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Abstract

Background: Sharing a common ErbB/HER receptor signaling pathway, heregulin (HRG) induces
differentiation of MCF-7 human breast cancer cells while epidermal growth factor (EGF) elicits
proliferation. Although cell fates resulting from action of the aforementioned ligands completely
different, the respective gene expression profiles in early transcription are qualitatively similar,
suggesting that gene expression during late transcription, but not early transcription, may reflect
ligand specificity. In this study, based on both the data from time-course quantitative real-time PCR
on over 2,000 human transcription factors and microarray of all human genes, we identified a series
of transcription factors which may control HRG-specific late transcription in MCF-7 cells.

Results: We predicted that four transcription factors including EGR4, FRA-1, FHL2, and DIPA
should have responsibility of regulation in MCF-7 cell differentiation. Validation analysis suggested
that one member of the activator protein | (AP-1) family, FOSL-/ (FRA-1 gene), appeared
immediately following c-FOS expression, might be responsible for expression of transcription factor
FHL2 through activation of the AP-1 complex. Furthermore, RNAi gene silencing of FOSL-/ and
FHL2 resulted in increase of extracellular signal-regulated kinase (ERK) phosphorylation of which
duration was sustained by HRG stimulation.

Conclusion: Our analysis indicated that a time-dependent transcriptional regulatory network
including c-FOS, FRA-I, and FHL2 is vital in controlling the ERK signaling pathway through a
negative feedback loop for MCF-7 cell differentiation.
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Background

The activation, duration and subsequent inactivation of
the extracellular signal-regulated kinase (ERK) signaling
pathway triggers the induction of appropriate changes
required for the determination of cell fate. Although many
growth factors show remarkably similar profiles in terms
of immediate early gene (IEG) mRNA expression in vari-
ous cell lines [1-8], the biological outcome in response to
these factors can vary. In fibroblasts, sustained ERK activa-
tion induced by platelet derived growth factor (PDGF)
results in S-phase entry, unlike the case following tran-
sient activation by epidermal growth factor (EGF) [9-12].
¢-FOS is a representative IEG which is expressed within
minutes following stimulation with growth factor inde-
pendent from duration of the upstream signals. However,
the protein expression level of c-FOS is post-transcription-
ally regulated by ERK activation kinetics, where transient
ERK signals induced by EGF resulted in little induction of
c-FOS, whereas sustained ERK activation by PDGF
induced markedly higher amounts of the same protein
[13,14]. Thus, the IEG product ¢-FOS can act as a molecu-
lar sensor for upstream ERK signals that leads cells
towards particular paths such as proliferation, transforma-
tion or differentiation [13-15].

¢-FOS is a member of the activator protein 1 (AP-1) tran-
scription factor group that consist of FOS family proteins
(c-FOS, FOSB, FRA-1/FOSL-1 and FRA-2/FOSL-2) [16-20]
and JUN family proteins (c-JUN, JUNB and JUND) [21-
23]. The AP-1 complex is formed by homo- and het-
erodimerization of JUN, FOS and several CREB/ATF fam-
ily transcription factors, and mediates a wide range of
biological effects related to cell growth, apoptosis and dif-
ferentiation. c-FOS possesses the FXFP consensus motif,
an ERK binding site, referred to as a DEF domain, which
plays an important role as a sensor for ERK activity in cell
fate decision [13,15,24]. In NIH 3T3 cells, mutation of the
¢-FOS DEF domain significantly reduced AP-1 activity and
inhibited the transforming activity associated with wild-
type ¢-FOS [13], suggesting that AP-1 transcription factor
contains a DEF domain like c-FOS and that sustained ERK
signals largely contribute to the regulation of cellular phe-

notypes.

We previously described that heregulin (HRG) induced
sustained signal activity in MCF-7 breast cancer cells
which triggered an irreversible cell phenotype change to
differentiation (accumulation of lipid droplets within the
cells), while EGF could only elicit transient signal activity
and cell proliferation [25]. Notwithstanding differences in
phenotype induction, EGF and HRG induced qualitatively
similar early transcription profiles independent of the
presence or absence of prolonged ERK signal activity,
resulted in all-or-none induction of ¢-FOS protein [25].
Therefore, we assumed that the induction of different cell
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fates would eventually be accompanied by differences in
the later transcribed genes after appearance of c-FOS. Ulti-
mately, early quantitative differences in gene expression
might be followed by qualitative differences during a
series of transcriptional events. Therefore, in the current
study we set out to identify phenotype-specific genes fol-
lowing long-term exposure to growth factors using time-
course large-scale gene expression and to validate the
function of the targeted genes. Expression analysis was
first analyzed by quantitative real-time PCR (qRT-PCR)
aimed at identifying core regulatory transcription factors.
The results showed that ligand-specific transcription fac-
tors showing distinct expression are all induced by HRG
but not by EGF.

Experimental validation was performed in an effort to
confirm the late-transcriptional regulation of those tran-
scription factors, c-FOS, FRA-1 and FHL2. Our results sug-
gested that a time-dependent transcriptional regulatory
network and associated control of the upstream signal
activity by transcriptional feedback facilitate the entry of
cells into an irreversible state.

Methods

Cell culture

The MCF-7 cell line was maintained in DMEM medium
(Gibco BRL, Githersburg, MD) supplemented with 10%
fetal bovine serum. Prior to growth factor treatment, cells
were serum-starved for 16-24 hours, and then either EGF
(PeproTech House, London, England) or HRG-B 176-246
(R&D Systems, Inc., Minneapolis, MN) was added. Cells
were incubated with growth factor for the indicated time-
period, washed three times with phosphate buffered
saline (PBS), and lysed with Bio-Plex lysis buffer (Bio-Rad
Laboratories, Hercules, CA).

qRT-PCR for screening of phenotype-specific
transcriptional factors

For the qRT-PCR of 2,352 human transcription factors, we
prepared gene-specific PCR primers based on identified
mouse transcription factors as previously described [26].
PCR amplification was performed in triplicate using an
ABI Prism 7900 HT instrument (Applied Biosystems, Lin-
coln Centre Drive Foster City, CA). The tailor-made reac-
tion (20 pl) on the 384-well plates included 0.5 units of
HotStar Taq DNA polymerase (QIAGEN, Hilden, Ger-
many) and associated x1 amplification buffer, 1 mM
MgCl,, 160 uM dNTPs, 1/38 000 SYBR Green I (Molecular
Probes, Carlsbad, CA), 7% DMSO, 0.4% ROX Reference
Dye (Invitrogen, Carlsbad, CA), 300 nM of each primer,
and 2 pl of 40-fold diluted first-stranded cDNA synthesis
reaction mixture. The polymerase activation step at 95°C
for 15 min was followed by 40 cycles of 15 sec at 94°C, 30
sec at 60°C, and 30 sec at 72°C. Dissociation curve anal-
ysis, which evaluates each PCR product to be amplified
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from single cDNA, was carried out in accordance with the
manufacturer's protocol. Several PCR products were also
checked by agarose gel electrophoresis (data not shown).
For the qRT-PCR data analysis, differentially expressed
genes in response to EGF and HRG stimulation were
searched for by calculating the index I, defined as follows;

X —X
1= SLHRCELECE 4 {0 5,1,9,4,6 hour }

& X{,HRG*+*t,EGF

where x, ycrand x, ;;; represent qRT-PCR-based expres-
sion levels of gene x after ¢ hours administration of EGF
and HRG, respectively. Those genes which displayed max-
imum expression levels of less than 300 were omitted
prior to the index value calculation. The distribution of I
was approximated by a normal distribution with mean
and standard deviation values of -0.1 and 0.7, respec-
tively. Those genes with I values greater than 3.0 were
extracted as differentially expressed genes and their
expression pattern was confirmed by GeneChip-based
expression data analysis.

Microarray analysis

Total RNA was isolated using TRIzol reagent (Invitrogen)
and then purified using the QIAGEN RNeasy Mini kit.
RNA quality was assessed using a Bioanalyzer (Agilent
Technologies, Santa Clara, CA). First- and second-strand
cDNA synthesis, biotin-labeled cRNA synthesis, fragmen-
tation of cRNA and hybridization reactions were per-
formed using a one cycle cDNA synthesis kit (Affymetrix,
Santa Clara, CA). GeneChip (Affymetrix U133A 2.0 chip)
experiments were carried out according to the manufac-
turer's protocol. Scanned images were processed using
GeneChip Operating Software (GCOS) to determine the
signal intensity of probe sets. Scaling was performed using
the Single-Array Expression Analysis function in GCOS
and the target value was set to 500. Microarray data used
in this study was submitted to Gene Expression Omnibus
database (GSE13009).

Enrichment analysis

For each of the four transcription factors selected from the
gRT-PCR results and confirmed by the microarray data,
genes showing an HRG-induced expression pattern were
correlated with these transcription factors (correlation
coefficient >0.85) and those that showed higher expres-
sion with HRG than with EGF (I > 2.2) were extracted. As
a result, 38, 35, 52 and 44 probe sets were selected for
EGR4, FOSL-1, FHL2 and DIPA, respectively. The index
value I was calculated for the microarray gene expression
profile in the same way as for the qRT-PCR data. I = 2.2
corresponds to 95% point of fitted normal distribution.
Probe Set IDs were converted to Entrez Gene IDs accord-
ing to the manufacturer's annotation and then corre-
sponding gene ontology (GO) terms were extracted from
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the ID mapping table provided by NCBI. Those probe sets
without Gene ID were discarded in the analysis. Enrich-
ment analysis was performed by Fisher's exact test fol-
lowed by Bonferonni's correction. Those GO terms which
showed a small p-value (p < 0.05) were regarded as
enriched.

qRT-PCR for gene expression validation

For the qRT-PCR of siRNA-transfected cells, 500 ng of
total RNA was reverse transcribed using the PrimeScript
RT reagent Kit (TaKaRa, Shiga, Japan). cDNA equivalent to
5 ng of total RNA was used for all the PCR reactions. The
sequences of the primers are as follows; 5'-GCA CCG TCA
AGG CTG AGA AC-3' and 5'-ATG GTG GTG AAG ACG
CCA GT-3' for GAPDH, 5'-ACT TGA AAG CAT CCA TGT
GTG TGG AC and 5'-GGC CTG GCT CAA CAT GCT ACT
AA-3' for ¢-FOS, 5'-AGC AGC AGC AGG TGA TTG GA-3'
and 5-CGC AGA TCA GCT CAT CAC AGA AG-3' for
FOSL-1, 5'-TGG CAT AAC GAC TGC TIT AAC TGT A-3'
and 5'-GTG TGA GAT CAC AAG CAG CAA-3' for FHL2. All
PCR reactions were performed using SYBR Premix Ex Taq
(TaKaRa) or KAPA SYBR Fast kit (KAPA Biosystems, Cape
Town, South Africa) in the Thermal Cycler Dice Real Time
System TP800 (TaKaRa). qRT-PCR was performed in trip-
licate for each sample using default two-step amplifica-
tion procedures in a 25 pl reaction volume according to
the manufacturer's instructions. The conditions for the
PCR reaction were as follows: 60°C for 30 sec, 95°C for
15 sec, followed by a maximum of 40 cycles of 95°C for 5
sec, and 60°C for 20 sec. The standard curve method was
used to determine relative quantification of mRNA abun-
dance [27]. For normalization of the qRT-PCR data,
GAPDH expression was used as the control at each time
point.

Immunoblotting

Cell lysate was cleared by centrifugation, and the protein
concentration of the supernatant was determined using a
protein assay reagent (BioRad Laboratories). Protein
phosphorylation levels and total proteins were analyzed
by Western blotting as previously described [28] using the
requisite antibodies. For the Western blot analysis, anti-
ERK (p44/42 MAP kinase), anti-phospho-ERK (Thr202/
Tyr204), and anti-alpha-tubulin antibodies were pur-
chased from Cell Signaling Technology, Inc. (Danvers,
MA). Anti-FOS, anti-FRA-1 and anti-EGR4 antibodies
were purchased from Santa Cruz Biotechnology, Inc.
(Santa Cruz, CA), anti-FHL2 antibody from AVIVA System
Biology (San Diego, CA) or Santa Cruz Biotechnology,
and anti-c-JUN antibody from Upstate (Billerica, MA).
Protein band intensities were quantified using a densito-
meter (Fuji Film Corp., Tokyo, Japan).

For the detection of phosphorylated-ERK, cells were

treated with 10 nM EGF or HRG at each indicated time
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point. Protein lysates were prepared using the Cell lysis kit
(Bio-Rad Laboratories). The presence of phospho-ERK1/2
was detected using the Bio-Plex phospho-protein assay kit
(Bio-Rad Laboratories) according to the manufacturer's
protocol. Data from the reaction was acquired and ana-
lyzed using the Bio-Plex suspension array system
(Luminex 100 system, Bio-Rad Laboratories). Total pro-
teins for ERK were measured using the Bio-Plex total pro-
tein assay kit (Bio-Rad Laboratories).

Gene silencing with RNAi

For 60-mm-diameter experiments, MCF-7 cells were har-
vested by trypsinization and seeded at 1.2 x 106 cells/well
using HiperFect Transfection Reagent (QIAGEN) and
CombiMAG magnetofection reagents (Chemicell GmbH,
Berlin, Germany) according to manufacturer's protocol.
For ¢-FOS siRNA transfection, 10 nM siGENOME SMART-
pool ¢c-FOS siRNA or non-targeting control siRNA (Dhar-
macon, Cramlington, UK) was included in the
transfection mixture. For FOSL-1 and FHL2 siRNA trans-
fection, siRNA was designed based on sequences specific
for human cDNA; 5'-GCA TCA ACA CCA TGA GTG G-3'
for FOSL-1 and 5'-GCA AGG ACT TGT CCT ACA A-3' for
FHL2. Antisense and sense siRNA oligonucleotides with
dTdT 3' overhangs were synthesized by TaKaRa Bio Inc.
Each siRNA was added to 10 nM and compared with con-
trols transfected using identical concentrations of control
siRNA mixture. After 48 hrs of transfection, cells were
starved for 16 hrs in serum-free DMEM. Cells were stimu-
lated with 10 nM HRG for the indicated times in the fig-
ures, harvested and then lysed in preparation for qRT-PCR
and immunoblotting.

Protein-protein interaction assay

Cells were washed with PBS and lysed in the lysis buffer.
The supernatant was recovered after centrifugation. For
immunoprecipitation, 0.5 mg of the aforementioned
supernatant protein was incubated with 6 pg of antibody
and rotated overnight for 4°C. Then, 20 ul of protein G
Plus/Protein A-agarose Suspension (Calbiochem, Madi-
son, WI) was added and the mix incubated for 3 hrs at
4°C on a rotating platform. Following centrifugation,
beads were washed three times with HNTG buffer (20 mM
HEPES (pH 7.5), 150 mM NaCl, 10 mM NaF, 1 mM
Na;VO,, 0.5 ug/mL leupeptin, 1 pg/mL pepstatin A and
0.2 mM PMSF). Bound proteins were eluted with SDS
sample buffer, resolved by SDS-PAGE, and transferred
onto PVDF membranes.

Electrophoretic mobility shift assays (EMSAs)

Nuclear protein was extracted from ligand-treated MCF-7
cells. All procedures were carried out on ice. Treated cells
were harvested, suspended in a five-fold of CH buffer (10
mM HEPES-KOH (pH 7.5), 2 mM MgCl,, 1 mM EDTA, 1
mM EGTA, 10 mM KCI, 1 mM DTT, 10 mM NaF, 0.1 mM
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Na;VO,, and 0.5 mM PMSF added just before use), incu-
bated on ice for 10 min and then centrifuged. Precipitates
were resuspended in a three-fold volume of CH buffer
containing 0.2% NP-40 and then homogenized using a
Dounce homogenizer (20 strokes). Homogenates were
centrifuged at 15,000 rpm for 10 min at 4°C. To the
supernatants was added 1 mL of CR buffer (40 mM
HEPES-KOH (pH 7.5), 0.4 M KCI, 1 mM DTT, 10% (v/v)
glycerol, 0.1 mM PMSF and 0.1% (w/v) aprotinin) and 5
M NaCl was added to a final concentration of 500 mM.
Mixtures were incubated on ice for 30 min, centrifuged at
24,000 rpm for 20 min, and aliquots were frozen and
stored at -80°C until use.

A double-stranded oligonucleotide corresponding to the
12-O-tetradecanoylphorbol-13-acetate (TPA) response
element (TRE) binding site was synthesized with the fol-
lowing sequence; 5'-CTC TGG CAG GTG CGT CAG TCC
G -3' for -318TRE [29]. Synthesized oligonucleotides were
end-labeled with [y-32P]ATP (Amersham Bioscience, Pis-
cataway, NJ) and cleaned up using a Gel Shift Assay Sys-
tem (Promega, Madison, WI) according to the
manufacturer's instructions. Briefly, 15 pg of nuclear
extract was incubated in gel shift binding buffer contain-
ing 32P-labeled oligopeptides. For the supershift assay, the
reaction mixture contained 2 pl of anti-FHL2 specific anti-
body. For the oligonucleotide competition experiments,
the reaction mixture was preincubated with a 50-fold
excess of unlabeled oligonucleotide probes prior to the
addition of radioactive probes. Samples were resolved on
5% non-denaturing polyacrylamide gel and exposed by
radioautography (Fuji Film Corp.).

Results

We previously showed that stimulation of MCF-7 breast
cancer cells with EGF and HRG resulted in very similar
early transcription profiles up to 90 min, however subse-
quent cellular phenotypes differed [25]. Although both
ligands evoked qualitatively similar signaling activities
and early transcription, HRG induced prolonged signaling
activities and significant expression of c-FOS protein,
while EGF induced a transient signal and negligible
amounts of c-FOS. Therefore, it was hypothesized that this
all-or-none supply of ¢-FOS transcription factor, which
plays a major role in AP-1 activation [14], might trigger
changes in late transcription which determine ligand-spe-
cific cell fate. In an effort to investigate this hypothesis,
MCEF-7 cells were exposed to growth factors for longer
time periods and the temporal expression of transcription
factors was monitored.

HRG and EGF induced different transcription factors

Expression analysis of 2,352 human transcription factors
following up to 6 hrs (0, 0.5, 1, 2, 4 and 6 hrs; 6 time
points) exposure to HRG or EGF was performed using
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qRT-PCR and the expression profiles were investigated.
The I value, a ratio representing the difference between
HRG- and EGF-induced gene expression, was calculated as
described in the Materials and Methods section. Fig. 1A
shows the distribution of I values for the transcription fac-
tors targeted. The results revealed that HRG, unlike the
case with EGF, uniquely induced significantly high expres-
sion levels of five transcription factors (I > 3.0) (Fig. 1A
red bars), which were identified as SUPT4H1, EGR4,
FOSL-1(FRA-1 gene), FHL2 and DIPA (also known as
coiled-coil domain containing protein 85B) (Table 1).
Surprisingly, neither EGF-specific nor significant EGF-
induced expression of transcription factors was detected.

Having identified HRG-induced expression of specific
transcription factors from the qRT-PCR results, gene
expression analysis using microarray was performed in an
effort to determine the time-course expression profile of
the aforementioned five transcription factors and other
genes up to 72 hrs (0, 0.5,0.75,1, 1.5, 2, 3,4, 6, 8, 12, 24,
36, 48 and 72 hrs; 15 time points). Although results of the
investigation of SUPT4H1 mRNA expression using a
microarray platform were inconsistent with the results
obtained from the qRT-PCR analysis (data not shown),
results pertaining to the other four transcription factors
(EGR4, FOSL-1, FHL2 and DIPA) showed good agreement
with the gRT-PCR data, and time-dependent mRNA
expression was only observed for HRG-stimulated cells
(Fig. 1B and 1C). Interestingly, the expression peaks of
these four transcription factors appeared one after the
other following the expression of ¢-FOS (Fig. 1D). The
gene expression data from both the microarray and qRT-
PCR analysis showed that HRG could induce relatively
higher expression levels of the c-FOS gene compared with
EGF (ca. 60% of HRG-induced ¢-FOS), and that the lig-
and-induced differences in expression became more pro-
nounced during the later expression of EGR4, FOSL-1,
FHL2 and DIPA (Fig. 1B and 1C). Transient ¢-FOS expres-
sion might suggest negative regulation by other transcrip-
tion factors. Furthermore, the data implies that ¢-FOS
might be replaced in the AP-1 complex by another AP-1
member, thereby altering a function of AP-1 [30] to facil-
itate response to HRG-mediated cell fate.

The product of the first inducible gene, EGR4, is a zinc-fin-
ger protein, a member of the EGR family of transcription
regulatory factors which plays a critical role in mediating
enduring forms of neuronal plasticity and the regulation
of inflammatory cytokine gene transcription [31]. EGR3
and EGR4 interact with NFkB p50 and p60 to activate
transcription inflammatory-gene promoters [32]. FRA-1
(FOSL-1 protein) is a member of the AP-1 family of tran-
scription factors that includes c-FOS, and plays an impor-
tant role in cell motility, invasion, and maintenance and
progression in several transformed and neoplastic cells

http://www.biomedcentral.com/1471-2164/10/545

[33-35]. FRA-1 is known to contribute to cellular differen-
tiation processes through interactions with c¢-FOS [36]
and requires signal-dependent protein stabilization
through the DEF domain (FXFP or FXYP) in a manner
similar to ¢-FOS [37-39]. FHL2 can serve as a transcrip-
tional coactivator of AP-1, androgen receptor, CREB and
CREM in transformed cells and is known to associate with
JUN and FOS [40,41]. Interestingly, FHL2 has been
reported to bind to phosphorylated ERK in vitro and
inhibit nuclear localization and activity of ERK in stimu-
lated cardiomyocytes, indicating its antagonistic role in
cellular signaling [42]. DIPA is known as a partner of C/
EBP B and was reported to have an inhibitory effect on
adipocyte differentiation in preadipocytes [43].

We also identified genes (146 probe sets) the expression
patterns of which correlated with the aforementioned
candidate four transcription factors, and which showed
higher expression following HRG stimulation compared
with EGF, as determined from our microarray data (Fig.
2). Enriched transcription factors associated with the 146
probe sets which correspond to 126 genes were searched
for using GATHER [44]. As a result, AP-1, SP3 and SRF
were identified as enriched transcription factors, suggest-
ing that these transcription factors are involved in the
transcriptional regulation of the correlated genes. Enrich-
ment analysis using Gene Ontology [45] for each corre-
lated gene cluster revealed time-dependent activation of
gene function and pathways specifically activated by HRG
(Fig. 3). In the early phase, genes related to transcriptional
regulation and the maintenance of signal transduction
were activated, and then the expression diminished in the
later phase. In the mid to late phase, genes related to
development and differentiation were activated. Manual
curation of the gene list and clustering results revealed
that the expression pattern of DIPA was significantly cor-
related with the expression of FABP5 (fatty acid biding
protein 5), a differentiation marker of adipocytes [46] (Fig
2, red symbol). Furthermore, the expression of FABP5 was
correlated with the expression of lipid regulators such as
fatty acid desaturase 3 and metastasis markers such as
matrix-metallopeptidase 1 (MMP1, Fig 2, blue symbol)
only in HRG-stimulated cells. These data indicate that
cells are directed towards differentiation and/or transfor-
mation of MCF-7 cells during the late phase following
HRG stimulation. Thus, the appearance of expression
peaks associated with these transcription factors showed a
physiologically meaningful sequential profile (Fig. 1D).

Although DIPA contains a basic region-leucine zipper
DNA binding and dimerization domain, which has simi-
larities to FRA family members [47], DIPA has never been
reported to interact with the AP-1 complex, EGR4 or
FHL2. Moreover, several of our preliminary experiments
failed to show an interaction of DIPA with any of the AP-
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Figure | (see previous page)

Time-dependent gene expression of EGF- or HRG-induced transcription factors. (A) Gene expression of 2,352
human transcription factors in EGF- and HRG-treated MCF-7 cells was measured by qRT-PCR. The index value I for these
transcription factors was calculated and its distribution is shown. The fitted normal distribution is shown as a dotted curve.
Red bars represent genes whose [ value is greater than 3.0, with five transcription factors (c-FOS, EGR4, FOSL-1, FHL2 and DIPA)
satisfying this criterion. (B-D) qRT-PCR and GeneChip gene expression analyses were performed using growth factor-treated
MCEF-7 cells. The expression of mRNA after treatment of the cells with 10 nM HRG or EGF was monitored by qRT-PCR for
up to 6 hrs and for up to 72 hrs using a GeneChip microarray system. The expression profiles of five transcription factors with
high [ value are shown. (B) Gene expression time-course of five transcription factors measured by qRT-PCR. (C) Gene expres-
sion time-course of five transcription factors measured by GeneChip. (D) HRG-induced gene expression measured using a
GeneChip microarray system. These five transcription factors show sequential peaks of mRNA expression.

1 proteins (data not shown). Therefore, we decided to
focus on validating the mutual regulation of the other
three transcription factors (EGR4, FRA-1 and FHL2)
together with c-FOS.

HRG induced time-dependent expression of c-FOS but not
of EGR4

In an effort to confirm the effects of HRG on EGR4 protein
expression, a time-course treatment of MCF-7 cells with
either EGF or HRG was performed. EGR4 protein was
expressed at much higher levels in EGF-treated cells com-
pared with HRG-treated cells (Fig. 4A), indicating that
protein expression is not coordinated with gene expres-
sion in the case of EGR4. Furthermore, immunoprecipita-
tion studies revealed that EGR4 clearly failed to interact
with c-FOS or any other AP-1 proteins (data not shown),
while ¢-JUN showed a strong interaction with c-FOS (Fig.
4B). EGRA4 is a zinc-finger protein which binds the specific
sequence GCGTGGGCG and negatively regulates tran-
scription derived from its own gene promoter [31]. Nei-
ther ¢-FOS nor FOSL-1 contain the EGR4-binding
sequence within their promoter regions (data not shown),
suggesting that EGR4 could not interact with AP-1. A pre-
vious study reported that EGR4 can negatively regulate
transcription derived from its own gene promoter whereas
EGR1 can function as an activator [31]. EGR1 plays a role
that contrasts that of EGR4, and is regulated by both
MAPK-dependent and -independent pathways in PC12D
cells [48], suggesting that EGR4 could also play a role in
transcriptional regulation triggered by other pathways
such as those involving PI3K or estrogen receptor signal-
ing which are also active in MCF-7 cells [25,49]. However,

Table I: HRG-induced genes identified by qRT-PCR

Gene Symbol Gene Name

SUPT4HI suppressor of Ty 4 homolog | (S. cerevisiae)
DIPA hepatitis delta antigen-interacting protein A
FHL2 four and a half LIM domains 2

FOSLI FOS-like antigen I*

*FOSL-1 is the gene name of FRA-1 protein.

based on our data, we concluded that EGR4 might not
participate in the transcriptional regulatory network per-
taining to cellular differentiation induced by HRG in
MCEF-7 cells.

FRA-I and FHL2 are associated with the c-FOS AP-1
complex

AP-1 proteins represent a group of IEG products that play
important roles in triggering and regulating late transcrip-
tion. IEG products which possess a DEF domain can act as
sensors for ERK signaling [13,15,50]. Among our candi-
date transcription factors, FRA-1 and ¢-FOS possess DEF
domains. In an effort to assay for AP-1 activity, a co-
immunoprecipitation assay was performed (Fig 4B and
4D). The ¢-FOS and c-JUN gene expression profiles show
good agreement with each other (Figs 1 and 4C), and c-
JUN interacted with ¢-FOS immediately following HRG
stimulation and then began to dissociate at 2 hr (Fig. 4B).
On the other hand, the association between FRA-1 and c-
FOS began to increase, and this interaction was main-
tained for several hours (Fig. 4D). Since c-FOS AP-1 family
proteins cannot exist as homodimers after the dissocia-
tion of c-JUN at 2 hr, the results from Figs. 4B and 4D also
indicate that FRA-1 co-immunoprecipitated with c-FOS
(or vice versa) might associate with other binding partners,
such as JUN AP-1 family proteins or FHL2. In Fig. 4D and
4E, FHL2 and c-FOS, and FRA-1 and FHL2 also showed a
similar time-course in terms of complex formation. On
the other hand, neither c-FOS nor FRA-1 could co-immu-
noprecipitate with JUNB and JUND (data not shown).
Thus, results of the immunoprecipitation study suggested
that c-FOS, FRA-1 and FHL2 might regulate the same tran-
scriptional complex following regulation of the complex
by c-JUN.

The upstream TPA response element (TRE) (-318) in the
promoter region of FOSL-1 is important for inducing the
FOSL-1 gene. TRE is a binding site for c-JUN and JUND
[29,51] and is also targeted by c-FOS and FOSB [52],
although FOSL-1transcription is also co-regulated by the
binding of SRF, Elk1l, ATF1 and CREB to the -276/-237
region for enhanced induction of FOSL-1 [51]. In an effort
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and DIPA) and the results are shown as a heat map. If multiple probe sets with the same Gene ID were selected for the same
transcription factor, a probe set which showed maximum | was selected in this analysis. Correlated transcription factors are
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blue, respectively.
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to determine whether FHL2 can bind to FOSL-1 DNA,
EMSA using TRE oligonucleotides was performed (Fig.
4F). The mobility of the labeled -318 TRE probe shifted in
the presence of nuclear extract (control) and was depend-
ent on HRG stimulation. The addition of anti-FHL2 anti-
body to the binding reaction resulted in supershifts,
suggesting that FHL2 could directly or indirectly bind to
TRE (-318) on the FOSL-1 promoter and perhaps regulate
the expression together with other AP-1 proteins.

RNA interference of c-FOS suppressed FRA-I1 and FHL2
gene and protein expression

If c-FOS regulates FRA-1 and FHL2 expression following
HRG stimulation, the suppression of ¢-FOS could induce

critical changes in late transcriptional control. When ¢-
FOS gene expression was effectively suppressed using
RNAIi, FOSL-1 and FHL2 gene expression was also reduced
in the presence of HRG (Fig. 5A). c-FOS knockdown also
led to the suppression of FRA-1 protein expression (Fig.
5B), although FHL2 protein expression was not signifi-
cantly reduced under the same conditions (data not
shown). This indicates that both FRA-1 and FHL2 possibly
act downstream to ¢-FOS. On the other hand, FOSL1 gene
knockdown using RNAi induced an increase in FHL2 gene
expression (Fig. 6).

FHL2 knockdown caused an increase in ¢-FOS mRNA
expression (Fig. 7A). This result is consistent with a previ-
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Figure 4 (see previous page)

HRG-induced expression of the candidate transcription factors. (A) MCF-7 cells were treated with 10 nM HRG or
EGF. Cell lysates were assayed for expression of EGR4 and c-FOS proteins using Western blot analysis. A representative figure
of two independent experiments is shown. (B-D) HRG-induced expression of mRNA and protein associated with the AP-1
protein. HRG-treated cell lysates were immunoprecipitated using c-FOS antibody and subjected to Western blot analysis. Blots
were then probed using an antibody against c-JUN or FRA-I. A representative figure of two independent experiments is
shown. Mean values of quantified bands are shown with bars * range (B). HRG-induced mRNA expression of cJUN obtained by
qRT-PCR (upper) and GeneChip (lower graph) analyses (C). HRG-treated MCF-7 cell lysates were immunoprecipitated using
c-FOS, FRA-1 (D) or FHL2 (E) antibody. Inmuno-complexes were detected using an antibody against c-FOS, FRA-I or FHL2.
The data are representative of two independent experiments. Mean values of quantified bands are shown with bars * range. (F)
EMSA analysis of FHL2 DNA-binding ability. 32P-labeled -318 TRE oligonucleotide probe, the sequence of which is present
within the FOSL-/ promoter region, was incubated with HRG-treated cellular nuclear extract. For the competition assay,
nuclear extracts were incubated with a 50-fold molar excess of unlabeled probe prior to use in the EMSA experiment. The -
318 TRE sequence incubated with nuclear extract was observed in the control lanes and 'shift' bands indicate protein-nucleic
acid complex formation. Supershift experiments of the complexes formed with the consensus -318 TRE sequence using FHL2

antibody.

ous report suggesting that FHL2 is a negative regulator of
ERK [42], therefore ERK-regulated c-FOS expression is
similarly negatively regulated by FHL2. Indeed, reduced
gene expression of FHL?2 resulted in the up-regulation of
phospho-ERK (Fig. 7B). On the other hand, FOSL-1 gene
knockdown resulted in a slight increase in ERK phospho-
rylation with little effect, which seems to be inconsistent
with the result shown in Fig. 6. These results may suggest
independent negative ERK regulation by FOSL-1 and
FHL2, but not only by FOSL-1. In fact, the phosphoryla-
tion of ERK peaked within 10 min, was sustained for 1-2
hr, and then gradually decreased with the increase in
FHL2 mRNA (Fig. 1B-C) and protein expression (Fig. 7C).
These results indicated that both FRA-1 and FHL2 may
negatively regulate the upstream signaling.

Discussion

In MCF-7 breast cancer cells, HRG can elicit differentia-
tion while treatment of cells with EGF leads to cell prolif-
eration, processes which possess different intensities of
signaling and gene regulation that work in a coordinated
manner. Sustained activation of ERK by HRG resulted in
stabilization of signaling mediators and changes in the
supply of transcription factor proteins possessing an ERK
sensing domain, thus leading cells along a path of irre-
versible differentiation [25]. Indeed, we identified a time-
dependent interaction of several transcription factors
whose expression levels were significantly elevated by
HRG exposure, but not by EGF, during the course of a 72-
hour time-course treatment of MCF-7 cells (Fig. 1). These
transcription factors (Table 1) were expressed in a time-
dependent manner, suggesting that they might regulate
each other.

AP-1 consists of dimers of proteins encoded by FOS and
JUN gene families, which have been widely implicated in
differentiation, cell proliferation and transformation [53].

The FOS proteins (c-FOS, FOSB, FRA-1 and FRA-2) form
heterodimers with the JUN protein families (c-JUN, JUNB
and JUND) and regulate gene expression from TRE and
TRE-like elements present within various promoters
[29,38,54]. Our immunoprecipitation assay showed that
the AP-1 complex in HRG-treated MCF-7 cells contained
¢-JUN, c-FOS and FRA-1, although the association of c-
JUN in the complex is transient (1-3 hrs after HRG stimu-
lation), while that of c-FOS and FRA-1 are sustained for up
to 24 hr (our unpublished data). On the other hand, we
demonstrated that FHL2 could associate with AP-1 pro-
teins such as c-FOS and FRA-1. Taken together with those
results, late transcriptional regulation in MCF-7 cells is
mediated by a regulatory complex containing c-FOS, FRA-
1 and FHL2. One possible scenario is that after c-JUN dis-
sociates from the AP-1 complex, FHL2 could be a binding
partner of c-FOS and/or FRA-1. In PC12 cells, nerve
growth factor (NGF) induces sustained ¢-JUN and c-FOS
activity in events leading to neural differentiation [39,55].
In MCF-7 cells, the gene expression profiles of ¢-FOS and
¢-JUN (Figs. 1 and 4C) induced by HRG were similar. Both
expression patterns were transient for the first 1.5 hrs, and
¢-JUN seemed to dissociate from the complex within 3
hrs, even though ¢-FOS and FRA-1 remained within the
complex for a longer period. FRA-1 gene expression was
followed by the expression of two other AP-1 genes, ¢-FOS
and ¢-JUN (Fig. 1), and FRA-1 protein induction was also
prolonged for up to 6 hr following HRG stimulation (Fig.
5B). Thus, unlike NGF-induced signaling in PC12 cells,
HRG treatment of MCF-7 cells evokes sustained formation
of the AP-1 complex through FRA-1, but not c-JUN. Taken
together, it seems that c-FOS and FRA-1, but not ¢-JUN,
play an important role in MCF-7 cells in terms of late tran-
scriptional processes and the progression of cell differen-
tiation. Indeed, several pathological studies in breast
cancer and neoplastic breast diseases have described FRA-

Page 11 of 16

(page number not for citation purposes)



BMC Genomics 2009, 10:545

http://www.biomedcentral.com/1471-2164/10/545

A
c-FOS mRNA FOSL1 mRNA FHL2 mRNA
50 - 14 r 12r
c 45 =+ Control = -
'% 40 |==¢-FOS knockdown % 12 S 10
8
- i g g8
P 2 s
€ 20 € s -
= 10 = =
2 22 &2
0 0 0
0 60 120 180 240 300 360 0 60 120 180 240 300 360 0 60 120 180 240 300 360
Time (min) Time (min} Time (min})
B
Control ¢-FOS knockdown
Time (min) 0 10 30 60 120 180 240 360 0 10 30 60 120 180 240 360
1-75 kDa
cFos| A
50 kDa
. »
FRA-1 o ;!. ’ — L
37 kDa
Tubulino | Se————————————————— | 5 Do
¢-FOS protein FRA-1 protein
4.0 0.8
;
- ~#-c-FOS knockdow = 07
-
< 3.0 < 0.6
2 25 > 05
2] 7]
S 20 g 0.4
E E
3 15 5 03 S
5 1.0 D 0.2
n 7
0.5 0.1
[
0 0 1
] 60 120 180 240 300 360 60 120 180 240 300 360
Time (min) Time (min)
Figure 5

Effect of c-FOS siRNA on FRA-I and FHL2 expression. (A) MCF-7 cells were treated with 10 nM HRG and mRNA
expression was analyzed using qRT-PCR. Numbers on the y-axis represent the relative mRNA level; bars £ SEM. Data points
were obtained from three replicas. GAPDH was used as a standard. (B) Western blot analysis. Each graph shows the densito-
metric analysis of blots obtained from two independent experiments. Protein signal intensity was determined by normalizing
each value with tubulin-o. protein. Bars * range. Red lines, control cells; blue lines, -FOS knockdown.

1 as a useful marker in breast carcinogenesis, and its over-
expression results in malignancy [56-59].

Moron et al. suggested that FHL2 may act as a coactivator
of the c-FOS and c¢-JUN complex by stimulating AP-1-
dependent transcription [41]. In fact, FHL2 was able to
associate with the c-FOS and FRA-1 (Fig. 4D and 4E). The
EMSA supershift experiment (Fig. 4F) also supported the
view that FHL2 can bind to the -318 TRE sequence present
within the FOSL-1 promoter region [51]. The -318 TRE
region is important as a ¢-FOS responsive element for

inducing enhanced expression of FOSL-1 [29,58] and
serves as the binding site of AP-1 proteins such as c-JUN
and JUND [59]. The result indicates that FHL2 may regu-
late the transcription of FOSL-1 through this region
together with other AP-1 components. However, further
investigations are required to delineate the interaction
mechanism and regulation system involving FHL2 and
AP-1 proteins. Furthermore, there appear to be conflicting
reports concerning the role played by FHL2, where it has
been suggested that FHL2 can serve as a repressor of
MEK1-ERK1/2 signaling [60,61] or as an enhancer of the
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MCEF-7 cells interfered with FOSL-I knockdown as determined by qRT-PCR analysis. Red lines, control cells; blue lines, FOSL-/

knockdown. Bars + SEM.

¢-FOS promoter, whose gene is immediately expressed by
activation of ERK1/2 [62,63]. In this study, we demon-
strated using RNAi that FHL2 knockdown induced clear
elevation of ¢-FOS gene expression and ERK activation.
The gradual reduction in phospho-ERK levels was fol-
lowed by an increase in FHL2 expression (Fig. 7C). These
results suggested that FHL2 might inhibit both ERK activ-
ity and ERK-dependent transcription. On the other hand,
FOSL1 knockdown induced elevated expression of FHL2
(Fig. 6), which suggests that FHL2 is not a downstream
target of FOSL1 and negatively regulates ERK signaling
independently from ¢-FOS-FOSL1 regulation, even
though FHL2 induction seemed to be influenced by c-
FOS.

Our analysis indicated that a time-dependent transcrip-
tional regulatory network is vital in controlling the
upstream ERK signaling pathway through a negative feed-
back loop pertaining to MCF-7 cell differentiation. How-
ever, there is a possibility that multiple signaling
pathways such as those involving PI3K and the estrogen
receptor could regulate transcription in and the differenti-
ation of MCEF-7 cells [64-66], and other signal-inducible
factors could affect and interfere with the transcription
factors we have not identified. Nevertheless, it is notewor-
thy that the transcription factors identified in the current
analysis showed sequential time-dependent expression
and mutual regulation, and that these functions are regu-
lated by upstream ERK signals. However, later transcrip-
tion inhibits the original upstream signal by negative
feedback once the signal becomes unnecessary. In general,
negative feedback functions to stabilize biological systems

and several earlier studies have indicated the presence of
negative feedback in cellular differentiation processes
[67]. Our study has indicated that ligand-stimulated sign-
aling activity is not only suppressed within intracellular
signaling as demonstrated by EGF-induced Cbl down-reg-
ulation [68] or negative feedback within the MAPK cas-
cade in PC12 cells [69], but is also regulated through de
novo transcription.

Conclusion

Fig. 8 depicts the suggested late-transcriptional regulatory
network involved in the differentiation of MCF-7 cells. In
early transcription, sustained ERK activation induces IEG
expression including ¢-FOS. This DEF-domain containing
protein, c-FOS, can be stabilized by the upstream ERK sig-
nal. This expression is followed by expression of another
AP-1 family member, FRA-1, which then triggers FHL2
expression. FRA-1 protein requires stabilization by ERK to
function [70], and therefore ERK activity is required until
such time as FRA-1 and c-FOS proteins are stabilized. The
sequential appearance of FHL2 can then switch off unnec-
essary ERK activity, which results in complete signal cut-
off. The differentiation process in MCF-7 cells could there-
fore be regulated by negative feedback control from the
transcriptional network.
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Figure 7

Relationship among FHL2 and ERK activity. (A) MCF-7 cells were transfected with FHL2 siRNA. FHL2 and ¢-FOS mRNA
expression levels following 10 nM HRG treatment were analyzed by qRT-PCR. Bars + SEM. (B) ERK phosphorylation and total
protein levels were investigated by Western blot analysis. Phosphorylated protein expression levels were determined by nor-

malizing each value with total protein. Mean and range values are indicated in the graphs. Two independent studies were per-

formed for each experiment. Red lines, control cells; blue lines, FOSL-1/FHL2 knockdown. (C) Time-course appearance pf ERK
phosphorylation and FHL2 protein and FHL2 mRNA expression. HRG-treated MCF-7 cells were lysed with Bio-Plex assay rea-
gent. Normalized ERK phosphorylation is indicated by the red bars and FHL2 protein level determined by immunoblotting and
FHL2 mRNA level as determined from the GeneChip data (from Fig. |1C) is indicated by the green and blue bars, respectively.
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Proposed scheme of timed transcriptional regulation
for the HRG-induced differentiation model in MCF-7
cells. Solid arrows and lines indicate the validated process in
current issue and gray arrows are hypothetical process from
the gene expression data in Fig. |.
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