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Abstract

Background: Transcriptome variability is due to genetic and environmental causes, much like any
other complex phenotype. Ascertaining the transcriptome differences between individuals is an
important step to understand how selection and genetic drift may affect gene expression. To that
end, extant divergent livestock breeds offer an ideal genetic material.

Results: We have analyzed with microarrays five tissues from the endocrine axis (hypothalamus,
adenohypophysis, thyroid gland, gonads and fat tissue) of |6 pigs from both sexes pertaining to four
extreme breeds (Duroc, Large White, Iberian and a cross with SinoEuropean hybrid line). Using a
Bayesian linear model approach, we observed that the largest breed variability corresponded to the
male gonads, and was larger than at the remaining tissues, including ovaries. Measurement of sex
hormones in peripheral blood at slaughter did not detect any breed-related differences. Not
unexpectedly, the gonads were the tissue with the largest number of sex biased genes. There was
a strong correlation between sex and breed bias expression, although the most breed biased genes
were not the most sex biased genes. A combined analysis of connectivity and differential expression
suggested three biological processes as being primarily different between breeds: spermatogenesis,
muscle differentiation and several metabolic processes.

Conclusion: These results suggest that differences across breeds in gene expression of the male
gonads are larger than in other endocrine tissues in the pig. Nevertheless, the strong presence of
breed biased genes in the male gonads cannot be explained solely by changes in spermatogenesis
nor by differences in the reproductive tract development.

Background ences that we observe between extant breeds of domestic
It is well known that variability at the transcriptome is in  species or between different ecotypes in wild species must
part due to genetic causes, much like any other complex  be correlated also to differences at the transcriptome level.
phenotype, e.g., [1]. Thus, the large phenotypic differ-  The extent of these differences and their nature is, how-
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ever, not fully known. Considering, moreover, that the
transcriptome programme differs widely between tissues
and across development stages of the same organism
while simultaneously many expression levels are highly
inter correlated adds an additional layer of complexity to
the problem.

Although the differences between tissues and across devel-
opment stage transcriptomes is a well known fact [2-4],
the variability across tissues or development stages is less
studied than within a single tissue due to increased costs
of longitudinal or across-tissue studies. Certainly, choos-
ing the tissue and the timing to be studied is a critical
aspect of any experimental design in transcriptomics. Yet,
this choice is not necessarily obvious. An example is
growth and leanness in livestock. These two traits are the
most important selection objectives in the majority of
breeding programmes. But they are very complex pheno-
types that depend on a large number of tissues. As for
growth, the most valuable tissue in economic terms is
muscle. Although muscle would be a logical tissue to be
studied, muscle development does depend on signals
external to the muscle itself like endocrine and paracrine
factors that also change along development. Similarly, dif-
ferences in the amount of fat tissue are more likely to be
caused by genetic signals that originate in the hypothala-
mus or in endocrine tissues rather than in the fat tissue
itself.

In order to study the impact of breed differentiation on
the pig's transcriptome, we have analyzed the breed and
sex differences across different tissues. Among tissues that
are of interest, those involved in the different endocrine
axes stand out as a promising choice, considering their
fundamental biological role and that their transcriptomes
have not been widely analyzed. Here we report a detailed
microarray analysis of five tissues that make up two main
endocrine axes, the HPTA (hypothalamic-pituitary-
gonadal) and HPT (hypothalamic-pituitary-thyroid) axes,
plus fat tissue, in four highly divergent porcine breeds.
Both HPTA and HPT axes are highly influential endocrine
axes and, we conjectured, must be responsible for at least
some of the large phenotypic differences between breeds
caused by artificial selection in livestock, e.g., in fat con-
tent.

Results

General overview

The tissues sampled were hypothalamus (HYPO), adeno-
hypophysis (AHYP), thyroid gland (THYG), gonads
(GONA) from both sexes, males (GONAM) and females
(GONAF), and back fat tissue (FATB). Some of their pri-
mary endocrine roles are in Additional file 1. The four
breeds were Large White (LW), Duroc (DU), Youli (YL)
and Iberian (IB). The Large White is a very lean and high
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growth breed, it is used as sire (male) line. Although there
are many different Duroc lines differing in their lean con-
tent and growth performance, the Duroc line employed
here was a maternal line with good reproductive perform-
ance and high intramuscular fat content. Youli, also a
maternal line, results from crossing Landrace breed with a
hybrid line made up of Chinese and European breeds, and
itis a highly prolific line. Finally, the Iberian breed is a tra-
ditional 'unimproved' breed of slow growth, high fat dep-
osition and low prolificacy but high intramuscular fat
content and renowned meat quality.

A total of 16 animals x 5 tissues = 80 samples were ana-
lyzed with Affymetrix microarrays. After normalization,
the resulting data were analyzed with a Bayesian linear
procedure, as described in the methods section. The anal-
ysis employed allowed us to estimate the fraction of each
source of variability via the variance ratios (h2), i.e., the
variance of the effect divided by the total variance. We and
others [3,5,6] have shown that mixed model methods are
a powerful yet parsimonious approach for analyzing
microarray data. The Bayesian approach allows us to get
easily standard error estimates of all parameters in the
model, including variance components and their ratios.
Table 1 consistently indicates that probeset is the single
most important source of variability in all cases, i.e., each
gene has its own distinct expression pattern, although cer-
tainly correlated with other genes. Aside from this, the
next most relevant effect is the tissue, which accounts for

h3; ~ 10% of total variability. Neither sex nor breed
exerted an overall influence on the transcriptome. These
figures are concordant with a previous analysis where we
studied a larger number of tissues, 16 [3]. Thus, it seems
that results from Table 1 can be extrapolated to other sit-
uations, at least in the porcine species.

When microarrays were analyzed separately by sex or
breed, neither the influence of tissue nor of sex varied.

That is, the ratio of Probeset x Tissue variance (hp;) was
constant across sexes and breeds, as was the ratio of
Probeset x Sex variance (hpg) across breeds (Table 1).

When each tissue was analyzed separately, however, the
picture changed. First, the Probeset x Sex variance ratio was

maximum for the gonad tissue: hps = 0.05 vs. hpg <1073

in the rest of tissues. As this ratio measures the relevance
of sex in the probeset variability, this result is not com-
pletely unexpected, and agrees with previous evidence
indicating the largest number of sex differentially
expressed genes occurs in the reproductive organs [7]. It is
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Table I: Means (SD) of the variance ratios' posterior distributions.
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Dataseti h3 h3y hg hs

Al 0.84 (0.08) 0.12 (0.08) 3 x 103 (104) 4% 103 (104)
Males 0.86 (0.01) 0.12 (0.01) 3 x 103 (104 ;
Females 0.86 (103) 0.1 (109) 3% 103 (10%) .
Large White 0.86 (103) 0.11 (10%) . 4% 103 (104
Duroc 0.86 (10%) 0.11 (103) - 4% 103 (104)
Youli 0.86 (103) 0.1 (109) . 4% 103 (104)
Iberian 0.87 (10%) 0.10 (103) . 3 x 103 (104)
HYPO 0.98 (104 . 3 x 103 (10%) 3 x 104 (10%)
AHYP 0.98 (104 - 3% 103 (10) 3% 103 (10)
THYG 0.98 (104 . 4% 103 (10%) 103 (10°)
GONA 091 (103) . 4x 103 (10) 0.05 (103)
GONAM 0.97 (104) - 0.01 (10) -
GONAF 0.95 (103) . 7 x 104 (104) .
FATB 0.97 (104) . 5 x 103 (104) 6 x 10 (10%)

h% : Probeset heritability; hlzyT : Probeset x Tissue heritability; h12>B : Probeset x Breed heritability; hlz)s : Probeset % Sex heritability.
HYPO: Hypothalamus; AHYP: adenohypophysis; THYG: thyroid gland; GONA: gonads both sexes; GONAM: male gonads; GONAF: female gonads;

FATB: backfat.

Table 2: Sex hormone levels in serum (ng/ml) relative to Large White (LW)

Contrast Testosterone Progesterone Progesterone Estradiol

(males) (females) (all) (all)
Mean 0.17 £ 0.0l 1.20 + 0.49 0.86 + 0.34 0.016 + 0.005
Duroc — LW -0.01 +0.02 0.79 £ 0.70 0.15+043 -0.003 + 0.006
Youli — LW 0.02 + 0.02 0.92 + 0.85 0.28 + 0.44 0.000 + 0.006
Iberian — LW 0.01 +0.02 0.71 £ 0.70 0.20 + 0.43 -0.015 + 0.006*
* Nominal P-value 0.05
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far more interesting, though, the observation that the

Probeset x Breed variance ratio was larger in male (hpg =

0.01) than in female gonads ( hp; = 0.0007). That is, the

breed effect was over ten times larger in the testicle than in
the ovarian transcriptome. Among the tissues studied, the
largest transcriptome divergence between breeds corre-
sponded to the male gonad and the minimum, to the
female gonad.

In order to test whether differential gonad development
across breeds was the cause for transcriptome differences
in the male gonads, we determined sex hormone levels in
plasma of all animals at the time of slaughter (Table 2).
There were no statistical differences neither in testoster-
one, the primary male hormone, nor in progesterone, a
hormone produced by the corpora lutea after ovulation
that can also be released from the adrenal gland after
stress [8]. Male pigs secrete estradiol, primarily from Ley-
dig cells during embryo and early days after birth [9].
Here, we found slightly elevated estradiol levels in Iberian
pigs (P-value = 0.04), although they were all very low and
at prepuberal levels. Thus, there was not evidence overall
of large disparities in reproductive physiological stages
between breeds.

In addition to quantitative variance ratios from Table 1,
we also visualized via dendrograms, that offer a conven-
ient display of highly dimensional data. Here we used the
UPGMA (Unweighted Pair Group Method with Arithme-
tic mean) criterion as implemented in the R-package
hclust. Table 1 hinted that tissue is an important source of
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Figure |

Dendrograms between breed z-scores for a subset of
tissues. The breed z-score is a Bayesian standardized meas-
ure of expression level in that breed (see methods).
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variability, and how this affects the 'relationships'
between breeds can be explored with such dendrograms.
Figure 1 shows the distance between breeds for a subset of
tissues; the distance employed was 1-1, r being the correla-
tion between breed z-scores across probesets (see Meth-
ods). Distances between breeds differed acording to the
tissue analyzed, as can be clearly seen from comparing the
scales in the vertical axes. By noting that a height of 1 cor-
responds to r = 0, it can be seen that correlations at
hypothalamus were higher overall than for the rest of tis-
sues. There were more differences (the trees were deeper)
at male than at female gonads. Duroc and Youli were the
nearest breeds for hypothalamus, adenohypophysis and
ovary transcriptomes, but not for male gonads. In sum-
mary, it seems that animal breeding has targeted different
tissues during the process of artificial selection, support-
ing a previous hypothesis [3].

A further aspect of interest in highly multidimensional
data is connectivity, i.e., how much inter correlated are the
different variable, here expression levels. To do that, we
subdivided the probesets into distinct modules, where
each module contains the probesets that showed maxi-
mum intercorrelation. Due to computational limitations,
we ran the module detection algorithm with the 12,000
most variable probesets, approximately the number of
probesets with standard deviation above the median. Fig-
ure 2 shows the number of probesets per module in the 40
largest modules. Note that the larger the size of the first
modules, the larger the connectivity. Thus, the tissue rank
in connectivity, measured as number of probesets
included in the first five modules, was: GONAF > AHYP >
THYG > FATB > GONAM > HYPO > ALL > GONA. It is
interesting to remark that connectivity was minimal when
gonads from both sexes are jointly analyzed and much
larger when analyzed separately. This illustrates that the
gonadal genetic programmes are clearly distinct in each
sex.

1200 1

1000 -

800 -

600

# probes

400 -

200 A

Module

Figure 2
Distribution of number of probesets per module for
each tissue.
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Table 3: Means (SD) of sex Bayesian z-scores, absolute values, for each tissue.

Probesets All HYPO AHYP THYG GONA FATB
All 112 (1.91) 0.18 (0.18) 0.57 (0.90) 0.37 (0.47) 1.93 (2.82) 0.20 (0.26)
Largest 100* 17.1 (15.0) 1.06 (0.10) 8.80 (3.75) 3.82 (1.70) 22.9 (4.14) 1.94 (0.41)

*n each tissue.

HYPO: Hypothalamus; AHYP: adenohypophysis; THYG: thyroid gland; GONA: gonads both sexes; GONAM: male gonads; GONAF: female gonads;

FATB: backfat.

Differential sex expression is predominant at gonad tissues
Heritabilities in Table 1 suggest that sex is a more impor-
tant source of transcriptome variability in gonads than in
the rest of the tissues analyzed. But these are global meas-
ures obtained across all genes, little biological insight is
provided. Sex Bayesian z-scores, in contrast, are specific to
each gene; they are a quantitative measurement of how
much an individual gene is differentially expressed
between sexes (see Methods). Thus, the distribution of z-
scores can also be used as a proxy to elucidate the level of
sex bias expression, with the advantage over variance
ratios that is directly interpretable in biological terms.
Table 3 shows the average and the SD of sex z-scores in
each tissue. Statistics are reported for all probesets and for
the 100 most extreme probesets. The tissue with largest
sex bias overall was the gonad, as expected, and it was also
the most variable. Sex bias was much more marked for
gonads than for the rest of tissues when only the 100 most
extreme probesets are used. These results correlate well
with estimates of the Probeset x Sex heritabilities

Table 4: Correlation of sex Bayesian z-scores between tissues

All. HYPO AHYP THYG GONA FATB
All - 0.24 0.43 0.38 0.83 0.33
HYPO  0.79 - 0.16 0.19 0.03 0.12
AHYP 0.86 0.85 - 0.24 0.09 0.15
THYG  0.85 0.84 0.93 - 0.06 0.20
GONA  0.77 0.47 0.42 0.42 - 0.07
FATB 0.81 0.80 0.88 0.88 0.43 -

Upper diagonal, correlation across all probesets; lower diagonal,
correlation across the 100 most differentially expressed genes in all
tissues. HYPO: Hypothalamus; AHYP: adenohypophysis; THYG:
thyroid gland; GONA: gonads both sexes; GONAM: male gonads;
GONAF: female gonads; FATB: backfat.

1/2
((2},_1 4[zij -z; ]2/3 ) , Table 1). At a false discovery

rate FDR = 0.05, the number of significant sex - biased
probesets was 1714 (all tissues), 0 (HYPO), 250 (AHYP),
20 (THYG), 5154 (GONA) and 0 (FATB). In summary, the
most sex biased tissues were the gonads, followed by the
adenohypophysis and the thyroid gland. The least sex-
biased tissues were hypothalamus and fat.

How likely is that sex - bias is conserved across tissues,
i.e., that a sex - biased gene in a given tissue is also sex —
biased in another tissue? A general response to this ques-
tion can be approximated by the correlation of sex z-
scores between tissues. Table 4 (upper diagonal) shows
that this correlation was rather small when all probesets
were considered, that is, there was no common pattern of
sex — bias expression. The only exception was between z-
scores at the gonad and that obtained when all tissues
were jointly analyzed (r = 0.83). But this occured because
the z-score across all tissues was heavily influenced by the
pattern in gonads, simply because it was in this tissue
where the largest sex bias was found (Table 3). It is more
meaningful to consider a subset of genes, those with larg-
est sex — bias across all tissues (lower triangle in Table 4).
A completely different picture emerges now. Overall, cor-
relations were very high between tissues, meaning that a
highly sex - biased gene in a given tissue tends also to be
sex — biased in other tissues. Yet, it was intriguing that cor-
relations between the gonad and the rest of tissues were
much lower now, hinting that highly sex — biased genes in
the gonads were at least partially different from those in
the rest of tissues. This heterogeneous gonad sex — pro-
gramme was visible by plotting the z-scores. For instance,
the correlation between AHYP and THYG z-scores was
0.93 for the extreme sex - biased probesets and 0.24
across all probesets (Table 4). The z-scores were plotted in
Figure 3 (Top). Note that, save for a few probesets, the
relationship between extreme z-scores was linear and in
agreement with the high correlation found, whereas it was
not when all probesets were considered. As for the
gonads, Figure 3 (Middle) plots the AHYP vs. GONA z-
scores. In this case, there was a considerable number of
probesets with extreme bias in the gonads but not in the
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Figure 3

Sex z-scores across tissues. The sex z-score is a Bayesian
standardized measure of expression difference between
sexes (see methods). Each dot in top and middle figures cor-
responds to a different probeset. Top: Adenohypophysis
(abscissa) vs. thyroid gland (ordinate) sex z-scores. Middle:
Adenohypophysis (abscissa) vs. gonad (ordinate) sex z-
scores; the encircled dots correspond to highly biased
probesets in gonads that show no bias in adenohypophysis.
Bottom: Dendrogram of the sex z-scores in different tissues
corresponding to the 100 most sex biased probesets. The
vertical scale is the distance between points, i.e., one minus
the Pearson correlation.
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adenohypophysis, those encircled in red. As a result the
correlation between z-scores of the most sex - biased
probesets is low. An UPGMA cluster did show also that
the gonad genetic programme, in terms of sex bias expres-
sion, was clearly distinct from the rest of tissues analyzed
(Figure 3 Bottom).

This distinct genetic programme in the gonads, one would
expect, should consist of genes primarily involved in
gametogenesis. To investigate this further, we selected the
100 most biased probesets in the gonads and, among
those, we ranked the most biased probesets in AHYP and
THYG. The complete list is in Additional File 2, but nine
probesets stood out as highly sex — biased across all three
tissues, whereas the 91 remaining probesets did not
exhibit any pronounced sex bias expression neither in
AHYP nor in THYG. The nine probesets corresponded to
genes DDX3Y, EIFS23, FAM5C, EIFIAY, DENNDA4A,
PTPRM, LPHN2, CLOCK and TMSB4X. These nine genes
were among the 10 most differentially sex expressed genes
that we obtained in a previous work [3], where 16 tissues
in four animals were analyzed. Some of the genes were
confirmed by quantitative real time PCR (QRT-PCR).
They are also among the most sex biased porcine genes
identified in independent studies [10]. We also performed
a gene ontology analysis of the remaining 91 probesets
which did show, as presumed, that spermatogenesis genes
were over represented (P-value = 0.03) but also were other
processes: multicellular organism development (P =
0.03), hemophilic cell adhesion (P = 0.01) or synaptic
transmission (P = 0.04). Thus, although gametogenesis
partially explains the distinct sex-bias programmes
between gonads and the rest of tissues, it does not explain
the full story. There is not a simplistic explanation or a
general common role for specific gonad sex - biased
genes.

We also carried out a differential gene ontology (GO)
study with the most sex biased probesets in the gonads,
irrespective of whether they were also sex - biased in other
tissues. Initially, we aimed at studying the 5154 sex biased
probesets detected at FDR = 0.05 but this was not feasible
computationally. Thus, we selected the top 1700 genes,
the number of selected genes when all tissues are ana-
lyzed. The most significant and numerous GO classes are
in Additional File 3. Overall, most GO categories were
related to development, which makes sense because ova-
ries and testicles follow different development trajectories
since early embryogenesis, from about four weeks of
embryo age in pigs [11]. As expected, there was also an
overrepresentation of spermatogenesis and male gonad
development, but also lactation. An interesting observa-
tion was the excess of genes related to the MAPKKK cas-
cade (MAP3K5, MAPK1, FGFR3, RAPGEF2, NF1, AGT),
one of the most important signalling pathways in the cell.
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All of these genes are also involved in development, in
particular, AGT (angiotensinogen) plays a role in female
pregnancy and in ovarian follicle development [12,13].

Breed differences

The study of breed differences at the transcriptome level is
fundamental to elucidate the impact of selection on gene
expression, and thus on gene regulation. As mentioned,

the ratio hpg or Probeset x Breed heritability is a summary

of the breed influence on the transcriptome. Although the
overall breed influence was much smaller than that of tis-
sue or the probeset itself (Table 1), it was a remarkable

observation that h3; was maximum in male gonads and

minimum at the female gonads: 0.01 vs. 0.0007, i.e., at
least 10 times larger in testicles than in ovaries. Note that
the SD of these figures are very small (= 10-4) and thus the
two estimates are clearly distinct. To gain further insight
and to assess the influence of each individual probeset, we
computed the standard deviation of the breed Bayesian z-

scores, i.e., for probeset i SD, ..q ; = hp = cp/ oy,
where z;; is the breed z-score of probeset i at breed j. This

is a rough measure of expression variability across breeds
but allows us to carry out a ranking among probesets in
terms of how much do their expression differ between
breeds. Additional File 4 shows the mean SD, .4 for each
tissue, the complete list of breed z-scores is in Additional
File 5. The z-score breed variability was larger in the male
gonads than in the rest of tissues, in agreement with the
variance component analysis from Table 1. Only when all
tissues or both gonads were considered jointly was varia-
bility larger than in male gonads. The relation between
breed and sex bias expression is discussed in the next sec-
tion.

Considering that a large heterogeneity in SD, .4 Was
observed between tissues, we investigated whether there
were any genes that consistently showed large breed vari-
ability across several tissues. The rationale was that these
genes could be primary targets of artificial selection or
provide clues about main metabolic routes responsible
for breed differences. To study this, we selected the
probesets that were among the 200 top most variable
probesets (i.e., highest SD,; ..q) in at least four tissues.
This criterion was fulfilled by a total of 19 probesets
(Table 5). The majority of corresponding genes was
involved in several development and cell cycle processes,
including apoptosis. Six of the genes in Table 5 were
among the 31 most distinct genes between Large White
and Iberian pigs that we found in a previous study [3],
these genes are marked with a star (*) in Table 5. This is a
highly significant (P << 10-°) and remarkable overlap con-

http://www.biomedcentral.com/1471-2164/10/89

sidering that i) the number of breeds was doubled here in
relation to [3], ii) the number of tissues was quite differ-
ent between both studies, 16 in [3], five here; gonads, the
most variable tissue, was not studied in [3], and iii) the
statistical inference method was different.

The most extreme breed for each of the geneprobes is
shaded in Table 5. Although the Youli synthetic breed
seems 'enriched' in extreme probes, may be because of its
highly heterogenous backgroung, it is of interest to study
the extreme probes between Iberian (a non selected
breed) vs. the rest of breeds, which have undergone a
rather intense artificial selection process. We did that for
all tissues jointly and for each of individual tissues except
the gonads. In all cases, the gene LYST, involved in cellular
defense, was the most extreme Iberian probe. We also
looked for enriched ontology categories among the most
extreme probes. When all tissues are examined together,
the most 100 extreme genes were enriched in defense
(antigen processing and response) and development
(endodermal cell fate commitment, brain morphogene-
sis, mast cell biogenesis). As for each tissue independ-
ently, thyoroid gland was enriched in defense genes,
whereas back fat or hypothalamus showed, additionally,
an excess of muscle development genes.

A potential limitation of considering each gene individu-
ally, e.g., Table 5, is that there might not be enough power
in the data to detect all influential genes. Taking into
account the high inter correlation between expression lev-
els should help to improve upon this. For this purpose, we
studied whether there was a connection between modu-
larity, i.e., gene coexpression, and bias, i.e., differential
expression across breeds. We reasoned that, assuming that
genes in a given module tend to work coordinately,
because their expression is highly correlated, an excess of
breed - biased genes in a module should help to uncover
metabolic pathways that have been primarily affected by
breed divergence. As a result, these biological processes
may be more easily influenced by selection, either artifi-
cial or natural selection. Specifically, we studied whether
there was an excess of the top 100 most variable genes in
any of the modules detected (Figure 2). Four modules
were particularly 'enriched' in breed biased genes (P <<
10¢). These were modules 4, 14 and 29 in male gonads
and module 25 in back fat (Table 6). Then, we studied
whether any specific GO biological process was overrepre-
sented in all genes for that module, i.e., not only those
that showed high breed variability. Table 6 shows that
each module was enriched in different GO processes. The
largest module (number 4 in GONAM) was particularly
enriched in spermatogenesis whereas the rest of the mod-
ules were 'specialized' in other processes, muscle func-
tioning or development (modules 14 GONAM and 25
FATB) or several metabolic processes.
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Table 5: Genes that are among the 200 most variable in at least four tissues

Name Symbol ¥ GO Biological process Ziw Zpu ZyL Zis  Zsex
Lysosomal trafficking regulator LYST Cellular defense 9.1 33 8.0 - 84
20.7
phosphatidylethanolamine N-methyltransferase PEMT Cell proliferation 18.4 - 0.1 -6.2 20
12.6
Small VCP/p97-interacting protein Q8NHG7* - - -87 07 187 07
10.5
forkhead box Fl FOXFI Organ morphogenesis, lung and gut 52 -73 121 99 13
development
Death inducer-obliterator | DATF | * Apoptosis 126 -43 -38 -46 04
Major histocompatibility complex class B HLA-B* Antigen processing 42 -46 -24 I11.1 40
Heterogeneous nuclear ribonucleoprotein H2 ~ HNRPH2 ~ RNA binding 3.0 2.0 - 72 48
1.7
Vesicle trafficking protein homolog B SEC22L1 ER to Golgi transport -l6 67 97 43 20
Microtubule-associated protein 6 MAP6 Negative regulation of microtubule 47 -65 113 -93 89
depolymerization
Rho-associated, coiled-coil containing kinase |~ ROCK/ Actin cytoskeleton organization and biogenesis  -4.9 -4.7 144 - -5.7
4.67
Family with sequence similarity 92, member Al FAM92A1 - - 143 08 47 33
10.2
Frizzled homolog 4 (Drosophila) FZD4 Multicellular organism develop, wnt signaling - 12,1 56 -36 20
pathway 14.2
Opticin OPTC Protein binding 20 -09 3.0 -40 3.1
Armadillo repeat containing, X-linked | ARMCX1*  Development, maintenance of tissue integrity - 6.5 0.5 6.5 3.6
13.6
Lipopolysaccharide-induced TNF factor LITAF Apoptosis 39 74 79 45 77
Vasoactive intestinal peptide receptor 2 VIPR2 Cell cell signaling/G-protein coupled receptor 4.1 4.7 - 6.8 1.9
protein signaling 15.5
Amyloid beta (A4) precursor-like protein 2 APLP2 G-protein coupled receptor protein signaling 45 -39 144 58 23
Tousled-like kinase 2 TLK2* Cell cycle/chromatin assembly 126 -43 -35 -49 29
Immunoglobulin heavy constant mu IGHM* Antigen binding -2 22 -09 0.l 4.3

* Also found differentially expressed between breeds in Ferraz et al. [3]

Is there a link between breed and sex biased expressions? and breed biased expression. However, the relationship
The fact that gonads were the most sex biased tissue, and ~ was not very strong. The correlation between |z-sexgonal
that the most variable genes between breeds were  and SD, .4 conam across probesets was 0.38. This value
expressed in the male gonads, leads to the obvious ques-  is rather low, it corresponds to a coefficient of determina-
tion of whether the same genes are involved in both sex  tion 2= 0.14. Figure 4 shows that there was not a constant
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Table 6: Over represented Gene Ontology (GO) categories in modules with largest discrepancy between observed and expected

number of probesets

Tissue Module Nogs ngxp GO Name P-value FDR
Male Gonad 4 47 5 Spermatogenesis 10-3 0.05
Spermatid development 0.002 0.37

Spindle organization 0.002 0.07

14 13 2 Muscle cell differentiation 10-5 0.07

Mitotic sister chromatid cohesion 10-4 0.32

Negative regulation of transcription 0.003 0.77

29 12 2 Aldehide metabolic process 0.003 0.34

RNA metabolic process 0.006 0.34

Glycogen metabolic process 0.007 0.34

Backfat 25 34 I Striated muscle contraction <105 104
Regulation of striated m. contraction 104 0.03

Ventricular cardiac muscle morphogenesis 0.001 0.30

Module: The number of probesets per module is shown in Figure 2
nogs: Number of probesets, among those with 100 highest SD
negxp: Number of probesets expected in the module

FDR: false discovery rate

zbreed’

relation between breed variability and differential sex
expression in the gonads. Note, nevertheless, that the
most variable genes (highest SD, .4 encircled) were
male sex biased, although they were not the most sex
biased genes. Table 7 lists the 15 most breed variable
genes in the testicles, together with their sex z-score. At
least four genes, almost 25%, were directly involved in
spermatogenesis. At least one gene (MAP3K5) was directly
involved in the MAPKKK cascade, one of the overrepre-
sented GO categories among sex biased genes (Additional
File 3). The most variable gene and that with highest sex
bias was PHKA, a key regulatory enzyme of the glycogen
metabolism. Note that, despite being located on chromo-
some X, this gene shows a marked male biased expression.
Interestingly, it is known that chromosome X harbors an
excess of sex biased genes [14].

As for the most variable genes across several tissues (Table
5), there was an excess of male biased genes, except
ROCK1, all were overexpressed in males. Again, they were
not the most sex biased genes. Note that none of the 15
most variable genes among breeds in the male gonads
(Table 7) were also present in Table 5, that is, the most
variable genes among breeds in the gonads were not the
most variable across all tissues. To summarize, the most

observed in the module

variable genes among breeds were predominantly male
biased. However, the most variable genes were not the
most sex biased. An important percentage of the most var-
iable genes were involved in spermatogenesis (Table 7),
suggesting that artificial selection targets this biological
process, either directly or indirectly.

Discussion and Conclusion

Animal breeding has resulted in breeds that are extremely
diverse for a large number of traits. These phenotypic dif-
ferences are influenced by DNA variants and mediated by
distinct transcriptome programmes across breeds. The dis-
section of the transcriptome breed differences will thus
largely illuminate the physiological and genetic causes
underlying artificial selection and breed differentiation.
Here we reasoned that many changes observed in target
selection tissues, i.e., muscle and fat, might actually be
due to signals external to the tissue itself, notably through
the endocrine system. In addition, and despite the rele-
vance of the endocrine system in animals, the knowledge
of its transcriptome is rather scarce.

Among the many statistical approaches employed to ana-
lyze microarrays e.g. [15], here we have adopted a Baye-
sian approach that is closely related to mixed model
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Table 7: The 15 most variable genes among breeds in the male gonads together with their sex z-score.

Name Gene/Probeset GO biological process SD,preed, GONAM  Zsex, GONA
Phosphorylase kinase, alpha | PHKAI Muscle glycogenosis (X located) 9.1 15.0
Cysteine-rich secretory protein | CRISPI Spermatogenesis 85 14.7
Mitogen-activated protein kinase kinase kinase 5 MAP3K5 MAPKKK cascade, apoptosis 8.4 14.0
Lysosomal associated protein transmembrane 4 beta LAPTM4B Transport 73 6.3
Caspase 8, apoptosis-related cysteine peptidase CASP8 Apoptosis 7.3 16.3
Y box binding protein 2 YBX2 Spermatogenesis 7.1 5.1
coiled-coil domain containing 71 cebc7i - 7.0 14.2
Protamine | (testis specific) PRMI Spermatogenesis 6.8 9.9
Unknown Ssc.18340.1. Al _at - 5.9 9.4
Progestin and adipoQ receptor family member VII PAQR7 Steriod binding 5.8 9.0
Aldehyde dehydrogenase | family, member Al ALDHIAI Aldehide metabolic process 5.8 4.2
Protein phosphatase |E PPMIE Protein amino acid dephosphorylation 5.8 7.7
Sperm autoantigenic protein 17 SPAI7 Spermatogenesis, fertilization 57 1.7
Aquaporin 8 AQP8 Water transport 5.7 12.8
Unknown Ssc.11206.1. Al _at - 5.7 39

SD,reed. Gonam iS the standard deviation of breed z-scores in the male gonads, where the breed z-score is a standardized measure of the expression
level in each breed; z., gona is the sex z-score, a standardized measure of expression difference between sexes. A positive value indicates a male

overexpression with respect to females.

methods [16]. The main advantages of these approaches
are their modeling flexibility while allowing the whole
dataset to be analyzed simultaneously. Both characteris-
tics are important to contrast a number of biological
hypotheses with a minimum standard error and, conse-
quently, maximum power. In addition the Bayesian
method provides an exact measure of error for variances
and variance ratios, whereas convolute approximations
are needed in the classical mixed model method. There
are also potential hindrances in the analyses reported
here. The main one is that variance homogeneity is
assumed, unaccounting for differences in variability
across probes other than the effects included in the model.
For instance, a gene whose expression level is very low
across all tissues is less variable than a gene expressed in
some tissues and switched off in another tissues. There is
a rich literature on heteroskedasticity, especially within
the Bayesian paradigm. However, accounting for variance
heterogeneity obliges to fit a distinct variance for a gene or

a group of genes, which can be extremely hard to compute
given the large number of genes in microarrays. An alter-
native is to analyze each gene separately, but this is also
undesirable because many parameters are estimated and
the risk of false positive increases.

Nevertheless, the models used here fitted the data quite
well, as evidenced by the high heritabilities reported
(Table 1), an there are several relevant conclusions that
can be drawn from our study. First, we show that probeset
is by far the most influential factor, accounting for at least
85% of total variability, whereas tissue explains in the
order of 10%. Breed and sex contribute only marginally to
total variance in the transcriptome. There are no differ-
ences across breeds nor between sexes in this respect.
These results agree extremely well with a previous study
from our group, although there we employed a different
statistical methodology and we analyzed 16 tissues in a
smaller number of animals (four) [3]. Although sex and
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SD -zbreed GONAM

z-sex GONA

Figure 4

Sex bias vs. variability of breed z-scores in male
gonads. In abscissas, the sex z-score in gonads; in ordinates,
the standard deviation of breed z-scores in the male gonads,
i.e., a probeset with a high ordinate value is a probeset
whose expression level in testicles varied largely between
breeds. Each dot corresponds to a different probeset. The
probesets encircled are those with largest variability across
breeds which, as can be seen, are male biased but are not the
most sex biased.

breed were, globally, much less relevant than the probeset
effect, sex and breed do influence largely the expression of
a subset of genes: those with most extreme z-scores.

Also importantly, we report a strong link between sex —
bias and breed variability, which is not caused by large dif-
ferences in reproductive development (Table 2). The male

gonad is the tissue with largest breed heritability (hpg,

Table 1). This result is coherent with several independent
observations. First, many of the genes that have been iden-
tified as undergoing selection in the human and other spe-
cies are involved in spermatogenesis [17-19]. It is
plausible then that artificial selection and breed diver-
gence, which operates through the same mechanisms as
evolution, affects also spermatogenesis. Second, modern
breeding in livestock targets primarily the male because a
sire can leave much more offspring than a dam, and thus
selection intensity is usually much higher in males than in
females. This would help to explain why sex biased and
breed biased genes partially overlap (Table 7, Figure 4).
And third, recent work in Drosophila [20] and references
therein have confirmed that sex biased genes exhibit a
faster rate of evolution than non biased genes; in addition,
male biased genes show a stronger signal of adaptive
selection than female biased genes. Nevertheless,
although the most breed - biased genes tend to be also sex
biased, the most sex biased genes are not among the most
breed biased genes. Thus, these two phenomena are inex-

http://www.biomedcentral.com/1471-2164/10/89

tricably but only partially linked. Similarly, not all genes
among those with largest breed - variability are involved
in spermatogenesis (Table 7, Additional File 5). Thus, the
high breed heritability in the male gonads cannot be
explained solely by changes in spermatogenesis. This is
certainly an area meriting further research.

A worth noting observation is an elevated number of
myogenesis related processes among genes involved in
breed differentiation (Table 7). The muscle - the major
component of the meat - is the tissue that has been the
main target of artificial selection in the pig. We have pre-
viously shown [3] that a number of genes involved in
myogenesis were differentially expressed in both tissues.
Thus, the excess of muscle development genes in fat and
gonads might simply reflect a pleiotropic change caused
by a primary effect in muscle. Thus, our initial hypothesis
that breed transcriptome differences might affect prima-
rily the endocrine system should be reevaluated, as is not
fully supported by our experimental results. In fact, it is
quite remarkable that both sex and breed differences at
the hypothalamus, one of the key endocrine organs, is
smaller than in the rest of tissues studied (Table 3, Addi-
tional File 4). Certainly, the endocrine system plays a fun-
damental role in animal's physiology and consequently in
breed and sex differences, but may be transcriptome dif-
ferences are more pronounced at development stages
other than that studied here or affect a very small subset
of genes.

As expected in the light of previous research in the pig and
in other species, e.g., [3,7,21], we find extensive evidence
of sex biased probesets. Not surprisingly, the gonads are
the most sex biased tissue overall (Table 3, all data are in
additional file 2). Globally, the most sex biased genes are
also sex biased across a range of tissues, except in the
gonads (Table 4, low triangular, and Figure 3). Most sex
biased genes in Table 4 were identified previously by us
and by an independent group, and some were confirmed
by quantitative real time PCR [3,10]. Several of the gonad
sex biased genes identified here are known to be involved
in gonadal development in mice and pigs [22,23], like
LHX9, PODL, GATA4, AMH (z, = 6.7 in gonads, z,,~ 0
in the rest of tissues), SOX9 (z,, = 12.0 in gonads, ~0 in
the rest of tissues). In contrast, we do not find any sex bias
for sex determining region (SRY, z, = 0.08), which initi-
ates the sex differentiation cascade, probably because its
temporal expression is very narrow, 10 - 12 days post coi-
tum in the mouse [22]. Follistatin, a glycoprotein forming
part of the inhibin-activin-follistatin axis that plays an
important role in follicular development within the ovary,
is highly overexpressed in ovary (z, = -16.7) but no sig-
nificant bias appears in the rest of tissues analyzed. The
most female biased gene, nonetheless, is protein tyrosine
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phosphatase receptor type M (PTPRM), an important sig-
naling molecule that regulates cell growth and differenti-
ation. This gene was already identified in a previous study
[3] as being also strongly female biased.

As genes work coordinately and thus their expression lev-
els are correlated, considering gene modules should be a
more powerful approach than analyzing each gene sepa-
rately. We observe that connectivity varies across tissues
(Figure 2) and that the least connected transcriptome
occurs when gonads of both sexes are jointly analyzed.
This is likely a result of large heterogeneity in expression
patterns between ovaries and testicles even before
puberty. But, for our purposes, the main use of detecting
modules was combining expression bias and connectivity
in order to increase power and discover more subtle sig-
nals that may not be evident when studying each gene in
isolation [24]. Several approaches can be envisaged to
attain this. Here, first we identified sets of highly corre-
lated genes (modules) within each tissue using standard
techniques [25], followed by an assessment of whether
any module was enriched in breed biased genes. Finally,
we looked for over represented gene ontologies among all
genes in that module. We found that different modules
were enriched in specific ontologies (Table 7), reflecting
the modularity of gene expression. Importantly, we iden-
tify a series of biological processes (spermatogenesis, mus-
cle differentiation and several metabolic processes) that
have been the likely target, direct or indirect, of artificial
selection. The next logical step will be to verify whether
genes that have been the target of selection (showing evi-
dence, e.g., of a selective sweep) in the pig are enriched in
these gene ontologies. At least in humans, there a signifi-
cant excess of genes undergoing natural selection are
involved in spermatogenesis [26].

Methods

Animal material

Sixteen animals, four from each of four breeds, Large
White (LW), Duroc (DU), Youli (YL) and Iberian (IB) pig-
lets were sampled. These breeds represent a wide genetic
variability in current pig breeding schemes. There were
two males and two females per breed except in Youli, rep-
resented by three males and one female. Animals were
bought from three breeding companies and transferred to
the University experimental farms at weaning, i.e., aged
one month approximately. Pigs were housed simultane-
ously, fed the same diets during the fattening period, that
lasted two months, and were weighed at weekly intervals.
At the time of slaughter, the average ages were 87, 83, 80
and 89 days for Large White, Duroc, Youli and Iberian
pigs, respectively. Their mean live weights at that time
were 27.2 (LW), 23.1 (DU), 18.9 (YL) and 17.4 kg (IB).

http://www.biomedcentral.com/1471-2164/10/89

Animals were euthanized, after 24 h fasting, by an over-
dose of intravenous sodium thiobarbital. At necropsy, tis-
sue samples were collected, snap frozen in liquid nitrogen
and stored at -80°C. The average time gap between eutha-
nasia and tissue collection was ~15 minutes, maximum
time was 25 minutes. The tissues collected were hypotha-
lamus (HYPO), adenohypophysis (AHYP), which was
separated from the neurohypophysis, thyroid gland
(THYG), gonads (GONA) from both sexes, males
(GONAM) and females (GONAF), and back fat tissue
(FATB). The hypothalamus included the mamillary body
and grey tubercle but excluded the chiasma opticum.
Throughout this work, each sample was identified by the
acronym of the tissue followed by the animal id, e.g.,
FATB_LWF1 refers to back fat tissue from female 1 Large
White. All procedures were approved by the Ethical and
Animal Welfare Committee of the Universitat Autonoma de
Barcelona, in accordance with the guidelines of the Good
Experimental Practices.

RNA extraction and microarray hybridization

Total RNA was extracted from 100 mg tissue using the
RiboPure™ kit (Ambion, Austin, USA) according to the
manufacturer's protocol. RNA was quantified with the
NanoDrop ND-1000 spectrophotometer (NanoDrop
Technologies, Wilmington, USA) and the RNA integrity
was assessed by Agilent Bioanalyser 2100 and RNA Nano
6000 Labchip kit (Agilent Technologies, Palo Alto, USA).
Due to high variation in concentrations of the total RNA
obtained in different tissues, all samples were concen-
trated and cleaned using the RNAeasy MiniElute Cleanup
kit (Qiagen, Basel, Switzerland) obtaining final concen-
trations between 500 and 1000 ng/pl.

A total of 80 microarrays (16 animals x 5 tissues) were
hybridized and scanned at the Institut de Recerca Hospital
Universitari Vall d'Hebron (Barcelona, Spain). Briefly, the
cDNA synthesis was undertaken with 5 pg of total RNA,
labelled with biotin and hybridized to individual high-
density oligonucleotide microarray chips (GeneChip®
Porcine) from Affymetrix (Santa Clara CA) containing a
total of 23,935 probeset sets, representing 20,201 Sus
scrofa genes, 11,265 of these genes were annotated by Tsai
et al. (2006). The hybridization was done according to
Affymetrix standard protocols and microarray expression
data were generated with GeneChip Operating Software
(GCOS). As the annotation provided by the manufacturer
is not too detailed, the results in this work are based in the
annotation developed by [27]. The complete data set,
both GCRMA and original CEL files, are available at Gene
Expression Omnibus (GEO) under accession number
GSE14739. The original material, tissue conserved at -80
C, is also available on request. Contact the authors for
details.
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Data processing and statistical analysis

Quality control of CEL files was done with the Affy pack-
age of bioconductor [28]: RNA degradation and the raw
data distribution were ascertained. All CEL files were nor-
malized simultaneously with the GCRMA procedure [29].
After normalization, a Bayesian approach was adopted for
statistical inference. The full model employed was:

Viikegt = Tissue; + Breedj + Sex, + Probesetg + PTy+ PBj+ PSy +
e ijlglr ( 1 )

where PT, PB and PS stand for the probeset x tissue, probeset
x breed and probeset x sex interactions, respectively. The
subscript [ refers to 1-th individual. In the Bayesian paradigm,
all effects are random. Here we used uninformative flat pri-
ors for all parameters. We defined the following heritabilities
hir = opr | oy,

or ratios of variances:

2 _ 2 2 2 _ 2 2
hpg = opg [ oy, hps = ops | oy and

o} = 6} + opy +0py +0ps +02, where the denom-

phenotypic
1/2
(Z]‘—]A[Zgj -z, ]2 /3) . We also analyzed data sub-

sets, e.g., only females or males, or each breed or each tissue
separately. In these instances, appropriate effects were
deleted from model (1), e.g., Sex and PS are removed when
data from a single sex are analyzed. Bayesian analyses were
carried out using standard theory [30]. A Gibbs sampling
approach was performed with a home made program (A.
Legarra, INRA, France, personal communication). Priors
were flat bounded between two very large numbers (-10° -
10°¢); given the large amount of data, priors should have a
minor influence here. We employed 10,000 iterates with
2000 burning initial iterates and discarding every 50 to min-
imize autocorrelation. Note that the dimension of the sys-
tem in (1) is huge, it used 23,935 probesets x 80 samples ~
1.9 10¢records and contained 287,229 equations. Total CPU
time was in the order of three days on a Linux Itanium server.
Most of time was spent reading the data and building the
equations via linked lists rather than in the Gibbs sampling
process itself.

inator is the total variance, i.e.,

Bayesian methodology offers several advantages over
more traditional least square or maximum likelihood
approaches and these will not be discussed here [30,31].
It suffices to mention that the output of the Gibbs sampler
are values that follow the marginal posterior distribution
of each of the t parameters in the model, p(6,]y), and thus
it is straighforward to compute any desired statistics from
that distribution taking into account uncertainty on the
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rest of parameters in the model. Here we report the mean
and SD of the posterior distributions of the random com-
ponents ratios (h2). We also defined the Bayesian z-score
that, in analogy to the usual z-score, was obtained from
E(0,]y)/SD(6,|y). We computed sex and breed z-scores; the
sex z-score for g-th probeset is E [(PSg; - PSg,)|y]/SD [(PSg,
- PS,,)ly] where subscripts 1 and 2 refer to males and

females, respecively. Similarly, the j-th breed z-score for g-
th probeset is defined as z,; = E(PBy|y)/SD(PBgly). A

rough measure of how much the expression varies across
breeds is computed as the standard deviation of the breed

Bayesian z-scores, i.e., for probeset g SD .4 o = h3 . We

also computed an analogous False Discovery Rate statis-
tics [32]. We obtained this from the sex Bayesian z-scores;
given that these z-scores follow a N(z-score,1) distribu-
tion, we can compute the probability that z-score > 0 and
assimilate these to P-values. The complete list of z-scores
is available at additonal files 4 and 5. Thoroughout, we
employed dendrograms to visualize multivariate results
using the hclust R function. The distance chosen was one
minus the Pearson correlation (r) across variables, this
distance is bound between 0 (r=1) and 2 (r=-1).

As genes function in concerted action, which is best
described by networks, we studied differential connectiv-
ity and checked whether most differentially expressed
genes belonged to a specific group of highly co-regulated
genes (a module). To do that, we characterized the
number of modules using the approach in [25] employ-
ing distance 1-r and a cut level of 95%; the minimum
number of probesets per module was set to 30. Due to
computing constraints, we analyzed only the 12,000
probesets with higher SD than the median. We identified
modules using all data jointly or for each tissue separately.
For gonads, we did the analysis with both sexes pooled
and within sex. In order to identify a potential connection
between modularity and bias (differential expression), we
studied whether any of the modules contained a larger
number of probesets than expected. Suppose a list of n4
probesets are either breed or sex biased, and, among
them, a subset of nygg probesets belong to module j. In
addition, suppose that n; is the total number of probesets
in the module j. The expected number of probesets in the
module is simply ngyp = ng x n;/12,000 (because we have
selected 12,000 probesets). This value is corrected when
not all n, probesets are among the 12,000 employed for
the module analysis. We computed the chi-squared statis-
tics, (Nogg - Npxp)?/Npxp, and the associated P-values. We
did this for each module and tissue separately.

Gene ontologies and GO over representation were ana-
lyzed with onto-tools [33].
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Hormonal measurements

Hormonal concentrations were measured in duplicate in
plasma using commercial testosterone (EIA #402510,
Neogen Corporation, Lexington, USA), estradiol (EIA
#402210, Neogen Corporation) and progesterone EIA kits
(EIA #402310, Neogen Corporation). All assays were con-
ducted following the manufacturer's protocol. The assays
were validated for pig plasma by demonstrating that serial
dilutions of plasma were parallel to the displacement
curve for the reference standards. Hormone standards
spiked with pig plasma produced accurate results of hor-
mone recovery (102.0 + 3.6% to 106.5 + 9.2% in 12
assays, 2= 0.97).

Awvailability

The data used in this study have been deposited in GEO
under accession number GSE14739. The original material
(tissue frozen at -80 C) is also available on request. Con-
tact the author for details.
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