 0.84
13 4.12E-02 7 0.96
10 3.98E-02 5 0.98

1: The total number of targets or antitargets found in KEGG pathway database. ¥: The number of targets or antitargets found in each pathway. §:

Adjusted P values < 0.05 are in bold.

ent mechanisms of regulation in liver cancer. Our
extended analysis indicates that the differences in tran-
script levels between miRNA targets and total mRNAs may
be a common feature in human cancers.

Discussion

Different expression levels between miRNA targets and
total mRNAs have been uncovered in the comparison
between mature tissues and embryos [22] and miRNAs
have been suggested to confer precision and robustness to
developmental processes. In this study, we initially
reported that miRNA targets expressed less on a global
scale than total mRNAs in prostate tumours, relative to
benign prostate tissues. Analysis of the protein levels of
miRNA targets suggests that the level of protein expression
of miRNA targets may also be reduced, in agreement with
a recent study which reported that the regulation of pro-
tein-coding genes by miRNAs was quite similar on the
transcript and protein levels [14]. Moreover, our data
showed that the transcript abundance of the targets of
androgen-repressed miRNAs was significantly lower than
the abundance of the targets of all other miRNAs in
androgen-independent prostate cancer. The abnormal
expression pattern of miRNA targets was also seen in three
other cancer types, suggesting that it may be a common
feature of the human cancer transcriptome.

We also found a trend for an increased down-regulation of
mRNAs with longer 3' UTRs and more target-site types,
consistent with a recent study showing that proliferating
cells express mRNAs with shortened 3' UTRs and fewer
miRNA target sites [23]. It has been reported that for pro-
teins with more interacting partners, their genes tend to be
regulated by more miRNA types [24,25]. Genes with more
interactions may require more elaborate regulation at the
posttranscriptional level because unwanted output of
these proteins may lead to a more severe fitness effect.
Moreover, miRNAs have been proposed to primarily tar-

get downstream network components such as transcrip-
tion factors [26]. Disrupted expression of the highly
regulated miRNA target genes may reflect the fact that the
regulatory network in cancer cells departs from the nor-
mal regulatory routine presented in benign cells. The
molecular mechanisms determining the intriguing expres-
sion patterns of miRNA targets in cancer cells presented in
this study remain to be elucidated. Based on our analysis,
there are three potential reasons discussed below.

First, the abnormal transcript abundance of miRNA tar-
gets may indicate a significant influence of miRNAs on the
expression of their target genes in prostate tumours. This
view is supported by three observations: (1) the targets of
36 up-regulated miRNAs made a strong contribution to
the low expression of all miRNA targets; (2) there was a
weak (but significant) negative correlation between the
score of the differential expression of individual miRNAs
(published by Volinia et al.) and the RR value of the
miRNA's targets; and (3) the propensity for low expres-
sion increased with the number of target-site types
embedded in the 3' UTRs of the miRNA targets, suggesting
the possibility of synergistic regulation by multiple differ-
ent miRNAs in prostate cancer. In general, lower transcript
level is attributed to transcription inhibition or mRNA
decay. Since miRNA target prediction relies strongly on
the characteristics of 3' UTRs, translational control by 3'
UTRs may play a role in the down-regulation of miRNA
targets in prostate cancer. It has been demonstrated that
miRNAs can promote rapid mRNA degradation by accel-
erating deadenylation [1] and that miRNAs are involved
in AU-rich Element (ARE)-mediated mRNA instability
[27]. Therefore, the low expression of miRNA targets may
result from the action of miRNA-mediated mRNA decay
in prostate cancer. Up-regulation of miRNAs in prostate
tumours is common [3,4,19] and is consistent with the
known oncogenic activity of many miRNAs [28,29]. It has
been reported that Dicer and other genes involved in
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miRNA processing are up-regulated in prostate cancer
[19], indicating that the prostate tumour is more efficient
than normal prostate tissue at processing miRNA precur-
sors into mature miRNAs. These observations support the
idea that miRNAs may be up-regulated on a global scale
in prostate cancer, consistent with the global down-regu-
lation of their targets.

It should be noted that the global down-regulation of
miRNA targets is an overall effect that does not negate the
fact that some miRNA targets are up-regulated in prostate
tumours. A recent miRNA profiling study showed a
tumour gene signature that contains up-regulated and
down-regulated miRNAs in prostate cancer [19]. This
study also showed that binding of miRNAs to 3' UTR
sequences can lead to both degradation and accumulation
of the targeted mRNA in cancer cells. In the correlation
analysis between the expression level of individual miR-
NAs and the expression level of their putative targets, we
confirmed this observation on a global scale. More specif-
ically, both an inverse and a positive correlation could
occur between a miRNA and its target mRNAs in prostate
cancer cells. Since a miRNA can regulate multiple targets
and a single mRNA can be targeted by several different
miRNAs, the global down-regulation of miRNA targets
may largely depend on the overall effect of miRNA regula-
tion. The second potential reason is that the global down-
regulation of miRNA targets is an overall effect that may
depend on: (1) the reduction of mRNA expression that
may be caused by the up-regulated miRNAs (such as miR-
29a); (2) the decrease of mRNA sequestration that may be
caused by the down-regulated miRNAs (such as let-7i);
and (3) the moderate up-regulation of some targets of the
down-regulated miRNAs (such as miR-125b). Further-
more, this potential reason can explain the fact that global
up-regulation of miRNA targets was observed for hepato-
cellular carcinoma, a tissue which has roughly equal num-
bers of up and down-regulated miRNAs [30].

The third reason is related to a perplexing problem: sev-
eral other miRNA profiling studies showed widespread
down-regulation of miRNAs in prostate cancer [5-8], and
some of the miRNAs reported to be up-regulated by
Volinia et al. overlapped with some of the miRNAs
reported to be down-regulated by another profiling study
[7]. If most miRNAs are truly down-regulated in prostate
cancer, the global down-regulation of miRNA targets may
not be causatively linked to the expression levels of the
miRNAs themselves. As miRNA targets have relatively
long 3' UTRs (with known functions in the stability, local-
isation, and translation of mRNA) and more CpG islands
(which may be methylated in cancers) than non-targets, a
third explanation is that the target genes that are down-
regulated in prostate cancer are key cellular regulators and
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such key regulators are themselves highly regulated at
multiple levels (transcriptionally and post-transcription-
ally), including regulation by miRNAs.

There are several explanations for the discrepancies in
miRNA profiling studies. First, Volinia et al. [4] and Ambs
et al. [19] used total RNA while other studies [5-8] used
purified small RNA samples (from 18 to 300 nt). Purifica-
tion might introduce errors into miRNA expression com-
parisons. For example, there is presently no way to judge
the different proportions of miRNAs within the pool of
total RNAs [31]. If cancer and benign tissue have different
proportions of miRNA content, the validity of the analysis
based on the fundamental assumption that same amount
of miRNAs is extracted from the same amount of total
RNAs is thrown into doubt. Second, it has been suggested
that purification of the small RNA fraction could reduce
nonspecific hybridisation to longer miRNA precursors. If
there is a block in precursor miRNA processing in prostate
cancer without a corresponding decrease in transcription,
this could result in the inconsistency. A third explanation
would be the differences in samples number. Volinia et al.
and Ambs et al. analysed > 50 prostate cancer samples
while other studies did not reach this size. Cancer is a het-
erogeneous disease, and the heterogeneity of tumour sam-
ples might contribute substantially to the results. It is not
surprising that miRNA expression profiles published by
different researchers are inconsistent, because miRNA
profiling technology is still in its infancy. For example,
researchers generally adopt "tried-and-true” methodolo-
gies from cDNA microarray technology for miRNA expres-
sion analysis, but the relatively small number of probes
on miRNA microarrays may render these high-density
approaches ineffective.

As to the basis of our investigation, the gene expression
microarray and miRNA target prediction data have proved
to be useful for gaining biological knowledge [13,22,24-
26]. Although these datasets are far from being complete
and may contain noise, it is unlikely that these flaws could
totally distort the results. Since consistent results were
seen across various datasets generated by independent
groups, the noise of microarray data and false positives in
miRNA target predictions appear to have no serious effects
on our study. Furthermore, the overall significances
inferred from thousands of mRNAs would be strong
enough to reflect real biology. The strength of our global
analysis lies in the noise reduction effect, as well as the
identification of general trends of miRNA target expres-
sion that would not have been discovered by individual
investigation of single miRNA targets. Cancer is an
extremely complex and heterogeneous disease [32]. It
should be noted that our data did not conclusively distin-
guish among the three possible mechanisms discussed
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above, and the detailed molecular mechanisms responsi-
ble for the abnormal expression of miRNA targets remain
to be thoroughly elucidated. Future experiments or large
microarray studies are needed to clarify the possible
mechanisms.

Conclusion

In conclusion, our global gene expression analysis, along
with further investigations, suggests that miRNA targets
have significantly reduced transcript abundance in pros-
tate cancer, when compared with the combined pool of
total mRNAs. The abnormal expression patterns of
miRNA targets could be a common feature of the human
cancer transcriptome. These observations raise the possi-
bility that miRNA may have global functions in human
prostate cancer. Our study may help to shed new light on
miRNA functions in cancer transcriptomics, when unprec-
edented opportunities to study the regulatory control
mediated by miRNAs are given by the accumulation of
cDNA, miRNA expression and proteomic datasets.

Methods

Data collection

The gene expression microarray datasets used in this study
are listed in Table 1, including five datasets in human
prostate cancer and four in other cancer types (breast can-
cer, lung adenocarcinoma, acute myeloid leukaemia and
liver cancer) [33-36]. We also used one immunobloting
proteomic dataset in prostate cancer. Gene expression
datasets were of two general types, two channel ratio data
(cDNA datasets) and single channel intensity data
(Affymetrix datasets), and were generally given in a single
matrix file format. All gene expression datasets were nor-
malized by the authors of these studies. Probe IDs were
converted to RefSeq mRNA IDs using ID converter [37], if
necessary. We used two complete lists of human miRNA
targets published by Lewis et al. and Krek et al. These
miRNA target prediction datasets were downloaded from
the most recently updated websites.

Determining the mRNA groups with high and low
expression in cancers relative to normal tissues

We reviewed the samples profiled for each of the gene
expression datasets and chose the samples of classes of
interest for further analysis. For each of the two classes e.g.
cancer versus normal, the probe sets with absent calls
(Affymetrix) or missing values (cDNA) in excess of 50% of
the samples were filtered out. For each probe, we first
averaged across sample replicates, then directly compared
the median expression values between the two classes
(cancer and normal). After that, we averaged the ratios
(fold changes) for probes of the same RefSeq transcripts in
each dataset and determined whether a mRNA had a high
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or low expression level (Method a). In dataset 1 and 2,
where the expression measurements of matched samples
(prostate cancers and benign prostate samples from same
patients) were provided, another method (Method b) was
used to rule out the bias of single method. We determined
if a mRNA altered for each patient by computing the
expression ratios of each patient, and only those genes
showing alterations in most (based on different cut-offs of
median ratio of paired samples) patients were considered
to be altered. In dataset 2, only the "well-measured genes"
defined by the author were included in our analysis.
Moreover, in order to rule out the bias of single cut-off (or
threshold) for identifying mRNAs with low and high
expression, we also chose three different cut-off values for
each comparison (High, Medium and Low [see Addi-
tional file 1]). For datasets 5-7 of three other cancer types,
we directly downloaded the over- and under-expression
gene lists from Oncomine database [38].

Calculation of R and RR values and resampling statistical
tests

Here we modified a method from Yu et al. 2007 [22].
After obtaining the mRNAs with high and low expression
in cancers relative to normal tissues, we counted the
number of miRNA targets that fell in the high expression
group (N . penign) and divided it by the amount of targets
in the low expression group (N _ gepig,)- The obtained ratio
was named as Ry (Riyir = N, penign/N < penign)- AS @ control,
the same calculations for all mRNAs were undertaken and
the ratio R, was obtained. The ratio of R ;. to R,,,; was
computed and termed as RR (RR = R;;/Rowa)- The RR
value is a surrogate for an increased or decreased abun-
dance of miRNA targets relative to total mRNAs. An RR
value less than 1 indicates that the targets prefer a lower
expression. We undertook a resampling test to judge the
statistical significance of the global observation. In each
test, we randomly picked the same number of mRNAs as
the number of miRNA targets from total altered mRNAs.
We then calculated the ratio of high expression mRNAs to
low expression mRNAs in this random sub-pool and
termed it as R, 4om- The randomization tests were per-
formed 5000 times and the number of times (n) was
counted when R, 4om > Ry~ P-value was defined as n/
5000. If P-value < 0.05, we determined the expression
level of miRNA targets was significantly lower than that of
total mRNAs. We used two miRNA target predictions for
this analysis and performed correlation analysis of the RR
values obtained from each of the two target predictions.

Correlation analysis between the expression levels of
individual miRNAs and those of their putative targets
For the dataset containing expression measurements of
both miRNAs and mRNAs in ten prostate tumours and
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ten corresponding surrounding non-tumour tissues [19],
we calculated the log expression ratios of paired samples
for each miRNA and each mRNA. Then the Pearson corre-
lation coefficients between each miRNA and each mRNA
were calculated using the expression ratios. We also deter-
mined the global density distribution of the Pearson cor-
relation coefficients between the miRNA of interest and
either all mRNAs or the predicted targets of the miRNA.

Analysis of the relationship between the RR values and 3'
UTR length and the number of predicted miRNA target-
site types

The number of target-site types of each PicTar target
mRNA was calculated. Since the underlying distributions
of the numbers of miRNA target site types and RR values
were not normal, Spearman's rank correlation test was
used to determine the relations between these two varia-
bles. We extracted information of 3' UTR length of each
mRNA from the UTResource database [39]. The human
CpG islands data were extracted from Human CpG Island
database [40].

GO term analysis and KEGG pathway analysis

To study the function of down-regulated miRNA targets,
we used the GO Term Mapper Web server [41]. We used
default GOA slim file (a list of general GO terms) for
annotating the down-regulated mRNAs. The KEGG data-
base [42] batch entry allowed us to evaluate the large set
of down-regulated miRNA targets and antitargets. In order
to evaluate the enrichment level of mRNAs to a specific
biological process or pathway, we used the Hyper-Geo-
metric (HG) distribution to calculate the enrichment P
value. A more detailed explanation of this distribution
was previously described [43].
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