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Abstract

Background: Saturated brines are extreme environments of low diversity. Salinibacter ruber is the
only bacterium that inhabits this environment in significant numbers. In order to establish the
extent of genetic diversity in natural populations of this microbe, the genomic sequence of
reference strain DSM 13855 was compared to metagenomic fragments recovered from climax
saltern crystallizers and obtained with 454 sequencing technology. This kind of analysis reveals the
presence of metagenomic islands, i.e. highly variable regions among the different lineages in the
population.

Results: Three regions of the sequenced isolate were scarcely represented in the metagenome
thus appearing to vary among co-occurring S. ruber cells. These metagenomic islands showed
evidence of extensive genomic corruption with atypically low GC content, low coding density, high
numbers of pseudogenes and short hypothetical proteins. A detailed analysis of island gene content
showed that the genes in metagenomic island | code for cell surface polysaccharides. The strain-
specific genes of metagenomic island 2 were found to be involved in biosynthesis of cell wall
polysaccharide components. Finally, metagenomic island 3 was rich in DNA related enzymes.

Conclusion: The genomic organisation of S. ruber variable genomic regions showed a number of
convergences with genomic islands of marine microbes studied, being largely involved in variable
cell surface traits. This variation at the level of cell envelopes in an environment devoid of grazing
pressure probably reflects a global strategy of bacteria to escape phage predation.

Background concept, the species genome is composed of a core
Prokaryotic genomes are extraordinarily plastic entities = genome, containing genes present in all (or most) strains
and vary widely within the limits of a well defined species. = and a variable genome, containing genes present only in
In order to describe these large genetic reservoirs the pan- ~ some strains.

genome concept was introduced [1]. According to this
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In some cases, this variation is concentrated in hypervari-
able sets of genes, known as genomic islands [2-4].
Genomic island genes are often involved in specific life-
styles [5,6], e.g. symbiosis or pathogenesis [7,8] and fre-
quently have the hallmarks of horizontally transferred
genetic material such as different GC content or codon
usage [9,10]. However, very little is known about the
dynamic processes that originate and maintain the large
genomic variability found in closely related prokaryotic
genomes.

Metagenomics provides a new way to look at the dynam-
ics and flexibility of prokaryotic genomes in nature [3,11-
13]. When a microbe is well represented in an environ-
ment, and a metagenomic database from the same or a
similar environment is available, it is possible to analyze
genome recruitment - the preservation of genomic
sequences in the natural environment. Using this
approach, several authors working in different kinds of
aquatic environments have found that some regions of
sequenced genomes are poorly or not at all represented in
the environment even when large stretches of the genome
are nearly 100% similar to fragments from the metagen-
ome [3,11-14]. In accordance with previous studies men-
tioned above, these genome stretches have been identified
as genomic islands. However, this nomenclature is some-
what misleading. Although these islands often do corre-
spond to classical genomic islands, identified through
comparison of closely related prokaryotic genomes, there
is not always a complete overlap [3,15]. Thus, although
the latter often lack representation in the metagenome
this is not always the case and vice-versa. In order to dis-
tinguish between these subtypes, we propose the term
metagenomic island (MGI) to describe genome stretches
identified by tiling of metagenomic reads against a refer-
ence strain genome.

To understand the mechanisms that generate the variabil-
ity reflected by MGIs and their potential adaptive value
[5,6], the gene content of metagenomic islands in differ-
ent prokaryotic species needs to be explored. Microbial
communities of extreme environments are especially
appealing for this type of analysis. As a rule of thumb,
these systems support low microbial diversity to the point
of being dominated by few types of organisms with tightly
defined population structure [16]. A typical example of
extremely simplified microbial communities can be
found in terminal pans of solar salterns where microor-
ganisms endure saturated concentrations of NaCl. Known
as crystallizers, these pans support very specialized hyper-
halophilic archaea and bacteria [16,17]. The latter have
been shown to be represented almost exclusively by S.
ruber [17,18]. This hyperhalophilic member of CFB group
is repeatedly reported in significant numbers from distinct
hypersaline habitats around the world [18]. Comparative
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analysis of available 16S rRNA gene sequences indicated
that S. ruber strains genetically differ and can be classified
into at least two distinct phylotypes [18]. Here, we report
for the first time the delimitation and a detailed descrip-
tion of S. ruber MGIs as seen by comparing type strain
DSM 13855 genome with the metagenome of a solar salt-
ern crystallizer. The results of this study display similari-
ties with previously described metagenomic islands of
another crystallizer species - the archaeon Haloquadratum
walsbyi DSM 16790 as well as with MGIs of marine bacte-
ria.

Results

Analysis of environmental genomic libraries

The metagenomic library used in this study was generated
from environmental DNA obtained from crystallizer
ponds of Chula Vista salterns, near San Diego, California
on a GS20 sequencing platform. In total, 618127 reads
were analyzed. The average read length was 100 bp. Using
E>1e-5 BLASTX identity thresholds against the nr database
we were able to phylogenetically assign approximately
10% of obtained reads. Several haloarchaeal species were
found to be abundant and represented over 80% of
assigned dataset. These were H. walsbyi (23% of reads),
Haloarcula marismortui (23% of reads), Natronomonas
pharaonis (20% of reads) and Halorubrum lacusprofundi
(22% of reads). Bacteria were represented almost exclu-
sively by S. ruber (12% of reads). The second set of
metagenomic sequences (2974 sequences) was available
from Legault et al. (2006) [11]. These authors used Sanger
sequencing to end sequence a 2000 clone fosmid library
constructed from samples of crystallizer brine of salterns
in Santa Pola, Spain. The simple microbial community
encountered in previous studies carried out here was com-
posed of H. walsbyi (>80% of cells) and S. ruber (up to
20% of cells) [17].

Metagenomic reads of both datasets were tiled against
available genomes in genome recruitment analysis using
MUMmer. As expected, marine organisms and moderate
halophiles did not recruit in metagenomes. In compari-
sons involving the Chula Vista salterns metagenome, sig-
nificant recruitment was observed with genomic
sequences of S. ruber and H. walsbyi. In consistence with
results obtained by BLASTX analysis, over 10% of the
dataset could be mapped to genome of S. ruber DSM
13855. The latter recruited a total of 90477 fragments
(14.6% of entire dataset) out of which 17120 fragments
were at 100% sequence identity. The genome of H. walsbyi
DSM 16790 recruited a total of 56985 fragments out of
which 11764 fragments gave hits at 100% sequence iden-
tity. This data confirmed the predominant role of these
organisms in such hypersaline environments. The recruit-
ment of remaining halophilic microorganism genomes in
San Diego salterns was mostly moderate. Genomic
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sequence of Halobacterium salinarum R1, found scarce in
BLASTX analysis, recruited 26135 reads with no recruit-
ment observed above 97.5% sequence identity. Recruit-
ment of presumably abundant species was only moderate.
Genomic sequence of H. marismortui ATCC 43049
recruited 32416 fragments (1070 at 100% sequence iden-
tity), H. lacusprofundi ATCC 49239 recruited 41487 frag-
ments (1646 at 100% sequence identity) and N. pharaonis
DSM 2160 recruited 34933 fragments (1334 at 100%
sequence identity). Together with BLASTX results these
findings indicate that the sequenced members of the
above genera are not well represented in this specific envi-
ronment although some unknown relatives must be
present. Not surprisingly, the above genomes originate
from hypersaline environments other than salterns [19]
namely the Dead Sea (H. marismortui), Antarctic Deep
Lake (H. lacusprofundi), and highly saline soda lakes in
Egypt and Kenya (N. pharaonis), while genomic sequences
of highly recruiting H. walsbyi DSM 16790 and S. ruber
DSM 13855 were determined from strains originally iso-
lated from Spanish Mediterranean salterns [20-23].

Next, the same set of genomes was compared to Santa
Pola dataset. No recruitment was observed with S. ruber
DSM 13855 since the biomass collection procedure
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applied (filtration onto 2 pm pore size filters, see Meth-
ods) prevented collection of significant amounts of this
microbe. In fact, genomic recruitment was observed only
with H. walsbyi DSM 16790 as described and discussed
before [11,12]. It is worth mentioning that the observed
island pattern was very similar with both datasets (Addi-
tional file 1). These results indicate that metagenomic
islands are a feature conserved within species regardless of
geographic origin of the genomic sequence or metagen-
omic dataset. Furthermore, the phenomenon seems to be
unaffected by the sequencing effort (within the ranges
described here) or sequencing technique used.

Genomic plasticity in Salinibacter ruber DSM 13855
When the sequencing reads were tiled against the genome
of S. ruber DSM 13855 three MGIs where very few reads
matched regions in the genome could be detected (Figure
1). When genomic recruitment analysis was examined
using BLAST instead of MUMmer, the pattern observed
was almost identical to that mentioned above (Additional
file 2). This indicates that the observation is not biased by
the methodology used.

Metagenomic islands showed several features typical of
highly unstable genomic regions. They were characterized
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Salinibacter ruber DSM 13855 genome and metagenomic islands. (a) GC-content of Salinibacter ruber genome plotted
with a sliding window of 1000 nucleotides. Location of integrases and IS transposases along the genome are indicated. (b) Cov-
erage of San Diego saltern crystallizer metagenomic reads. Individual metagenomic reads were aligned to the sequenced strain
genome and the alignment-sequence conservation visualized in the form of percent identity plot. Each dot on the graph repre-
sents an individual sequence read aligned along its homologous region in Salinibacter ruber DSM 13855 genome. Y axis reflects
its nucleotide percent identity to syntenic region. The regions lacking representation in the metagenome are boxed and

described in the text as metagenomic islands.
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by atypical GC content (56% versus 66%), presence of
pseudogenes and high numbers of short hypothetical pro-
teins. The islands also contained three out of four phage
integrases found in the S. ruber genome. Another notable
feature of MGIs was a low average coding-region density
of 54.0%, 64.7% and 45.4%, respectively, compared to
84.8% for the whole S. ruber genome. Furthermore, the
majority of genes in the islands (54%, 66% and 88%,
respectively) were most similar to species only distantly
related to S. ruber. Finally, compared to the S. ruber
genome and the San Diego metagenome, metagenomic
islands were enriched in genes involved in carbohydrate

40

http://www.biomedcentral.com/1471-2164/10/570

transport and metabolism, cell wall/membrane/envelope
biogenesis, recombination, replication and repair (Figure
2).

MGI 1 (Figure 3) is 109 kbp long and is located between
nucleotides 249037 and 358080 (ORF SRU_0178-
SRU_0266) in the S. ruber genome. The observed corre-
spondence between GC content and number of metagen-
omic hits is especially evident in MGI 1 in which a region
of metagenomic hits is found corresponding with return
to normal GC values. The MGI 1 genes appear to code for
exopolysaccharide biosynthesis. These include two gene

San Diego solar salterns metagenome
35 - M salinibacter ruber DSM 13855 genome
W salinibacter ruber DSM 13855 metagenomic islands

30

25 -

20 -

15 I

% of dataset

Figure 2

Distribution of Clusters of Orthologous Groups (COGs) in Salinibacter ruber DSM 13855 metagenomic islands,
genome of Salinibacter ruber DSM 13855 and San Diego crystallizer metagenome.
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Salinibacter ruber DSM 13855 metagenomic island | and San Diego crystallizer metagenome. GC-content of the
island is plotted with a sliding window of 1000 nucleotides. Location of metagenomic island | on S. ruber DSM 13855 genome is
indicated by nucleotide position number at the beginning and the end. ORF names are designated near each box.

clusters annotated as colanic acid biosynthesis proteins
(SRU_0201; SRU_0224), their respective glycosyl trans-
ferases (SRU_0199, SRU_0254 and SRU_0266) and
acetyltransferase (SRU_0212). Colanic acid is a well
known polysaccharide found in some Escherichia coli
strains. There is evidence showing that this polysaccharide
is recognized and degraded by some E. coli bacteriophages
in their life-cycle [24]. Other genes found in MGI 1
include remnants of complete exopolysaccharide operons
such as genes involved in biosynthesis of alginate
(SRU_0258) and pseudogenes involved in biosynthesis of
proteophosphoglycan (SRU_0231, SRU_0265).

MGI 2 (Figure 4) is 70 kbp long and is located between
nucleotides 775936 and 845933 (ORF SRU_0592-

SRU_0647) of the S. ruber genome. The genes of this
island are organized in a tight cluster preceded by a phage
integrase. Several genes of this region have been found in
O-polysaccharide gene clusters of pathogenic Gram nega-
tive bacteria [25]. Such are two genes involved in synthesis
of sialic acid (SRU_0605, SRU_0608), a sugar known to
inhibit phage adsorption [26]; a perosamine synthetase
gene (SRU_0601), a gene that is found in perosamine
(4,6-dideoxy-D-mannose) containing repeat unit polysac-
charides [25]; and a formyltransferase gene (SRU_0603),
predicted to be involved in 4-formamido-4,6, dideoxy-
mannose synthesis [25], another putative component of
O-polysaccharide repeated units. This region also con-
tains genes annotated as involved in colanic acid synthe-
sis, five epimerases as well as glycosyl transferase genes.
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Salinibacter ruber DSM 13855 metagenomic island 2 and San Diego crystallizer metagenome. GC-content of the
island is plotted with a sliding window of 1000 nucleotides. Location of metagenomic island 2 on S. ruber DSM 13855 genome is

indicated by nucleotide position number at the beginning and

the end. ORF names are designated near each box.

The latter are required for sequential transfer of nucleotide
sugar precursors to form an oligosaccharide on a carrier
lipid [25]. The region also contains genes involved in
extracellular polysaccharide assembly, unit translocation
across the membrane and subsequent polymerization.
Two ORFs were identified as putatively involved in
polysaccharide export. SRU_0592 is located at the very
beginning of MGI 2 and contains three conserved wza
domains, required for capsular polysaccharide transloca-
tion through the outer membrane in other Gram nega-
tives [27], while SRU_0598 and SRU_0606 are ABC
transporters. Furthermore, SRU_0594 shows features typ-
ical to that of a chain length determinant protein Wzz. It
contains two transmembrane segments, located in the
amino and carboxyl ends and a large periplasmic domain
[28]. We were able to affiliate ORF SRU_0611 with O-
chain polymerase on the bases of several notable features
shared by this heterogeneous group of enzymes: domain
similarity, high hydrophobicity of the gene product, pro-
tein topology (11 transmembrane segments) and pres-
ence of a characteristic cytoplasmic loop of approximately
30 amino acid residues [25]. However, we could not find
the O-polysaccharide ligase Waal. that is in some species
required for connecting the O-chain to the lipopolysac-

charide core. In fact, the essential genes required to syn-
thesize the core of the Gram negative lipopolysaccharide
(i.e. COGO0763, COG1043, COG1044, COG1663,
COGO0774) could not be found in this genome by com-
parison with other sequenced Bacteroidetes (where the
genes coding for lipid A and structural polysaccharides are
present) or by KEGG Pathway analysis, even under very
permissive similarity thresholds. This indicates that the
structure of the cell wall in S. ruber may be different from
that in Bacteroides and Porphyromonas, that are close phyl-
ogenetic relatives. It is, therefore, very interesting that the
organisation and composition of genes in MGI2 shares a
number of similarities with O-polysaccharide gene clus-
ters of pathogenic Gram negative bacteria [25]. The
absence of core LPS genes would indicate that these exter-
nal polysaccharides might be anchored by a non-canoni-
cal structure.

It is worth mentioning that the MGI 2 genes are preceded
by rfuBACD - the genes involved in biosynthesis of dTDP-
L-thamnose, another component of O-polysaccharide
repeat unit [25] and further upstream (cca. nucleotide
730000) by large clusters (mur, fts) involved in peptidog-
lycan synthesis. Due to the region hypervariability we
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hypothesize that the genes constituting MGI 2 are lineage
dependent and perhaps unique to DSM 13855. In con-
trast to hypervariable MGI 2, the upstream peptidoglycan
synthesis genes are well preserved in the metagenome and
thus perhaps in all lineages of S. ruber. Although we could
not find evidence of genes involved in the synthesis of the
core lipopolysaccharide, the similarities shared between
MGI 2 of S. ruber and O-polysaccharide gene clusters of
other Gram negative bacteria indicate that MGI 2 genes
could be involved in biosynthesis of extracellular polysac-
charide component of the cell wall. We further hypothe-
size that this polysaccharide could be exposed on the
outer surface of S. ruber cell wall.

MGI 3 (Figure 5) is located between nucleotides 1360489
and 1403241 (42.8 kbp) and includes ORFs SRU_1087 to
SRU_1112. The island starts with a phage integrase and
contains a mix of DNA related enzymes. The restriction-
modification enzymes type 1 are represented by
SRU_1098 (HindVIIp), SRU_1099 and SRU_1102 (Hsd
family type). These genes are preceded by an ArdA
antirestriction protein (SRU_1096). Studies suggest that
ArdA proteins and type I restriction modification systems,
may be involved in the control of gene transfer among
bacterial genomes [29]. The island ends with a MazG pro-
tein, a nucleotide triphosphate pyrophosphohydrolase of
unknown function which is highly conserved among bac-
teria [30]. Given the vast amount of presumably noncod-
ing DNA within the MGI 3, we have searched for

http://www.biomedcentral.com/1471-2164/10/570

pseudogenes - sequences that showed similarity to a
sequence classified as a gene in another species (E < le-
20) but in which frameshift and substitution mutations to
stop codons have started to accumulate [31]. However,
only four genes were identified using this criterion, three
were classified as transposases and one as the catalytic
subunit of phage integrases. Given the available data, we
conclude that this island might contain remnants of a lys-
ogenic phage inserted in S. ruber genome and absent in
most cells in the natural environment.

Convergence with MGIs of other microorganisms
Comparative analysis of hypervariable regions detected in
this analysis was performed using genomes available from
GenBank ftp://ftp.ncbi.nih.gov/genomes/ and metagen-
omic datasets available from this study and Camera data-
base http://camera.calit?.net/index.php. In this analysis
the metagenomic islands of S. ruber DSM 13855 showed
several convergences with metagenomic islands of other
microbes studied, in particular high numbers of hypothet-
ical and conserved hypothetical proteins, transposases,
integrases and transport-related proteins.

A metagenomic island enriched in products involved in
restriction/modification and DNA repair was a feature
shared by MGls of S. ruber, H. walsbyi [12], Prochlorococcus
marinus [3], Candidatus Accumulibacter phosphatis [32]
and Ferroplasma acidarmanus [33]. These MGIs are often
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Salinibacter ruber DSM 13855 metagenomic island 3 and San Diego crystallizer metagenome. GC-content of the
island is plotted with a sliding window of 1000 nucleotides. Location of metagenomic island 3 on S. ruber DSM 13855 genome is
indicated by nucleotide position number at the beginning and the end. ORF names are designated near each box.
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associated with phage-type integrase genes and might
have developed as a result of prophage insertion.

The presence of metagenomic islands putatively involved
in biosynthesis of polysaccharide component of cell wall
was a feature shared by MGIs of S. ruber and most Gram
negative aquatic microbes such as P. marinus [3], Candida-
tus Pelagibacter ubique [4], Synechococcus sp. WH8102
and Synechococcus sp.CC9311 [34]. In addition, presence
of variable genes involved in extracellular polysaccharide
biosynthesis was reported from Candidatus Accumuli-
bacter phosphatis [32] and Ferroplasma acidarmanus [33].
Interestingly, recruitment studies of H. walsbyi [12,14], an
archaeon with glycoprotein S-layer based cell wall,
showed the presence of at least two MGIs putatively
involved in the synthesis of the cell wall.

Discussion

One of the most effective ways to study genomic plasticity
in prokaryotes is to compare metagenomic data to the
genomes of strains present in the environment studied
[3,11-13,32-34]. In this study, this approach was applied
to an extreme hypersaline environment, the brine of a
solar saltern. Good recruitment properties were only
observed when genomic sequences of strains isolated
from a similar environment were compared to the
metagenome. In this particular case the strains recruiting
efficiently were isolated from other geographically solar
salterns. In all cases, representative genomes possessed a
typical recruiting pattern with metagenomic islands as
their most remarkable feature.

It seems to be a general phenomenon of many, if not
most, bacteria that a large part of the gene cluster coding
for the polysaccharide component of cell wall is extremely
variable. In clinical isolates, this phenomenon has been
known for many years, more than 180 lipopolysaccharide
serotypes have been described in Escherichia coli and more
than 50 in Salmonella enterica [25]. As mentioned above,
the presence of genes involved in the synthesis of the
polysaccharide component of cell wall was a feature
shared by variable regions of S. ruber, P. marinus, Candida-
tus Pelagibacter ubique and Candidatus Accumulibacter
phosphatis. In Candidatus Accumulibacter phosphatis
sludge bioreactors the variation in dominant lineages was
noted not only in the exopolysaccharide synthesis cluster
genes but also in clustered regularly interspaced short pal-
indromic repeat (CRISPR) elements [35]. These elements,
regularly interspaced by foreign DNA sequences, can pro-
vide immunity to the phages from which they were
derived [36]. However, this strategy appears less wide-
spread in brines since we were not able to identify any
CRISPR in genome of S. ruber while H. walsbyi genome
contained only one such element. Likewise, these ele-
ments were scarce in the metagenomes studied.

http://www.biomedcentral.com/1471-2164/10/570

The extreme environment of solar saltern crystallizer sup-
ports dense yet simple microbial communities composed
of highly related strains of dominant species [16]. Such
environments do not host phagotrophic protists, remain
free from grazing pressure and are natural targets for
phage predation [37,38]. We hypothesise that cell wall
polysaccharide variability supplied by metagenomic
islands could play a role in defence against this predation.
In the past, phages have been shown to target lipopolysac-
charide through their host recognition machineries [39]
or strain-specific polysaccharases [24]. In the specific case
of S. ruber, several components of MGI 1 and particularly
MGI 2 indicate this type of strategy. They include genes
involved in biosynthesis of colanic acid, shown to be
hydrolysed by phage induced enzymes in Escherichia coli
[24], and sialic acid biosynthesis genes, reported to be a
part of phage receptors [39]. In densely populated aquatic
habitats such genes will be subject to arm races (also
known as Red Queen strategies), and be required to be as
plastic as their bacteriophage counterparts to maintain a
reasonable population density and avoid catastrophic
crashes of the population due to phage lysis. This hypoth-
esis is supported by results showing high expression of
metagenomic island genes suggesting that they encode
proteins central to cellular processes in specific genotypes
[13]. In order to achieve the desired level of genome plas-
ticity as least two mechanisms could be employed.
Metagenomic islands are transposase rich areas in which
genes often share homology with multiple phylogeneti-
cally diverse microbes and thus might act as lateral gene
transfer hot spots in order to achieve the observed level of
genome plasticity. Additional diversification through lat-
eral gene transfer and recombination could be achieved
through modular organisation of cell wall polysaccharide
biosynthesis genes. This was observed in genome of S.
ruber where a lineage-specific set of genes, located within
the metagenomic island, is preceded by rfb gene cluster
involved in rhamnose biosynthesis and further upstream
by mur and fts clusters involved in peptidoglycan synthe-
sis. This phenomenon has been noted in at least one
another species. In Streptococcus thermophilus, a Gram pos-
itive species and therefore devoid of lipopolysaccharide,
the exocellular polysaccharide biosynthesis cluster is com-
posed of core gene cluster, represented by deoD-epsABCD,
and followed by a variable region [40]. Interestingly, sim-
ilar to crystallizer brine, the natural environment of Strep-
tococcus thermophilus also supports dense microbial
communities with low microbial diversity that is devoid
of protists grazing.

Conclusion

Tiling the genomic sequence of S. ruber DSM 13855
against reads from the San Diego saltern crystallizer
metagenome has shown that the conserved backbone of
this genome is well represented in the metagenomic data.
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This result is quite remarkable because this isolate comes
from a Mediterranean solar saltern. However, like other
microbial genomes when compared to a metagenome in
which they are well-represented the tiling of the genome
leaves empty regions of low coverage or metagenomic
islands.

Metagenomic islands share several features with classical
genomic islands described by comparing genomes of
closely related strains such as atypical GC content, high
frequency of phage/IS elements and hypothetical genes.
However, their gene content appears largely involved in
biosynthesis of cell wall polysaccharides. This phenome-
non appears to be general in this and other marine
microbes studied and might reflect a global strategy of
bacteria to escape phage predation [14].

Methods

Genomic libraries and sequencing

The environmental genomic sequences collected from
Santa Pola solar salterns (Alicante, Spain) were obtained
in a previous study as described in [11]. The DNA was
extracted from biomass retained on a 2 um pore size filter.
A 2000 clone fosmid library was end sequenced resulting
in 2947 available sequences.

The environmental genomic sequences collected from
Chula Vista solar salterns (Chula Vista, CA), were
obtained from biomass retained on a 0.2 pm pore size
tangential flow filter and were sequenced by pyrosequenc-
ing on a GS20 sequencing platform (454 Life Sciences, CT,
USA). A total of 618127 reads of average length of 100 bp
were obtained.

Sequence analysis

Raw sequence screening and analysis

The raw metagenomic sequence obtained from Chula
Vista solar salterns was screened to remove low quality
and short sequences. To this aim the software The Hair-
dresser was developed (see Availability and requirements
section below). To this aim the software The Hairdresser
was developed (see Availability and requirements section
below). Using the multifasta metagenomic sequence file
as input variable, the software enables removal of
sequences of desired length from metagenomic sequence
file using the ShortCut function, removal of desired subset
of the metagenomic sequence file using the ClipOut func-
tion, renames sequences using the ReStyle function and
calculates thermostability index of the metagenomic
sequence file entries using the HotComb function.

Recruitment analysis

A total of 2947 sequences available from Santa Pola solar
salterns and 618127 reads available from San Diego solar
salterns were aligned against reference genomes by using

http://www.biomedcentral.com/1471-2164/10/570

the MUMmer program version 3.19 [41]. Specifically, to
calculate alignments 'PROmer' program with the 'max-
match' option was used. The percent identity plots were
generated using 'mummerplot'.

For BLAST-based recruitment analysis, the genome was
split into fragments of 50 nucleotides in length and com-
pared to the metagenome using basic local alignment
search tool BLASTN (DNA vs. protein) [42]. The plot was
generated by counting the number of hits to each frag-
ment versus position on the chromosome.

Annotation of islands

Island genes were re-annotated to ensure no open reading
frame (ORF) was missed. Protein coded genes were pre-
dicted using the annotation package GLIMMER [43], and
were further manually curated. Spacers were subsequently
searched against the non-redundant database using
BLAST [42]. ORFs were compared to known proteins in
the non-redundant database using the BLASTX program
(translated DNA vs. protein). All hits with E-value greater
than 10-5 were considered non-significant.

Sequence analysis

Additional BLASTN, BLASTP and PSI-BLAST searches were
performed when needed. All hits with E-value greater than
10-5 were considered non-significant. COG classification
of S. ruber DSM 13855 genomic sequences was obtained
from GenBank. COG classification of metagenomic
sequence reads was performed by conducting rps-blast
search against the COG database. Significant sequences
were distributed in COG categories. KEGG pathway anal-
ysis was available from http://www.genome.jp/kegg/path
way.html. GC content was identified using the 'geecee’
program from EMBOSS package [44]. GC plots were gen-
erated using 'insilico’ web server http://insilico.ehu.es.
Protein topology predictions were performed using
SOSUI, PredictProtein and HMMTOP available from
Expasy proteomics server http://www.expasy.ch/. Con-
served blocks in groups of unaligned protein sequences
were identified by using the Block Maker program http://
blocks.fhcrc.org/blockmkr/make_blocks.html.  CRISPR
analysis was performed using CRISPR finder available
from http://crispr.u-psud.fr/crispr/ CRISPRdata
base.php?page=own. Genes were identified as pseudo-
genes when they showed similarity to a sequence classi-
fied as a gene in another species (E < 1e-20) but in which
frameshift and substitution mutations to stop codons
have started to accumulate [30].

Accession numbers

The sequence of the complete genome of Haloquadratum
walsbyi  DSM 16790 was deposited as [Gen-
Bank:AM180088.1, GenBank:AM180089.1], the
sequence of the complete genome of Salinibacter ruber
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DSM 13855 was deposited as [GenBank:NC 007677,
GenBank:NC_007678], the metagenomic sequences of
Santa Pola salterns were deposited as [Gen-
Bank:DU826964-DU824018] and the metagenomic
sequences of San Diego solar salterns were available

through http://scums.sdsu.edu/.

Availability and requirements

The Hairdresser software requires the Microsoft Windows
Vista or XP operating systems. The program was written
with Borland Delphi 7 Enterprise and the executable file,
source code and example files are available as Additional
File 3 and at the following open-source repository: http://
hairdresser.sourceforge.net/.
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Additional file 1

Haloquadratum walsbyi DSM 16790 genome and metagenomic
islands. (a) GC-content of Haloquadratum walsbyi genome plotted
with a sliding window of 1000 nucleotides. Location of integrases and
IS transposases along the genome are indicated. (b) Coverage of Santa
Pola saltern crystallizer metagenomic reads. (c) Coverage of San Diego
saltern crystallizer metagenomic reads Individual metagenomic reads
were aligned to the sequenced strain genome and the alignment-sequence
conservation visualized in the form of percent identity plot. Each dot on
the graph represents an individual sequence read aligned along its homol-
ogous region in Haloquadratum walsbyi DSM 16790 genome. Y axis
reflects its nucleotide percent identity to syntenic region. The regions lack-
ing representation in the metagenome are boxed and described in the text
as metagenomic islands.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-570-S1.TIFF]

Additional file 2

Salinibacter ruber DSM 13855 genome and metagenomic islands.
(a) Coverage of San Diego saltern crystallizer metagenomic reads as
revealed by MUMmer analysis. Y axis reflects its nucleotide percent iden-
tity to syntenic region. (b) Coverage of Santa Pola saltern crystallizer
metagenomic reads as revealed by BLAST analysis. Y axis reflects number
of hits to syntenic region. The regions lacking representation in the
metagenome are boxed and described in the text as metagenomic islands.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-570-S2.TIFF]
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Additional file 3

The Hairdresser software. Executable file, source code and example files
of The Hairdresser software.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-570-S3.RAR]
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