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Abstract

Background: Premature termination codons (PTCs) cause mRNA degradation or a truncated
protein and thereby contribute to the transcriptome and proteome divergence between species.
Here we present the first genome-wide study of PTCs in the chimpanzee. By comparing the human
and chimpanzee genome sequences we identify and characterize genes with PTCs, in order to
understand the contribution of these mutations to the transcriptome diversity between the
species.

Results: We have studied a total of 13,487 human-chimpanzee gene pairs and found that ~8% were
affected by PTCs in the chimpanzee. A majority (764/1,109) of PTCs were caused by insertions or
deletions and the remaining part was caused by substitutions. The distribution of PTC genes varied
between chromosomes, with Y having the highest proportion. Furthermore, the density of PTC
genes varied on a megabasepair scale within chromosomes and we found the density to be
correlated both with indel divergence and proximity to the telomere. Within genes, PTCs were
more common close to the 5' and 3' ends of the amino acid sequence. Gene Ontology classification
revealed that olfactory receptor genes were over represented among the PTC genes.

Conclusion: Our results showed that the density of PTC genes fluctuated across the genome
depending on the local genomic context. PTCs were preferentially located in the terminal parts of
the transcript, which generally have a lower frequency of functional domains, indicating that
selection was operating against PTCs at sites central to protein function. The enrichment of GO
terms associated with olfaction suggests that PTCs may have influenced the difference in the
repertoire of olfactory genes between humans and chimpanzees. In summary, 8% of the
chimpanzee genes were affected by PTCs and this type of variation is likely to have an important
effect on the transcript and proteomic divergence between humans and chimpanzees.

Background intrigued scientists. Since humans and chimpanzees
The genetic basis of the observed phenotypic divergence  diverged 5-7 million years ago [1,2] their genomes have
between humans and chimpanzees has since long acquired a multitude of lineage specific mutations,
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including nucleotide substitutions, insertions and dele-
tions (indels), duplications and inversions. The sequence
divergence caused by substitutions and indels has been
estimated to 1.2-1.5% [3-5] and 3-7% [3,4,6], respec-
tively. Several hypotheses have been proposed to recon-
cile the observed overall low sequence divergence with the
large phenotypic differences between humans and chim-
panzees. These hypotheses include sequence divergence
of protein coding genes [7], gain and loss of genes [8-11],
differential gene expression [12-14] and divergent pat-
terns of alternative splicing[15]. In this study we have
focused on the role of nonsense mutations and frame shift
indels that cause premature termination codons (PTCs) in
chimpanzee protein coding genes. The dramatic effect of
this type of mutations has been described in a number of
human genes [16-18].

PTCs have the capability of changing the pattern of alter-
native splicing and expressed protein isoforms, since
mRNAs affected by PTCs will either be degraded by non-
sense-mediated decay (NMD) or translated into truncated
protein sequences [19,20]. The coupling of PTCs and
NMD has previously been suggested as a novel mecha-
nism to regulate gene expression [21-24].

Although the occurrence of genes with premature stop
codons in human genes has been described on a genome
wide scale [25,26] there is no parallel study in the chim-
panzee. Two previous studies [4,5] have examined PTCs
in chimpanzee genes using the high quality genome
sequence of chromosome 21 (previously referred to as
chromosome 22 in the chimpanzee [27]). In the initial
publication of the chimpanzee genome sequence the
identification of PTCs was hampered by the low quality of
the sequence [3]. By using the current (6x) chimpanzee
assembly and stringent quality criteria we have overcome
this problem and here we report the first genome wide
study of PTCs in the chimpanzee. Chimpanzee specific
PTCs were identified in 1,109 genes, which were further
studied with respect to their genome location and context,
biological function and the position of the PTC within
genes.

Results and discussion

Detection of premature termination codons in
chimpanzee protein-coding genes

In an attempt to identify chimpanzee genes with PTCs we
have analyzed pairs of human-chimpanzee genes. Anno-
tations of all human protein coding genes were collected
from the Ensemble database [28], resulting in a total of
21,021 genes and 45,455 associated transcripts. Chim-
panzee genes and transcripts were inferred from human
annotations and human exon coordinates were translated
to the chimpanzee genome using the liftOver tool (avail-
able from the UCSC Genome Browser [28]). Translation
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between the genomes depends on a pairwise alignment
(also available from the UCSC Genome Browser [28]) and
we required all chimpanzee exons in a transcript to have
the same orientation and be located on the same chromo-
some after the translation. Failure to translate coordinates
accurately may be due to e.g. lack of sequence in a region
or problems in aligning regions with large indels or lots of
repeats. Both human and chimpanzee exon sequences
were concatenated into complete coding sequences, trans-
lated into amino acid sequences and then screened for
PTCs in the chimpanzee. Several filtering steps were
employed to ensure that the detected PTCs were not a
result of incorrect gene predictions or low quality of the
chimpanzee assembly (see Figure 1 and the Methods sec-
tion for details). Gene predictions were required to have
correct start and stop codons in human and a correct start
codon in chimpanzee. To account for the lower quality of
the chimpanzee assembly we required the region sur-
rounding a PTC to have a quality score > 40, correspond-
ing to less then 1 sequencing error in 10,000 bp.

After filtering, a total of 13,487 genes and 26,779 associ-
ated transcripts remained. The genes were divided into
two datasets: (i) PTC genes where one or several of the
associated chimpanzee transcripts were affected by PTCs,
and (ii) non-PTC genes where none of the annotated tran-
scripts were affected by PTCs in the chimpanzee. In the
present study all analyses will be based on genes instead
of transcripts, thereby avoiding the bias introduced by dif-
ferent genes having different numbers of transcripts.

Approximately 8% (1,109 of 13,487) of the chimpanzee
genes were affected by PTCs, indicating that the genes
were either pseudo genes in the chimpanzee (in cases
where all transcripts had PTCs) or that the genes had a dif-
ferent transcriptional pattern as compared to the corre-
sponding human genes (in cases where the genes had
both functional transcripts and transcripts with PTCs).

Furthermore, we determined the type of mutational event
leading to the PTC. Indels were found to be the causative
mutation in approximately 70% of the PTC genes (n =
764) and in the remaining 30% (n = 345) of the genes the
PTC was caused by a substitution. The exact location of
the premature termination codons and the type of muta-
tional event is detailed in the Additional file 1 (Table S1).

Characteristics of genes with PTCs in the chimpanzee

The density of PTC genes varies both between and within
chromosomes

An estimated 8% of all chimpanzee genes were affected by
PTCs. This figure is higher then the 5% we reported in a
previous study of chromosome 21 [4] and the discrepancy
is likely to be due to differences in density of PTC genes
between chromosomes (Figure 2). In the present study,
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Outline of the filtering process. To obtain reliable predictions of PTCs in chimpanzee genes we applied a series of different
filtering steps to remove genes where the PTCs were caused by unreliable gene annotations, lack of sequence or low quality of
the chimpanzee assembly. A majority of the removed genes were filtered out because they failed to be correctly translated

between the genomes (i.e. the liftOver step).

the proportion of PTC genes varied from 5 to 16% for the
autosomes, and a significant difference between chromo-
somes was observed (Wilcoxon test, p < 6*108). The Y
chromosome had a strikingly high percentage (> 40%) of
PTC genes. The Y-chromosome is known to have an
increased proportion of inactivating mutations in the
chimpanzee lineage and a large number of pseudo genes
[29,30], thereby explaining the increased fraction of PTC
genes observed in this study. The proportion of PTC genes
was next estimated for 1 Mbp-windows across all chromo-
somes and a significant variation between different chro-
mosomal regions was observed (Wilcoxon test, p < 3*10-
16). This suggests that the large-scale chromosomal struc-
ture influences the density of PTC genes, although the
cause for this effect is unclear.

The proportion of PTC genes was correlated to both indel divergence
and proximity to the telomere

Having noticed that the proportion of PTC genes varied
both between chromosomes and between 1 Mb windows
from the same chromosome, we sought to understand the
underlying reasons. The density of PTC genes in a particu-
lar region may be affected by several genomic properties
such as GC-content, presence of repeats, CpG-islands, seg-
mental duplications, substitutions, indel divergence or
the distance to the telomere or centromere. To study the
relationship between the density of PTC genes and these
genomic properties, we divided the chromosomes into
non-overlapping 1 Mbp windows and applied a regres-
sion model, evaluating the relationship between the frac-
tion of genes in the two datasets (PTC and non-PTC
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Figure 2

Chromosomal distribution of PTC genes. The x-axis denotes the chimpanzee chromosomes and the y-axis represents
the % of genes that were affected by PTCs on a specific chromosome.

genes) and each genomic feature. Occurrence of PTC
genes was found to be significantly associated with both
indel divergence and distance to the telomere. The other
genomic properties showed no correlation with the occur-
rence of PTC genes, or a similar correlation to non-PTC
genes. The results indicate that PTC genes were in most
respects similar to non-PTC genes.

The correlation with indel divergence (calculated as the %
of bp located in indels) was higher for the PTC genes
(Table 1) as compared to the non-PTC genes. The
observed association was significant but rather weak, pos-
sibly as a result of the genomic alignment obtained from
UCSC [28]. The indel divergence estimated from the
alignment was only 0.64%, which was considerably lower
than the 3-7% previously reported [3,4,6]. This is
explained by the alignment parameters having been opti-
mized not to allow for gaps longer then 100 bp. Although
the majority of indels are shorter than 100 bp [3], longer
indels contribute more to the indel divergence since they
include more base pairs. Thus, given that indels > 100 bps
were not taken into account, the correlation seen between
PTC genes and indel divergence was most likely underes-
timated. A correlation between PTC genes and indel diver-
gence was further supported by the fact that
approximately 70% of the PTCs were actually caused by
indel events.

In addition to indel divergence, the proportion of PTC
genes in a region increased with proximity to the telomere
(Table 1). The closer to the telomere, the more likely the
gene was to be affected by a PTC. Telomeres are known to
have an increased indel divergence [3] and therefore we
combined these two variables in a multiple regression
model (Table 1). The combined model has a higher R-
value then the previous regression analyses, suggesting
that the two variables should be considered together.

PTCs were preferentially located in distal parts of the gene and in
regions with less functional domains

To examine the relative location of PTCs within affected
genes, each gene was partitioned into windows covering
5% of the length, and the proportion of genes with PTCs
in a specific region was estimated. The results showed a
higher frequency of PTCs in the distal parts of the genes
than in the central region. When a PTC occurs early in the
transcript, the nucleotide sequence will most likely not be
translated into a protein but instead be subjected to NMD
[19,20]. On the other hand, when the PTC occurs late in
the transcript, translation it is likely to take place and
result in a truncated protein sequence. To further investi-
gate the consequences of PTCs we searched for a relation-
ship between the location of PTCs and functional
domains of the gene, using the Pfam database [31] to map
functional domains onto the PTC genes. All PTC genes

Table I: Summary of the regression analyses: predictor(s) of the density of PTC genes.

Predictor(s) of PTC gene density Adjusted R p-value
Distance to telomere 0.137 4¥10-15
Indel divergence (% bp in indels) 0.087 2¥10-6
Combined model (telomeric distance and indel divergence) 0.165 3*10-16
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were matched against the Pfam database [31] and the rel-
ative location of Pfam hits was recorded. A negative corre-
lation (r=-0.75, p-value < 0.0002) was found between the
location of PTCs and the location of Pfam matches (Figure
3), suggesting a stronger selection against PTC in func-
tional regions of genes. The results support the assump-
tion that PTCs may be tolerable as long as the termination
codon does not disrupt the structure of centrally located
functional domains in the protein.

Olfactory receptor genes were overrepresented in the PTC dataset
The biological functionality of genes in the two datasets
was assessed using Gene Ontology [32] classifications. All
three ontologies; biological process, cellular component
and molecular function were used for the classification
and the FatiGO tool [33] was used to test if any GO classes
were overrepresented in the PTC dataset compared to the
non-PTC dataset. We found that PTC genes were signifi-
cantly overrepresented in three GO classes: olfactory
receptor activity, sensory perception of smell and G-pro-
tein coupled receptor protein signaling pathway (see
Table 2 for details). These GO terms are to a large extent
overlapping, and 46 of the PTC genes were found in all
three GO classes (listed in Additional file 1, Table S2).

All PTC genes mapping to the GO terms olfactory receptor
activity and sensory perception of smell belong to the
olfactory receptor (OR) superfamily of genes. There are
almost one thousand OR genes known in human, with
~50% of them being pseudogenes [34,35]. The OR genes
belong to the G-protein coupled receptor (GPCR) hyper-
family, explaining the presence of G-protein coupled
receptor protein signaling pathway in the GO classifica-
tion. It is generally thought that the number of functional
OR genes have been reduced in the primate lineage as
compared to other mammals, and different selective
mechanisms have been proposed [35-38]. A recent study
[39] suggested that humans and chimpanzees have simi-
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lar numbers of OR genes and also comparable fractions of
pseudogenes. The repertoire of OR genes expressed has
been suggested to differ between species, allowing for spe-
cies-specific adaptations of odor perception [39].

Among the 46 PTC genes that were overrepresented in all
three GO categories (Table 2 and Table S2), all but two
have only a single annotated transcript. This implies that
these genes are pseudogenes in the chimpanzee, since all
known transcripts have been silenced. For the two genes
with several annotated transcripts, the effect may be differ-
ent. Most likely these genes were not completely switched
off but rather the range of available transcripts was altered.

The effect of PTCs on alternative splicing

A surprisingly high proportion of the genes in the study
were found to have PTCs, but not all affected genes repre-
sented pseudogenes. Approximately half of the genes in
the study have multiple annotated transcripts and the
same holds true for the PTC dataset. The majority of these
genes have at least one transcript unaffected by the PTC,
suggesting that most PTC mutations do not switch off the
gene, but rather a specific transcript. Furtermore, the
Ensembl prediction that ~50% of the genes have multiple
splice variants is likely to be an underestimate since recent
studies have shown that nearly all human multiexon
genes have multiple splice variants [40,41]. Thus it is rea-
sonable to assume that virtually none of the multiexon
genes with PTCs in chimpanzee were entirely silenced by
the mutation.

Depending on the location of the PTC, the affected mRNA
may either be translated into a truncated protein product
or become degraded by NMD [19,20]. The coupling of
PTCs and NMD has previously been proposed as a novel
mechanism for regulating gene expression [21-24]. By
selectively silencing transcripts, the coupled action of
PTCs and NMD may modulate gene expression and alter
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Figure 3

Location of PTCs and Pfam matches within PTC genes. The x-axis represents the relative position within the gene (0-
5% of the length and so on), the left y-axis shows the % of all PTC genes with a Pfam match at a specific position (solid line and
diamonds) and the right y-axis shows the % of all PTC genes with a PTC in the same interval (dashed line and dots).
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Table 2: Gene ontology classification of PTC genes.
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Ontology Overrepresented GO term in the PTC

dataset

Number of PTC genes in the GO category* Adjusted p-value

Molecular function
Biological process
Biological process

Olfactory receptor activity (GO:0004984)
Sensory perception of smell (GO:0007608)

G-protein coupled receptor protein signaling
pathway (GO:0007186)

46 1*10-6
46 3*107
82 2*%10-5

* Note that the GO terms overlap. The two groups olfactory receptor activity and sensory perception of smell are identical and these 46 genes are

in turn included in the group G-protein coupled receptor activity.

the repertoire of expressed isoforms, thereby providing for
species-specific patterns of alternative splicing.

Since there are no de novo annotations of chimpanzee
genes and transcripts, the present study is based solely on
human annotations [42]. It is possible that in some cases
where we predict a PTC in a chimpanzee gene, the chim-
panzee may instead have different gene structure and/or
different splice variants, thereby adding to the transcrip-
tional complexity. To study this in more detail it would be
necessary to perform large-scale sequencing of the chim-
panzee transcriptome.

Conclusion

We have performed a genome wide study of premature
termination codons (PTCs) in the chimpanzee to estimate
the frequency of such events and further characterize the
affected genes. We found that ~8% (1,109/13,487) of the
genes had at least one transcript affected by a PTC. Indels
rather than substitutions were the main cause of PTCs. We
observed both inter- and intra-chromosomal fluctuation
in the density of PTC genes and this variation was related
both to local variations in indel divergence and proximity
to the telomere. Within genes, PTCs occurred towards the
5'and 3' ends of the genes, thereby preserving functional
domains in the central part of the genes. This indicates
that selection against PTCs was stronger in the central and
more conserved functional parts of proteins.

Gene Ontology classification revealed that PTC genes
were overrepresented in the groups associated with olfac-
tion. This was especially intriguing since the repertoire of
olfactory receptors in primates has been extensively stud-
ied and it has been shown that many olfactory receptor
genes have become pseudo genes in the primate linage
[35-37,39]. Premature termination codons are most likely
a major factor in the pseudogenisation process.

Approximately half of the genes in this study had multiple
annotated transcripts and in most cases the PTC did not
affect all of the transcripts. Instead of becoming pseudo
genes, the affected genes seemed to have certain tran-
scripts silenced by the PTCs. Transcripts affected by PTCs
will either be degraded by NMD or produce truncated pro-
tein isoforms. Either way, the PTCs result in a different a

transcript repertoire between humans and chimpanzees
and PTCs may therefore contribute to the factors deter-
mining the phenotypic differences between the species.
The phenotypic differences between humans and chim-
panzees has been attributed to divergence in protein cod-
ing genes [7], gene expression [12-14] and alternative
splicing [15] as well as gain and loss of genetic material |8-
11]. Indels and substitutions causing PTCs potentially
affect several of these mechanisms, in particular the pat-
tern of gene expression and alternative splicing. Moreover,
the paired action of PTCs and nonsense-mediated decay
has been suggested as a novel mechanism to regulate gene
expression [21-24] and the observed frequent occurrence
of PTC mutations further support the hypothesis that
divergent gene expression and alternative splicing affect
the phenotypic divergence.

Methods

Selection and filtering of transcripts

Genomic sequence for human (hg18/build 36) and chim-
panzee (panTro2) were downloaded from the Ensembl
database and annotations of all human protein coding
genes and transcripts were likewise obtained from
Ensembl (release 50) [42]. Chimpanzee genes and tran-
scripts were inferred from human gene annotations and
the coordinates were translated between the genomes
using a command line version of liftOver (available from
the UCSC Genome Browser [28]). After translation with
liftOver, all chimpanzee exons from the same transcript
were required to be both on the same chromosome and
on the same strand, or else the transcript was removed
from further analysis. Exon sequences were concatenated
into complete coding sequences for both human and
chimpanzee, translated to amino acid sequences and
scanned for PTCs in the chimpanzee. To ensure the cor-
rectness of the predicted PTCs we applied a number of
additional filtering steps (outlined in Figure 1).

(i) All transcripts with Ns in the chimpanzee sequence
were removed to exclude regions with low sequence cov-
erage.

(ii) All transcripts with PTCs in human were removed and
likewise for transcripts lacking a valid start (M or L) or
stop codon in human. The Ensembl set of genes is based
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on automatic annotation and a minority of transcripts
violates the above requirements. This group of transcripts
tends to have fewer supporting mRNA/EST sequences and
was therefore considered less reliable.

(iii) Transcripts lacking a valid start codon in the chim-
panzee were removed since such transcripts were not
likely to be coding.

(iv) To account for the varying quality of chimpanzee
genome assembly, all transcripts with predicted PTCs
were filtered on the sequence quality score. The quality
score-track from the UCSC Genome Browser [28] was
downloaded and we used a threshold of 40, which corre-
sponds to less then 1 sequencing error per 10,000 bp. The
substitution or indel event causing the PTC was deter-
mined for all PTC transcripts and we required thata 10 bp
region (5 bp upstream and 5 bp downstream) surround-
ing the event had a quality score > 40. To determine the
type of mutational event leading to the PTC, all affected
transcripts were first scanned for substitutions. If a non-
sense mutation coincided with the predicted PTC, this
substitution was regarded as the causative event. Other-
wise, the PTC must be caused by an indel event and the
first indel in the transcript was inferred to be the cause of
the subsequent PTC.

The aim of the filtering process was to make sure that the
PTCs were not caused by incorrect gene predictions, lack-
ing sequence or bad quality of the chimpanzee assembly.
Furthermore, the filtering removed transcripts with specu-
lative coding capacity. All chimpanzee PTCs that
remained after the filtering procedure were considered to
be true.

Description of the two datasets

The filtering process resulted in two datasets, one group of
genes with predicted PTCs in the chimpanzee (the PTC
dataset) and one group with no predicted PTCs in the
chimpanzee (the non-PTC dataset). The two datasets
could be analyzed either at the gene level or at the tran-
script level and we have chosen the first approach. It is
likely that multiple transcripts from a gene will cover
almost the same genomic regions and therefore the anal-
yses was done on the gene level to avoid the bias intro-
duced if we sample the same genomic region several
times. Approximately half of the genes have more then
one annotated transcript and we randomly chose one
transcript per gene for the analyses. However, for genes in
the PTC-dataset the chosen transcript was required to have
a PTC.

Characterizing genes with PTCs in chimpanzee

Annotation of genomic features

To determine if chimpanzee PTC genes share some
genomic properties we studied a number of genomic fea-
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tures such as GC-content, repeat content, CpG-islands,
segmental duplications, sequence divergence and proxim-
ity to the centromere and telomere. Since the studied PTCs
occur in the chimpanzee we used annotations based on
the chimpanzee genome. GC-content was calculated
directly from the chimpanzee genome sequence. Coordi-
nates for CpG-islands and repeats in the chimpanzee
genome were downloaded from the UCSC Genome
browser (CpG-island track and RepeatMasker track) [28].
Annotations of chimpanzee segmental duplications were
obtained from http://chimpparalogy.gs.washington.edu.
In this case the segmental duplications had been mapped
to an old version of the human genome (hg16, build 34)
and liftOver was used to translate the coordinates to the
most recent chimpanzee genome. Sequence divergence
caused by substitutions and indels was estimated from the
pairwise alignment of the human and chimpanzee
genomes, also downloaded from UCSC. Substitutions
were counted directly from the alignment whereas the
indel divergence was estimated in two ways: (i) as the
number of indel events or (ii) the number of bp involved
in indels (i.e. the number of bp in indels/the number of
aligned bp).

Regression analysis and choice of window size

In order to investigate regional variation in the density of
PTC genes we first estimated the proportion of PTC genes,
as well as non-PTC genes, in windows across all chromo-
somes. To determine the genomic location of genes we
used the start coordinates, and genes were counted once
in the window where they started. The number of PTC
genes, and non-PTC genes, genes in a window was nor-
malized with the total number of genes in the same win-
dow. In addition, we analyzed a number of genomic
features over the same windows to assess a possible corre-
lation with genes in the two datasets. GC-content, substi-
tutions and indel divergence (calculated as the proportion
of bp located in indels) were estimated on the nucleotide
levels and thus the occurrence of these features was simply
counted within each window. CpG-islands, repeats, seg-
mental duplications and indel events on the other hand
span over several nucleotides and in this case the feature
was counted once, in the window where the start was
located. RepeatMasker [43] classifies repeats into ten dif-
ferent classes and we performed the analyses both with
separate repeat classes and with a merged set of all repeats.
There were no annotations of the location of chimpanzee
centromeres available so the positions were estimated
from the pairwise alignment files previously used to deter-
mine the sequence divergence. The centromere was
inferred to the 1 Mbp-window with zero aligned nucle-
otides and if several consecutive windows with zero
aligned bp occurred the centromere was placed in the
middle.
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After estimating the proportion of genes in the two data-
sets, as well as a number of genomic features, we applied
a linear regression model. The relationship between each
genomic feature and the proportion of genes in the two
datasets was evaluated separately. Variables with a higher
correlation to PTC genes then to non-PTC genes were kept
and included in a multiple linear regression model. All
statistical calculations were done in R [44].

Several different widow sizes were evaluated and we set-
tled for 1 Mbp intervals, which has also previously proved
to be a reasonable choice for this type of analyses [45]. It
may be hypothesized that shorter windows would
improve the resolution in the analyses but this was not the
case in the present study. Shortening the window length
obviously increased the number of windows and resulted
in more windows with zero genes in them. We also tried
to increase the window size but this did not improve the
analysis either. Probably, because larger windows tend to
'average out' the differences between different genomic
regions.

Location of PTCs within the affected gene and analysis of a possible
association with functional protein domains

The exact position of PTCs within the genes was deter-
mined and the locations were then normalized with the
gene length to be able to compare positions across all
genes. The normalized positions of PTCs were merged
into relative intervals (0-5%, 5-10% etc of the gene
length). Next, the translated sequences of all PTC genes
were searched against the Pfam database [31] to examine
a possible association between the location of PTCs and
the location of functional domains in the protein. The
positions of all Pfam matches within a sequence were
recorded and the matches were filtered using an e-value of
0.001 as cut off (other cut offs were tried and the results
were similar, data not shown). The locations of Pfam
matches were calculated in relative intervals (0-5%, 5-
10% and so on), similar to the location of PTCs in genes,
and matches spanning over several intervals were
recorded once in each interval. Finally, we used R [44] to
calculate the correlation between PTC positions and func-
tional domains.

Gene Ontology classification

The FatiGO tool [33] was used to test for over/under rep-
resentation of specific GO classes in the PTC dataset, as
compared to the non-PTC dataset. All three GO categories
[32] (biological process, cellular component and molecu-
lar function) were tested.

Abbreviations
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