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Abstract

Background: Information generated via microarrays might uncover interactions between the
mammary gland and Streptococcus uberis (S. uberis) that could help identify control measures for
the prevention and spread of S. uberis mastitis, as well as improve overall animal health and welfare,
and decrease economic losses to dairy farmers. The main objective of this study was to determine
the most affected gene networks and pathways in mammary tissue in response to an intramammary
infection (IMI) with S. uberis and relate these with other physiological measurements associated
with immune and/or metabolic responses to mastitis challenge with S. uberis O 140).

Results: Streptococcus uberis IMI resulted in 2,102 (1,939 annotated) differentially expressed genes
(DEG). Within this set of DEG, we uncovered 20 significantly enriched canonical pathways (with
20 to 61 genes each), the majority of which were signaling pathways. Among the most inhibited
were LXR/RXR Signaling and PPARa/RXR« Signaling. Pathways activated by IMI were IL-10 Signaling
and IL-6 Signaling which likely reflected counter mechanisms of mammary tissue to respond to
infection. Of the 2,102 DEG, 1,082 were up-regulated during IMIl and were primarily involved with
the immune response, e.g., IL6, TNF, IL8, IL10, SELL, LYZ, and SAA3. Genes down-regulated (1,020)
included those associated with milk fat synthesis, e.g., LPINI, LPL, CD36, and BTN/AI. Network
analysis of DEG indicated that TNF had positive relationships with genes involved with immune
system function (e.g., CD 4, IL8, ILIB, and TLR2) and negative relationships with genes involved with
lipid metabolism (e.g., GPAM, SCD, FABP4, CD36, and LPL) and antioxidant activity (SOD/).
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Conclusion: Results provided novel information into the early signaling and metabolic pathways
in mammary tissue that are associated with the innate immune response to S. uberis infection. Our
study indicated that IMI challenge with S. uberis (strain O140J) elicited a strong transcriptomic
response, leading to potent activation of pro-inflammatory pathways that were associated with a
marked inhibition of lipid synthesis, stress-activated kinase signaling cascades, and PPAR signaling
(most likely PPARy). This latter effect may provide a mechanistic explanation for the inverse
relationship between immune response and milk fat synthesis.

Background

Mastitis is one of the most costly of all metabolic diseases
and disorders in the dairy industry and occurs most fre-
quently during early lactation [1,2]. The innate immune
response, primarily consisting of milk macrophages and
neutrophils (PMN), is the first line of defense against
invading pathogens. The initial stages associated with
innate immunity in the mammary gland are not well
understood. Mammary epithelial cells (MEC) have immu-
nological functions that contribute to the initial response
to an intramammary infection (IMI) [3]. Researchers have
used MEC lines or mammary tissue biopsies to study the
immunological role of MEC through response to in vitro
challenges with both Gram-positive and Gram-negative
bacteria [4,5] Microarray as well as quantitative reverse
transcription-PCR (qPCR) technology could provide use-
ful information on additional signals produced by MEC
during an IMI [6-8].

Streptococcus uberis (S. uberis) is a major environmental
mastitis-causing pathogen [9]. Infections due to S. uberis
are predominantly subclinical (ca. 95%) and are respon-
sible for up to 16% and 33% of clinical cases per year in
the United States and the United Kingdom [10,11]. Sub-
clinical mastitis is the dominant form of mastitis affecting
cows and frequently goes undetected and untreated for
extended periods of time, which can result in spreading to
other cows and significant reductions in profitability due
to losses of production and milk premiums [1]. Recently,
Swanson et al. [8] examined the mammary tissue tran-
scriptome via microarray technology of 5 Friesian heifers
in mid-to-late lactation after IMI with a noncapsular strain
of S. uberis (Strain 233). Genes involved with immune
response were up-regulated and genes involved in lipid
metabolism and cell death were down-regulated after IMI
with S. uberis. The capsular strain O140] has been shown
to be more resistant to PMN phagocytosis and more capa-
ble of establishing infection when compared to a noncap-
sular strain [12,13]. However, the pathogenic
mechanisms of S. uberis strain O140] are still unclear,
thus, transcriptomic evaluation of mammary tissue gene
expression after IMI with S. uberis O140] is clearly war-
ranted. More importantly, identifying molecular path-
ways and gene networks affected by IMI with this strain

would yield mechanistic information of the underlying
tissue adaptations to infection.

The main objective of this study was to determine the
most affected gene networks and pathways in mammary
tissue in response to an IMI with S. uberis O140]. We
hypothesized that IMI with S. uberis would up-regulate
genes involved with immune response and alter expres-
sion of genes involved with milk synthesis and composi-
tion as well as tissue function.

Results

Indicators of clinical response to IMI challenge

All cows developed both local and systemic responses to
IMI challenge. Details on local and systemic responses to
IMI challenge with S. uberis are described elsewhere [14].
Briefly, in response to IMI challenge, heart rate and body
temperature were significantly elevated (P < 0.001), and
there was a trend (P = 0.058) for increased respiration
rate. All cows developed mastitis after IMI challenge with
S. uberis. Clinical signs, such as flakes, watery, or yellow
colored mammary secretions were observed after inocula-
tion (i.e., between 24-36 h post-inoculation). Milk
somatic cell count (SCC) from challenged quarters was
increased (P < 0.001; 5.41 + 0.17 log,, cells/mL) by 20 h
when compared to 0 h post-inoculation (3.9 + 0.17 log,,
cells/mL). An overall increase (P < 0.001) in growth of S.
uberis was observed in inoculated quarters. By 12 h post-
inoculation, S. uberis was recovered from all challenged
quarters and shedding continued through 36 h post-inoc-
ulation similar to results of others [15,16]. Details on
individual quarter SCC and shedding of S. uberis are
shown in Figure S1 in Additional File 1.

Based on previous work in our laboratory [17], as well as
challenging 4 'test' cows prior to our experiment, peak
clinical signs based on heart rate, respiration rate, milk
secretion, shedding of S. uberis and, most importantly,
increased SCC occurred between 24-36 h post-challenge.
Therefore, biopsies were taken prior to peak clinical signs
to be more confidient that the majority of gene expression
data was attributed to MEC and not infiltrating neu-
trophils. Additionally, after biopsy (for details see Addi-
tional File 1), tissue (> 0.5 g) was blotted with sterile
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gauze to remove any visible milk secretions, and visible
connective tissue was cut off and removed. The infiltra-
tion of immune cells was assessed via specific macrophage
and neutrophil gene markers present on the bovine
microarray (Figure S2 in Additional File 1). The data indi-
cated an absence or a very slight increase in infiltration
due to IMI by 20 h post-inoculation. Therefore, most of
the responses in the present analysis must be attributed to
MEC; however, resident macrophages constitute ca. 5% or
more of the parenchyma tissue [18] and increased activity
of those cells could be detectable via gene expression, par-
ticularly for genes with low inherent expression in MEC.

Differential expression of genes in S. uberis-infected
quarters

A total of 2,102 oligonucleotides (1,808 annotated genes)
were differentially expressed (DEG) in response to IMI
infection (False Discovery Rate; FDR P < 0.06; unadjusted
P <0.01) (see Additional File 2 for data and statistics). Of
these, 1,082 genes were up-regulated and 1,020 genes
were down-regulated. From Ingenuity Pathway Analysis®
(IPA; Ingenuity Systems, Inc.), a total of 1,675 genes were
mapped or recognized based on annotation to a human
or mouse ortholog within the IPA Knowledge base. Of
these, 1,506 genes were eligible for generating networks
and 1,264 genes were mapped to known functions and/or
pathways based on published data across several species,
including human, rat and mouse (see Additional Files 3,
4,5, 6,7, 8 and 9). When a 1.5-fold change cut-off was
applied, among 173 oligos which passed this additional
criterion, 158 genes were eligible for networks and 143 for
functions and/or pathways analysis. Functions, pathways,
and gene networks for the analysis of 1.5-fold change cut-
off generated via IPA are presented in Additional Files 10,
11,12, 13 and 14.

qPCR

Table S1 in Additional File 1 lists genes selected for qPCR.
A total of 58 genes were analyzed: 37 were differentially
expressed with microarrays, 6 genes were not present on
the microarray platform, and 15 genes were not signifi-
cant at an FDR < 0.06. The latter genes were selected based
on their involvement in immune response or lipid metab-
olism. Among DEG, 78.3% (29 out of 37 genes) corre-
spond to results of microarrays. Considering all the genes
tested with qPCR we observed that ACP2 and BAX had
responses opposite to microarray results, ADFP, ADRB2,
ALOX5AP, ANXA1, C3, C1QC, HMOX1, IL10, IL1B, INSR,
NR3C1, PRKCB1, SAA3, SOCS2, and TNF, which were not
significantly affected in microarrays (FDR > 0.06) were
found to be affected significantly by qPCR (P < 0.05). In
addition, BAX, IL15, LALBA, SDHD, and VLDLR were sig-
nificant with microarray but not with qPCR. Quantitative
PCR is a more sensitive method of for gene expression
analysis, thus, the qPCR data instead of the microarray
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data were used for IPA analysis in all cases as we have
done in previous work [19]. Six genes (BNBD5, CASPS,
COX1, INSIG1, IRAK1, and TRAFG6) measured via qPCR
were not present on the microarray platform but have
been shown to be involved in immune response or meta-
bolic pathways in mammary tissue [7,20]. Of these, all
but COX1 were up-regulated by IMI.

Individual DEG

Table 1 shows the top 10 genes up-regulated (10- to
>1,000-fold) after IMI challenge with S. uberis. All genes
play major roles in immune response during infection
including cytokines (IL8, IL6, IL10, IL1B, and TNF) and
SAA3 (an acute-phase protein), as well as PMN adhesion
selectin-L. (SELL) and LYZ (involved in anti-microbial
defense). The top down-regulated genes (-1.68 to -2.3-
fold) after IMI are shown in Table 2. The primary func-
tions of these genes included lipid metabolism (LPIN1,
LPL, CD36, and BTN1A1) and cellular transport of miner-
als, particularly Zn and Cu (SLC30A4 and SLC31A1).

Functional analysis using IPA and gene ontology (GO)

The use of IPA (Additional Files 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13 and 14) and GO (see Additional Files 15 and 16)
on the entire list of DEG (2,102) or those with a 1.5-fold
cut-off revealed marked activation of genes associated
with immune-related and inflammatory-related functions
as well as an overall inhibition of lipid-related functions.

In particular, the IPA analysis (Additional Files 3, 4, 5, 6,
7, 8 and 9) with all 2,102 DEG uncovered induction of a
wide number of functions:

- proliferation of smooth muscle cells, endothelial cells
(both constituent of blood vessels), lymphocytes, and
fibroblasts

- apoptosis of immune cells but a likely inhibition for epi-
thelial cells

- large recruitment and infiltration of immune cells, par-
ticularly PMN, but also smooth muscle cells and bone

marrow cells

- quantity of nitrite, as well as release of lipid with a likely
increase in glucose transport

- the synthesis of nitric oxide was markedly induced,
together with the production of peroxide and hydrolysis
of GTP

- remodeling of tissue

- adhesion and activation of immune cells
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Table I: List of top 10 up-regulated genes in mammary tissue due to IMI with Streptococcus uberis'.

Gene Symbol Gene Name Primary Functions Fold Change

IL8 interleukin-8 Chemotaxis; neutrophil activation; G-protein coupled receptor 1054*
protein signaling pathway; angiogenesis.

IL6 interleukin-6 (interferon, beta) Acute phase response; B- and T- cell activation; neutrophil 430*
activation and apoptosis.

ILIRN interleukin-| receptor antagonist Inhibits activity of IL-1, IL-la, and IL-1f. 103.3*

SAA3 serum amyloid a3 (mammary) Acute phase response; antimicrobial activites. 64.1*

TNF tumor necrosis factor-alpha Acute phase response; pro-inflammatory immune response; 44.9%
regulation of cytokine secretion; insulin signaling; glucose
metabolism.

ILI0 interleukin-10 Anti-inflammatory immune response; inhibits pro-inflammatory 27.8*
cytokine secretion; induces IL-1RN and soluble TNF receptor
expression; negative regulator of antigen presentation.

PLAUR plasminogen activator, urokinase receptor Localizes and promotes plasmin formation; involved in cell-surface 18.7%
plasminogen activation and localized degradation of the
extracellular matrix.

LYZ lysozyme Anti-microbial defense agent via binding to bacterial cell wall 16.8%
peptidoglycan cleaving beta [|-4]glycosidic linkages.

ILIB interleukin-| beta Acute phase response; neutrophil chemotaxis; induces pro- 13.9%
inflammatory cytokine production.

SELL selectin-| Adhesion of leukocyte to endothelial cells. 10.0%

I Asterisk denotes qPCR data.

- angiogenesis

- cell cycle activity, with a likely increase in the differenti-
ation of lymphocytes but a decrease in differentiation of
muscle cells

- morphological changes in cells, particularly for leuko-
cytes and fibroblasts, with large reorganization of the
cytoskeleton and formation of blebbings

- strong activation of inflammation, but when considering
the entire transcriptional and animal (e.g. blood cortisol)

responses, the direction of gene expression suggested and
overall decrease of inflammation

- likely inhibition of triacylglycerol (TAG) synthesis but an
overall induction of lipid synthesis, particularly prostag-
landins.

Besides immune-related functions which included bind-
ing and activity of IL-1, IL-8, IL-10, TNF-a. and chemok-
ines, the GO molecular function analysis (Additional File
15) uncovered an increase in binding of genes encoding
heat-shock proteins, NAD, and tetratricopeptide repeat

Table 2: List of top 10 down-regulated genes in mammary tissue due to IMI with Streptococcus uberis'.

Gene Symbol Gene Name Primary Functions Fold Change
LPL Lipoprotein lipase Lipoprotein hydrolysis to allow fatty acid uptake -1.98*
CD36 CD36 molecule Binds long chain fatty acids and may function in the transport and/or -1.91*
as a regulator of fatty acid transport.
LPINI Lipin | Triglyceride synthesis; PPAR co-activator -2.30*
TRAF3IP3 TNF receptor-associated factor 3 Primary functions unknown; Play role in cell growth via modulation -2.25
interacting protein of JNK pathway; Proapoptosis
SLC30A4 Solute carrier family 30, (zinc Transport zinc out of the cytoplasm. -1.91
transporter), member 4
SLC31AI Solute carrier family 31, (copper Copper ion transmembrane transporter. -1.76
transporter), member |
KRTI9 Keratin 19 Involved in structural integrity of epithelial cells. -1.73
PEG3 Paternally expressed 3 Nucleic acid binding; Transcription factor activity; Zinc ion binding; -1.71
Metal ion binding.
IGF2BP2 Insulin-like growth factor 2 mRNA Functions by binding to the 5' UTR of the insulin-like growth factor -1.71
binding protein 2 2 (IGF2) mRNA and regulating IGF2 translation.
BTNIAI Butyrophilin, subfamily |, member Al Butyrophilin is major protein associated with milk fat droplet. -1.68
I Asterisk denotes qPCR data.
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(TPR) domain of a protein, the latter being important in
the regulation of vasorelaxation [21]. In addition, analysis
highlighted a decrease in genes encoding cofactor bind-
ing, particularly Mn and Se, a reduction of protein Ser/Thr
phosphatase activity, reduction of oxidoreductase by
NAD/NADP, an increase in long-chain fatty acid ligase
activity but reduction of several processes related to acyl-
carrier proteins.

The biological processes most enriched in GO (Additional
File 15) indicated a marked effect on cell signaling, mostly
related to apoptosis (e.g., caspase activation). The
immune response, and associated metabolism (e.g., nitric
oxide synthesis) and response to wounding, were the
most affected and activated processes. Proliferation was
highly increased in immune but also in endothelial cells.
Protein metabolism also was highly activated, with pro-
tein transport being the most enriched process, particu-
larly protein targeting which was increased. Interestingly,
data indicated an increase in transport of proteins towards
mitochondria. Data also suggested a marked increase in
post-translational modification of proteins such as fold-
ing, methylation, and alkylation. The analysis indicated a
sparing of the amino acid Ser, probably for protein syn-
thesis, by inhibition of its catabolic utilization. Transcrip-
tion was strongly activated, as well as post-transcriptional
modification, while catabolism of DNA was inhibited.
The transport of minerals, particularly di- and tri-valent
cations (which include calcium and zinc), was largely
increased. Fatty acid biosynthesis was evidently inhibited.
Malate metabolism, both mitochondrial (for the TCA
cycle) and cytosolic was highly-activated. There was also
an inhibition of kinase activity. Lastly, as highlighted by
IPA, the regulation of adhesion was highly activated.

The GO results for cellular components significantly
affected during S. uberis infection (Additional File 15)
revealed a strong morphological change of cells, mostly
for the formation of filopodium, i.e. "microspikes" or
cytoplasmic projections from migrating cells which play
an important role in cell migration and wound healing
[22]. Extrinsic component of membranes were increased
in abundance with large effect on proteins present in the
cytoplasm and organelles. Among those most enriched
was the endoplasmic reticulum (ER), particularly the
transport from nucleus to ER. Increased abundance also
was evident for components of actin filaments, which
agrees with the findings for cytoskeletal rearrangement
reported above for GO and IPA. Interestingly, compo-
nents of lysosomes and the Golgi were inhibited, as well
as components of the vesicle membrane; whereas, ER-
Golgi intermediate compartment components were
induced. Components of the proteasome, involved in
protein degradation, were also induced together with the
MHC complex components. The increase in abundance of

http://www.biomedcentral.com/1471-2164/10/542

the phosphatase type 2A complex supports the increase in
prostaglandin synthesis uncovered by IPA.

Overall, the analysis of DEG with > 1.5-fold by IPA (Addi-
tional Files 10, 11, 12, 13 and 14) and GO (Additional
File 16) provided results strikingly similar to the ones
obtained using all DEG. This suggested that the functions
found as significantly-enriched in the latter analysis
included genes whose expression was highly affected. The
GO analysis, however, allowed us to uncover a marked
up-regulation in expression of genes for G-coupled recep-
tors, cytokine and chemokine-mediated signaling, NFkB
import into nucleus; whereas, down-regulated genes were
associated with muscle development and organization.
The significant enrichment of negative regulation of apop-
tosis and the inhibition of fatty acid metabolism via GO
analysis also was noteworthy. GO analysis results for cel-
lular components and molecular functions among DEG >
1.5-fold (Additional File 16) confirmed the analysis that
included all DEG.

Canonical pathway analysis using IPA

The top canonical signaling and metabolic pathways
within all DEG (i.e, 2,102) are reported in Table 3.
Detailed images of selected pathways are shown in Figures
1, 2, 3 and 4 and all pathways are shown in Additional
Files 6, 7, 8, 9 and 12. As for the functional analysis (Addi-
tional Files 3, 4, 5, 10, and 11), most of the pathways
affected via IPA analysis were related to immune or
inflammatory functions. It was striking that signaling
pathways were the most affected and very few, with lower
significance, among all DEG were metabolic pathways.

Among signaling pathways, those data revealed a unique
landscape where induction of certain pathways which
limit the inflammatory response [e.g., induction of IL-10
Signaling (Figure 1), apparent inhibition of Chemokine
Signaling and fMLP Signaling in Neutrophils] was cou-
pled with activation of certain pathways which promote
the inflammatory response (e.g., IL-6 and acute phase
response signaling; Figures 1 and 2, respectively). Gluco-
corticoid signaling (Table 3 and Additional Files 7 and 8)
and other pathways related to the latter, such as ERK/
MAPK and PI3K/AKT signaling (Table 3 and Additional
Files 7 and 8), were highly enriched and were likely
induced except ERK/MAPK signaling, which the detailed
analysis did not indicate induction or inhibition. It was
evident that most of the pathways represented within the
DEG were inhibited. Pathways strongly inhibited were
CDKS5 Signaling (Figure 3A), related to neuronal function,
and IGF1 Signaling (Figure 3B) related to proliferation
and survival of cells. There also were other pathways
related to neuronal activity that were evidently inhibited
such as Ephrin Receptor Signaling and Axonal Guidance
Signaling (Additional Files 7 and 9). Pathway analysis
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Table 3: Top signaling and canonical pathways from Ingenuity Pathways Analysis (IPA) among the 2,102 DEG!'.

Ingenuity Canonical Pathways P-value Ratio Genes T/ Effect Function (from IPA)

Signaling pathways

ERK/MAPK Signaling 7E-09 0.26 50 33/17 3 Induce growth and differentiation

IL-10 Signaling 8E-08 0.35 25 22/3 n Limit and terminate the inflammatory

Glucocorticoid Receptor Signaling IE-07 0.21 6l 42/17 \’ Regulate immune, metabolic, cardiovascular and behavioral
functions

IL-6 Signaling 2E-05 0.28 27 24/3 n Regulator of acute-phase responses and a lymphocyte
stimulatory factor

Ceramide Signaling 2E-05 0.29 26 16/8 U Regulation of apoptosis and inflammation

Ephrin Receptor Signaling 3E-05 0.21 40 23/17 U Axon guidance, cell migration, angiogenesis and synaptic
plasticity

PI3K/AKT Signaling 3E-05 0.23 31 22/9 U Pathways of cytokines, growth factors and other extracellular
matrix proteins

PDGF Signaling 5E-05 0.28 22 1577 0 Growth, survival and function especially in connective tissue

Axonal Guidance Signaling |1E-04 0.17 67 39/28 U Help navigate the axon to its final destination

Chemokine Signaling 2E-04 0.28 21 11710 4 Act through cell surface receptors to induce inflammation
and many processes

Acute Phase Response Signaling 2E-04 0.21 36 31/5 n Inflammatory response

LXR/RXR Activation 2E-04 0.24 20 14/6 4 Mediate the biological effects of retinoids on lipid metabolism
and inflammation

fMLP Signaling in Neutrophils 2E-04 0.21 27 17/10 U Regulate many neutrophil functions such as migration and
phagocytosis

Aryl Hydrocarbon Receptor Signaling ~ 2E-04 0.21 34 16/16 3 Xenobiotic metabolism, cycle progression, cell proliferation,
and apoptosis

PPARa/RXRaActivation 2E-04 0.20 37 21/16 4 Fatty acid metabolism and anti-inflammatory

IL-3 Signaling 3E-04 0.27 20 11/9 0 Regulates hematopoiesis

CDKS Signaling 4E-04 0.25 23 15/8 Uy  Post-mitotic processes such as neuronal activity, migration,
and neurite outgrowth

Apoptosis Signaling 4E-04 0.25 25 14/9 <>  Apoptosis of programmed cell death

IGF-1 Signaling 4E-04 0.24 23 12/11 4y  Promotes cell proliferation, growth and survival

Recognition of Bacteria and Viruses S5E-04 0.24 21 17/4 ) Recognize conserved microbial structures or pathogen-
associated molecular patterns

Metabolic pathways

Nicotinate and Nicotinamide 2E-02 0.14 18 9/9 4 Synthesis and oxidation/reduction of NADH/NADPH

Pyruvate 2E-02 0.10 17 9/6 3

Arginine and Proline 4E-02 0.08 14 9/5 <

The P-value denotes the significance of the enrichment of a function within the DEG adjusted by Benjamini and Hochberg's FDR < 0.06

IShown also are the ratio (DEG/number of genes in the pathways), the total number of DEG in the pathway (Genes), the number of up- (1) and
down- ({) regulated DEG in the pathway, the overall effect on the pathways (denoted by N1l = strongly activated; 1 = evidently activated; T = likely
activated; ¥ = likely inhibited; U= evidently inhibited; <> equilibrium) see details in Additional Files 6, 7, 8, and 9.

also revealed a decrease of Ceramide Signaling for apop-
tosis, which suggested that the significant response related
to apoptosis uncovered by the functional analysis, was
notrelated to ceramides. Interestingly, results showed that
two signaling pathways related to lipid metabolism (LXR/
RXR and PPARa/RXRa Signaling; Figure 4; Additional
Files 7, 9 and 12) were inhibited by IMIL.

There were few significant metabolic pathways within the
2,102 DEG which we considered marginally significant
(FDR £ 0.06; Table 3 and Additional File 6). Details of the
pathways indicated a decrease in synthesis and oxidation/
reduction of NADH and NADPH, an overall decrease of
pyruvate metabolism, and an evident increase in utiliza-
tion of pyruvate for the TCA cycle through formation of
malate coupled with decrease of pyruvate utilization for
other processes (e.g., lipid synthesis). Arginine and Pro

metabolism also were affected. More detailed analysis of
this pathway indicated a decreased utilization of Arg for
catabolism and an increased utilization of this amino acid
for protein synthesis. Similarly, there was evidence for
increased utilization of Pro for other metabolic purposes
besides synthesis of protein (Additional File 6).

The top canonical pathways among DEG affected by >
1.5-fold are shown in Table 4 and Additional File 12.
These included IL-10 Signaling, LXR/RXR Signaling, IL-6
Signaling, and Glucocorticoid Receptor Signaling. The major-
ity of genes with > 1.5-fold change within these pathways
were up-regulated. All those pathways were related to
immune response and lipid metabolism, with a general
induction of immune-related pathways and inhibition of
lipid-related ones. This apparently negative association
between immune response and lipid metabolism is sup-
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cocorticoid Receptor Signaling; Additional File 12; Table 4)
in mammary tissue.

Gene networks among DEG with > 1.5-fold during IMI
challenge

We identified 19 networks (158 DEG) within IPA analyses
that were associated with IMI challenge among the DEG
affected by > 1.5-fold (Additional File 13) based on
microarray and qPCR. The top 5 networks were merged to
evaluate relationships between individual DEG during
IMI challenge with S. uberis. These networks included a
total of 100 DEG involved in pathways and functions
including Immune Response, Immune Disease, Connective
Tissue Disorders, Lipid and Carbohydrate Metabolism, Molec-
ular Transport, Cell-To-Cell Signaling, Tissue Development,
Cellular Development, and Immune and Lymphatic System
Development and Function. The results of merging those
networks are shown in Additional File 14. Within this
larger network, a subset of DEG (22) identified as having

the greatest fold-change in expression that play major
roles in either immune response and/or lipid and carbo-
hydrate metabolism are shown in Figure 5. These genes
encode cytokines (TNF, IL8, and IL1B), lipid metabolism-
related genes (CD36, FABP4, GPAM, LPIN1, LPL, and
SCD), acute phase proteins (APP; SAA3), transcription
regulators (BCL3, FOS and NFKBIA), receptors (CD14,
TLR2, and PLAUR), peptidases (PLAU and LTF), and oth-
ers such as SELP, SELL, and SOD1 (see Table S1 for details
about those genes). All genes in this network (Figure 5),
except for GPAM and FABP4, were verified by qPCR (Table
S1). Of these, only SAA3 had results opposite of microar-
rays. However, SAA3 was not significantly affected with
microarray (FDR = 0.66; -1.03-fold change).

Of the 15 genes up-regulated (red) within the network, all
play arole in some aspect of the immune response includ-
ing cytokine activity (IL10, TNF, IL8, and IL1B), cell adhe-
sion (SELL and SELP), immune activation (CD14 and
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Table 4: Top 5 enriched canonical pathways among DEG with > |
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.5-fold due to intramammary infection'.

Genes
Canonical Pathway Up/Down #Genes/Total2 Up-Regulated Down-Regulated
IL-10 Signaling 19/0 19/71 BCL3*3, CCL2, FOS*, HSPAS, ILIB*, ILIR2%,
ILIRN¥*, IL6*, IL8%,
IL10%* NFKBIA*, STAT3* TNF*
LXR/RXR Activation 11/4 15/85 ARG2, CCL2, CD 4%, ILIB*, ILIR2* ILIRN*, IL6*  CD36%* FASN, LPL* SCD*
IL18% LDLR*, TLR4* TNF*
IL-6 Signaling 13/0 13/94 BCL3* CDI4, FOS*, ILIB*, ILIR2%, ILIRN*, IL6*
IL8%, IL18%, NFKBIA*, STAT3* TNF* TNFIPé
Triggering receptor expressed on 11/0 11/69 CCL2, ILIB*, IL6%, IL8*, ILI0*, ILI18%* STAT3*
myeloid cells | (TREM1) signaling TLR2%*, TLR4*, TNF*, TREMI
Glucocorticoid Receptor Signaling 17/0 17/275 ANXA I * BCL3* FOS* HMOX* HSPA5, HSPAS,

ILIB*, ILIR2%, ILIRN¥, IL6*, IL8%, ILI0* SMAD3,
STAT3* TNF*, VCAMI

'One rear quarter of all mid-lactation Holstein cows (n = 10) was inoculated with 5,000 cfu of Streptococcus uberis (strain O 140)).

2gtgenes/total = number of differentially expressed genes from microarray and qPCR analysis (> |.5-fold change; FDR < 0.06; P < 0.01) out of total
# of genes associated with the canonical pathway according to Ingenuity Pathway Analysis.

3genes with * symbol = qPCR expression results for verification of genes on microarray as well as genes selected for qPCR analysis not present on

microarray.

TLR2), acute phase reaction (TNF, IL1B, and SAA3), apop-
tosis (BCL3), and plasminogen metabolism (PLAU and
PLAUR). Interestingly, induction of plasminogen metabo-
lism has been used as an indication of virulence of S.
uberis associated with bovine mastitis [23,24]. Of the 7
DEG down-regulated (green), the majority are involved in
milk fat synthesis (e.g., SCD, LPL, GPAM, and LPIN1). The
network revealed that TNF, at least judging by human/
rodent data within the IPA knowledge base, has both
direct and indirect positive relationships (blue arrows)
with DEG involved in immune response and negative
relationships (orange arrows) with DEG associated with
lipid metabolism.

Discussion

Immune system response genes

General considerations

The microarray analysis clearly indicated that the mam-
mary gland after a 20 h inoculation with S. uberis experi-
enced a wide transcriptional response, which
encompassed > 2,000 genes. Overall, the functional anal-
ysis uncovered that few functions were significantly
affected, i.e. immune response was clearly the most
affected and induced followed by cell proliferation/cycle/
death and transport of protein and ions both of which
were induced. In contrast, lipid metabolism was inhib-
ited. Cell proliferation was seemingly or evidently
induced in IPA analysis but GO analysis revealed that reg-
ulation of cell proliferation was not clearly towards induc-
tion, suggesting that the process of proliferation was
probably increased for certain cells (e.g., immune and
endothelial cells) but was not important for others. The
overall picture from IPA and GO analyses captured the
most affected functions but did not provide information

of the potential mechanisms at play. The use of well-
established pathways (i.e., canonical pathways) together
with information about single genes provided additional
means to unravel the mechanisms controlling the mam-
mary response to IMI before peak clinical signs.

Top up-regulated DEG

Numerous cytokines involved in the immune response
were significantly up-regulated in mammary tissue during
IMI challenge with S. uberis. Genes coding for the
cytokines TNF, IL6, and IL1B were among the top DEG
(Table 1). Furthermore, among the list of all DEG (i.e.,
2,102) there were several up-regulated DEG that belong to
pro-inflammatory pathways including CD14, TRAF6,
NFKBIA, NFKB2, and STAT3 (Figure 1). Functional analy-
sis with GO and IPA clearly underscored the induction of
inflammation as well as cytokine binding in mammary
tissue from IMI (Figure 1 and Additional File 15). Other
cytokines or cytokine receptors up-regulated during S.
uberis IMI included IL18 and IL1R2 (verified via qPCR;
Table S1). Interleukin-18 (IL-18) can induce interferon
gamma (IFN-y) production from T cells and, in combina-
tion with IL-12, IL-18 can inhibit IL-4-dependent immu-
noglobulin (Ig) E and IgG1 production as well as activate
IgG2a secretion by B cells [25]. However, microarray anal-
ysis indicated that expression of IL12 and IFNG was not
significantly altered during IMI challenge with S. uberis
and that IL4R expression increased (1.26-fold; Additional
File 2). This may indicate that the up-regulation of IL18
had minimal downstream affects on the innate immune
response to S. uberis. Similar results were observed by
Yang et al. [26] where IL18 expression, but not IFNG, was
up-regulated in MEC after IMI challenge with Staphylococ-
cus aureus (Staph. aureus).
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The chemokine IL8 had the greatest change in expression
resulting in a fold-change of 1,054 in infected vs. control
quarters (Table S1). The importance of this protein and its
related functions was underscored by GO molecular func-
tion analysis both when the entire DEG or those with
>1.5-fold were analyzed (Additional Files 2 and 15). This
chemokine is induced upon stimulation of TNF or IL-1
(Figure 1) and serves as a primary chemoattractant during
the innate immune response, thus, playing a major role in
the chemotaxis of PMN. Therefore, it seems logical that

the dramatic increase in IL8 expression would occur
before peak clinical signs of mastitis. Swanson et al. [8]
did not observe a significant change in IL8 expression in
bovine mammary tissue after IMI with S. uberis (Strain
233); but increased IL8 mRNA expression has been
reported in primary isolates of bovine MEC after chal-
lenge with Escherichia coli (E. coli) [27]. With regards to
results of Swanson et al. [8], mammary tissue was col-
lected between 60-132 hours post-inoculation when peak
clinical signs already had occurred. In our study, mam-
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mary biopsies were performed prior to peak clinical
response and prior to the major influx of PMN into the
mammary gland (supported by gene markers analysis,
Figure S2 in Additional File 1), milk compositional
changes and clinical signs of mastitis [14], and our previ-
ous work using this dose and strain of S. uberis [17].

The anti-inflammatory IL-10 and pro-inflammatory IL-6 pathways
are activated before peak clinical signs

Interleukin-10 Signaling was among the primary canonical
pathways affected by IMI challenge with S. uberis (Table 3
and 4, Figure 1, and Additional Files 7 and 12). The bind-
ing of the IL-1 cytokine family to the IL-1 receptor medi-
ates the activity of TRAF6 (tumor necrosis receptor-
associated factor 6; Figure 1 and Additional File 12), lead-
ing to activation of the p38 MAPK signaling pathway that
ultimately leads to increased transcription of IL10.
Despite a significant down-regulation of p38 MAPK (i.e.
MAPK12; -1.22-fold; Figure 1) during IMI, the observed
13.9-fold up-regulation of IL1B and 38.9-fold up-regula-
tion of IL1R2 probably overcame that response and also
might have been sufficient to account for the fact that
JAK1 expression was down-regulated (-1.17-fold; Figure
1). Interleukin-10 is an anti-inflammatory cytokine that
blocks NF-«B activity, which leads to suppression of pro-
inflammatory mediators such as TNF, IL6, and IL1.
Expression of 22 out of 25 putative components (71 total
in IPA) of the IL-10 signaling pathway present in our
microarray platform were moderately but significantly up-
regulated (Figure 1). Of interest was the mild up-regula-
tion of STAT3 (ca. 3-fold; Table S1) which in turn is
known to activate SOCS3 and activate IL-6-signaling [28].
Despite the marked up-regulation of IL10, our results of
pathway analysis were indicative of more pronounced
inflammation and probably hampered IL-10 anti-inflam-
matory activity.

Interleukin-6 Signaling was a major pathway affected by
IMI challenge with S. uberis (Tables 3 and 4 and Figure 1).
Several genes overlap between IL-6 and IL-10 Signaling,
including an up-regulation of TNF, IL1B, NFKBIA, STAT3,
TRAF6, and FOS and down-regulation of MAPKI2.
Expression of IL6 occurs via the NF-«B signaling pathway.
Interleukin-6 is a pro-inflammatory cytokine that is also
involved in acute-phase protein signaling (Figure 2). The
coordinated up-regulation of genes involved in both IL-6
and IL-10 Signaling during IMI with S. uberis is suggestive
of an ability of the immune system to generate a pro-
inflammatory response via the IL-6 Signaling Pathway
while attempting to control the severity and duration of
the inflammation via the anti-inflammatory IL-10 Signal-
ing Pathway. By far, however, our data suggested that the
pro-inflammatory response via IL6 and TNF overrode the
anti-inflammatory response via IL10.

http://www.biomedcentral.com/1471-2164/10/542

IL-6 also has been shown to have anti-inflammatory capa-
bilities through inhibition of IL-1p and TNF [29-31]. In
our study, however, the signaling pathway through TNF
and IL-1 appeared largely activated (Figure 1), with a
more pronounced up-regulation of NFKBIA (in the path-
ways in Figure 1, IkB expression is determined by this
gene, which is one of its components) than NFKB2 (this
genes is a component of NF-kB), which suggested a poten-
tial inhibitory effect on the induction of survival genes via
NFKB2 [32] and a control of inflammatory response. In
the context of regulation of cell death/survival, it was evi-
dent that cell survival via enhanced growth and differenti-
ation might have been inhibited due to IMI because the
genes coding for phosphorylation enzymes in the ERK
(extracellular-regulated kinase)/MAPK (mitogen activated
protein kinase) signaling pathway, which is involved in
control of a broad range of intracellular functions [33]
were down-regulated (Table 3). These data suggested that
signaling through phosphorylation (see also PI3K/AKT
signaling; Table 3, Additional Files 7 and 12) was inhib-
ited as a result of IMI. This latter finding was also observed
by GO analysis (Additional File 15).

Our results regarding IL-6 and IL-10 support the work of
Swanson et al. [8] who observed an up-regulation of the
ILG receptor (1.83-fold change) and IL10 receptor alpha
(1.91-fold change) in bovine mammary tissue after S.
uberis IMI. Similar to our data, Lutzow et al. [7] after IMI
challenge with Staph. aureus observed an up-regulation
(via microarrays) of genes involved in both IL-6 and IL-10
signaling including IL1B, IL6, IL8, CD14, FOS, and NFK-
BIA. In our study, we isolated whey from all infected quar-
ters and analyzed samples for concentrations of IL-10, IL-
1B, and TNF at 0, 12, and 20 h (time of biopsy) post-inoc-
ulation [14]. No significant changes in cytokine concen-
trations were observed by 20 h post-inoculation when
compared to pre-infection levels (0 h). This may be attrib-
uted to the fact that the mammary biopsies were per-
formed prior to peak clinical signs of mastitis in order to
avoid tissue samples with elevated amounts of mRNA
from infiltrating PMN. Unfortunately, the side effects of
the biopsy procedure (e.g., blood clots) made it impossi-
ble to isolate whey from mammary secretions during peak
clinical signs. However, Bannerman et al. [15] evaluated
cytokine secretions in whey collected from mammary
quarters challenged with S. uberis and observed elevated
milk concentrations of IL-1f, IL-8, IL-10, IL-12, TNF, and
IFN-y compared with healthy quarters by ~30 h post-chal-
lenge.

Toll-like receptor signaling

Bacteria contain pathogen-associated molecular patterns
(PAMPs) motifs, such as LPS or lipoteichoic acid (LTA),
that are potent stimulators of innate immunity. Lipid A is
considered the active motif for the PAMP activity of LPS
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from Gram-negative bacteria such as E. coli that stimulates
the innate immune response and activates TLR-4 and the
LPS-LPS binding protein-CD14 complex; however, the
active motif for the PAMP activity of LTA (i.e. Gram-posi-
tive bacteria such as S. uberis and Staph. aureus) remains
unknown. Regardless, TLR-2 protein is activated via LTA.
The toll-like receptor (TLR) signaling pathway results in
the synthesis of several pro-inflammatory cytokines (TNF,
IL1B, and IL6) and chemokines (IL8). Although this path-
way was not among the most significant in IPA analysis
(Table 3 and Additional Files 6, 7, 8, 9 and 12), several
genes involved in TLR signaling were up-regulated during
IMI challenge including TLR2, TLR4, CASP8, CD14, FOS,
IRAK1, TRAFG6, and NFKBIA. All genes were verified via
qPCR (Table S1). In addition, TOLLIP (toll interacting
protein), a negative regulator of inflammation, was also
significantly up-regulated (1.15-fold change; Additional
File 2).

Several studies have evaluated gene expression profiles in
mammary tissue or MEC lines after challenge with
another Gram-positive bacterium, Staph. aureus [6,7]. Lut-
zow et al. [7] observed that Staph. aureus alters both TLR-
2 and TLR-4 signaling pathways. They observed an up-reg-
ulation of TLR2, FOS, and NFKBIA during IMI challenge
with Staph. aureus as well as TLR4 and CD14, both of
which are primarily activated via LPS from Gram-negative
bacteria such as E. coli. These researchers also observed an
up-regulation of pro-inflammatory mediators including
TNF, IL1B, IL8, and IL6 after IMI with Staph. aureus. How-
ever, Yang et al. [26] observed that IMI challenge with
high doses of Staph. aureus (10,000 cfu; Strain 1027)
failed to activate NF-kB signaling and the pro-inflamma-
tory genes TNF and CXCL8. A "weak" immune response
may be attributed to the virulence factors associated with
this strain of Staph. aureus, because heat-inactivated Staph.
aureus increased the expression of TLR signaling compo-
nents and NF-kB activation [26]. The TLR-mediated NF-
kB activation not only signals numerous pro-inflamma-
tory genes but also other anti-microbial immune defense
genes such as beta-defensins, which are oxygen-independ-
ent peptides that have potent anti-microbial activities
[34]. Our data also showed a significant increase in
expression of BNBD5, the most abundantly-expressed
member of the beta-defensin family of bactericidal pep-
tides in MEC (4.19-fold change; Table S1; Additional File
2) [6]. Our data support results from Swanson et al. [35],
who found increased expression of lingual antimicrobial
peptide (LAP), a member of the beta-defensin family, dur-
ing IMI challenge with S. uberis.

Our microarray analysis demonstrated an increased
expression of both TLR2 and TLR4 after IMI challenge
with S. uberis compared with control quarters. However,
Swanson et al. [8] observed an up-regulation of TLR2 but

http://www.biomedcentral.com/1471-2164/10/542

not TLR4 expression in bovine mammary tissue after S.
uberis IMI. Increased expression of both TLR2 and TLR4
signaling pathways during IMI challenge with Gram-pos-
itive or Gram-negative bacteria has been observed in
recent studies [7,26,36]. Most of these studies have exam-
ined TLR expression patterns in response to E. coli or
Staph. aureus, both major pathogens associated with mas-
titis in the dairy industry. Goldammer et al. [6] reported
an increased expression of both TLR2 and TLR4 (8-to-12-
fold change) in bovine mammary quarters naturally
infected with S. aureus when compared to healthy quar-
ters. This response is supported by results of Yang et al.
[26], where both TLR2 and TLR4 were up-regulated after
IMI challenge with either Staph. aureus or E. coli. Similar
results were also observed when bovine MEC were chal-
lenged with LPS [36], as well as in mammary tissue after
IMI challenge with Staph. aureus (determined via microar-

rays) [7].

Other DEG involved with immune response

Other DEG of interest that were significantly up-regulated
during IMI challenge with S. uberis included HLA-DRA
(1.82-fold change; Table S1 in Additional File 1; Addi-
tional File 2) and C1QC (1.37-fold change; Table S1 in
Additional File 1; Additional File 2). HLA-DRA codes for
the major histocompatability complex type II (MHC II)
DR alpha and is primarily expressed on T lymphocytes
and macrophages. This gene is considered a candidate
gene marker of disease resistance [37]. The role of MHC II
in mammary tissue is unclear. Fitzpatrick et al.
[38]observed expression of MHC Il-positive cells in the
connective tissue of the healthy mammary quarters and
quarters infected with formalin-killed S. uberis; although
individual cell identification was not conducted. Swanson
et al. [8] reported an up-regulation of HLA-DRA (1.73-
fold change) in bovine mammary tissue after S. uberis IMI.
The MHC II complex presents antigen fragments to T-
helper cells by binding to the CD4 receptor on T-helper
cells. However, we did not detect differential expression of
CD4. Although mammary tissue was thoroughly blotted
with gauze to remove any visual milk secretions, it is pos-
sible that the expression of HLA-DRA may have been
acquired through milk lymphocytes and macrophages
present in mammary tissue during the biopsy. MHC II
expression in MEC warrants further investigation. The
observed up-regulation of C1QC was opposite to results
from both Swanson et al. [8] who found down-regulation
(-1.74-fold change) after S. uberis IMI and those of
Ginther et al. [27] who observed a 1.6 to 3.2-fold
decrease in mRNA expression of factors associated with
the C1 complex (e.g., C1gA, C1gB, Cls and CIr) in bovine
MEC after challenge with E. coli. The complement compo-
nent C1q is the first step in the initiation of the classical
pathway of the complement cascade [39]. Researchers
have not been able to quantify Cl1q concentrations in
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mastitic milk and primarily attribute this to its large size
(900 kDa), which may render it impermeable to the mam-
mary epithelium [40].

No current information is available on the use of the lec-
tin pathway in the mammary gland during an IMI.
Researchers have concluded that the mammary gland
must lack the classical pathway and therefore must rely
primarily on the alternative pathway of the complement
system [39]. The initial step of the alternative pathway
involves the cleavage of complement component 3 (C3)
into fragments C3a and C3b. The expression of C3 (via
microarray and qPCR) was significantly up-regulated
(1.43-fold change) in mammary quarters infected with S.
uberis and supports the work of Swanson et al. [8]. The C3
component has been quantified in mastitic milk [41]. C3
is also a downstream intermediate step involved with
both the classical and alternative pathways of the comple-
ment system that ultimately leads to the assembly of the
membrane attack complex (MAC complex), which con-
sists of complement proteins C5a, C6, C7, C8, and C9.
The membrane attack complex plays a role in the disrup-
tion of the bacteria cell walls during the immune
response.

Two genes involved in inhibition of the complement cas-
cade were significantly up-regulated in infected versus
non-infected mammary quarters. These genes were CD59
(1.22-fold change) and CD55 (2.07-fold change) (Addi-
tional File 2). CD59 is involved in the inhibition of the
assembly of the membrane attack complex. CD55, or the
decay accelerating factor for complement, binds to both
the C2-C4b complex of the classical pathway and the C3-
Cfb complex of the alternative pathway. This binding
accelerates their decay, disrupting the cleavage of C3 into
C3b and C3a fragments, which leads to inhibition of the
cascade and prevention of damage to host cells. To our
knowledge, this is the first report of a significant up-regu-
lation in expression of the C1QC gene from mammary
quarters infected with S. uberis. Swanson et al. [8]
observed an inverse relationship between C1Q expression
(-1.74-fold change) and C3 (2.36-fold change) after S.
uberis IMI. The researchers did not elaborate on the inverse
relationship in gene expression patterns between C3 and
C1Q. Further research related to the classical pathway of
the complement cascade in the mammary gland is
needed.

Cell proliferation, angiogenesis, and apoptosis

The overall functional analysis both in IPA and GO clearly
indicated an induction of proliferation of several types of
cells but in particular immune, endothelial, and muscle
cells. In contrast, several significantly-enriched pathways
related to proliferation/angiogenesis were strongly (e.g.,
IGF1 in Figure 3B and ephrin receptor in Table 3) or likely
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inhibited (Aryl Hydrocarbon Receptor signaling; Addi-
tional Files 7 and 9), with both the platelet-derived
growth factor (PDGF) and PI3K/AKT signaling pathways
likely induced (see below).

Angiogenesis and inflammation: possible role of PDGF
signaling and hypoxia

Platelet-derived growth factor (PDGF) refers to a family of
dimeric isoforms that are important for growth, survival,
and function especially in connective tissue [42]. Four dif-
ferent PDGF chains have been identified, the classical
PDGF-A and PDGF-B and the more recent PDGF-C and
PDGF-D isoforms. These isoforms that occur as
homodimers or heterodimers (PDGF-AA, AB, BB, CC and
DD) exert their effects by differential binding to two
receptor tyrosine kinases [42]. Binding of PDGF induces
dimerization and autophosphorylation of the tyrosine
kinase receptors. Depending on the PDGF isoform
involved, homo or heterodimers of the receptor are
formed. It is interesting that paracrine PDGF-B signaling
has a role in blood vessel formation (i.e., angiogenesis)
and it is a potent effector of epithelial cancer growth [42].
The likely induction of PDGF pathway in our study might
partly explain the induction of biological processes such
as positive regulation of cell proliferation and vasculature
development (Additional Files 15 and 16). In fact, signal-
ing through PDGF might have counteracted the marked
inhibition of the Ephrin receptor signaling pathway
(Table 3), which also is a pro-angiogenic pathway [43].

A key factor contributing to angiogenesis and aberrant cel-
lular growth (e.g., epithelial tumors) is hypoxia [43]. As
cells outgrow their blood supply or are deprived of oxy-
gen, a transcriptional response to hypoxia is initiated.
Although several transcription factor pathways seem to be
involved, most attention has focused on hypoxia-induci-
ble factor 1 (HIF1A), which was up-regulated with IMI
(Additional File 2). This is a heterodimer of two DNA
binding proteins, HIF1A, and the aryl hydrocarbon
nuclear translocator (HIF1B) [43]. In normoxia, HIF1A is
unstable and rapidly degrades via the proteasome, but as
oxygen tension drops below 2% (e.g., air is <20%), HIF1A
is stabilized, translocates to the nucleus and interacts with
HIF1B. The heterodimer initiate a complex transcriptional
program via specific hypoxia response elements [43]. In
our experiment, we observed up-regulation of many
hypoxia-responsive genes as seen in non-ruminants [44],
e.g. HIF1A and several others involved in glucose metab-
olism/glycolysis (e.g., SLC2A3, GAPDH, LDHA), growth
factors/cytokines (e.g., IL6, IL8, PDGFB), oxygen transport
and iron metabolism (e.g., HMOX1, LTF), as well as sev-
eral other genes/transcription factors involved in wound
healing and angiogenesis (e.g., FOS, JUNB) (Table S1;
Additional File 2). It is also interesting that both pyruvate
and lactate originating from anaerobic glycolysis in tissues
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are angiogenic [44]. In the context of our study, a greater
uptake of glucose due to up-regulation of SLC2A3 cou-
pled with a reduction in the need for TAG synthesis as well
as lactose for secretion in milk (e.g., most lipogenic genes
and LALBA were down-regulated) could have led to accu-
mulation of pyruvate from glycolysis and might have
played a role in promoting hypoxia. The accumulation of
pyruvate seems to be supported also by the likely inhibi-
tion of pyruvate metabolism (Additional File 6).

Despite up-regulation of HIFIA and aryl hydrocarbon
receptor (AHR) due to IMI, our pathway analysis revealed
that the two signaling pathways associated with response
to hypoxia (Ephrin receptor and Aryl hydrocarbon recep-
tor) were for the most part inhibited (Table 3). In the case
of the Aryl hydrocarbon receptor signaling pathway, it
seems likely that the marked increases in IL6 and activa-
tion of NFKBIA (Additional File 2) were the main causes
for overall inhibition of the pathway.

The mystery of IGFI signaling and inflammation
Insulin-like growth factor binding 1 (IGF1) is considered
an anabolic hormone and plays a pivotal role in mam-
mary development [45] and potentially in maintaining
the epithelial cells during the declining phase of lactation
[46]. However, there is no evidence of a role of IGF1 in
lactating mammary tissue, at the least in bovine. In sup-
port of this, work from one of our laboratories has
observed that IGF1 signaling is not among the signifi-
cantly affected pathways in bovine mammary tissue dur-
ing lactation and appeared to be inhibited (M. Bionaz, S.
L. Rodriguez-Zas, R. E. Everts, H. A. Lewin, and J. J. Loor,
University of Illinois, Urbana, unpublished results).

The IGF1 signaling pathway (Figure 3B; Additional File 7)
was strongly inhibited after S. uberis challenge, suggesting
"resistance" of mammary tissue to IGF1 during IMI. In the
immune system, signaling via IGF1 is a crucial event
resulting in postponement of apoptosis (increasing sur-
vival) of PMN through mediation of the PI3K signaling
pathway [47]. If that holds true in mammary after IMI,
our data suggest that apoptosis of PMN was probably sub-
stantial at 20 h post inoculation. The functional analysis
in IPA indicated that apoptosis was significantly affected,
with a balance between induction and inhibition (Addi-
tional File 15) but overall this process was likely induced
particularly in macrophages (Figure S2). Furthermore, as
indicated by GO analysis (Additional File 15), apoptosis
occurred through caspase activation (Additional File 15).

To our knowledge a direct inhibitory effect of inflamma-
tion on IGF1 signaling has not been reported; however,
modulation of IGF signaling by glucocorticoids in muscle
was previously demonstrated [48]. This observation sug-
gests a possible effect of corticoids prior to mammary tis-
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sue collection. However, plasma cortisol was not
increased significantly in cows after IMI in the present
experiment [14]. In summary, the inhibition of IGF1 sig-
naling might have played a role in decreased immune cell
survival, particularly macrophages. A possible inhibitory
effect of glucocorticoids on this pathway cannot be
excluded. The inhibition of IGF1 signaling after IMI in
bovine mammary is a novel finding that still requires tel-
eological explanation.

Lipid metabolism and immune response

Integration of lipid metabolism and inflammation: possible role of
LXR/RXR and PPAR signaling pathways

Both LXRs and PPARs are involved in the regulation of
metabolic and inflammatory signaling [49,50]. PPARA is
expressed in liver, brown adipose tissue, heart, and muscle
tissue and plays a pivotal role in fatty acid catabolism
[49]; whereas, PPAR-y (PPARG) is highly expressed in adi-
pose tissue and macrophages and primarily regulates adi-
pogenesis [50,51]. PPAR-y has been shown to be
expressed in bovine mammary tissue and is also signifi-
cantly increased during lactation [51]. PPARA and PPARG
have anti-inflammatory properties [50,52]. PPARG has
been shown to interfere with the transcription of pro-
inflammatory factors such as STAT and NF-xB in macro-
phages [53].

In non-ruminant macrophages, studies have shown that
ligand-activated LXR inhibits expression of genes involved
with immune response [54]. Interestingly, studies have
also shown that TLR4 activation in macrophages inhibits
LXR signaling [55]. Activation of inflammatory signaling
pathways and release of inflammatory mediators are fun-
damental to the diverse immune functions of macro-
phages, and the mammary gland possesses resident
macrophages [56]. In addition to inducing genes involved
in reverse cholesterol transport, LXR reciprocally represses
a set of inflammatory genes after bacterial lipopolysach-
aride (LPS), TNF, or IL-1pB stimulation [57]. Examples of
such genes include those involved in generation of bioac-
tive molecules such as NOS2A, IL-6, TNF, and IL-1p, the
chemokines CCL2, and matrix metallopeptidases. We
found that IMI resulted in marked up-regulation of IL6
(430-fold), TNF (45-fold), IL1B (14-fold), and CCL2 (3.3-
fold) and moderate but significant up-regulation of
NOS2A (1.2-fold) and MMP7 (1.4-fold; Table S1 and
Additional File 2). As previously stated, most of the
responses in the present study are likely attributed to MEC
and potentially resident macrophages, which constitute
ca. 5% or more of the parenchyma tissue [18]. It is possi-
ble that increased NOS2A expression may be attributed to
resident macrophages. However, studies have reported
increased expression of the endothelial (eNOS) and
inducible (iNOS) forms of nitric oxide synthase in human
[58] and murine [59] breast cancer tissue. The increased
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TLR4 expression after IMI in our study may partly explain
the down-regulation of the genes involved with LXR/RXR
signaling. The TLR4 response might have been driven via
up-regulation of IRF6 (Additional File 2) [57].

Studies investigating the LXR/RXR signaling pathway in
the mammary gland are sparse and have primarily
focused on expression of genes involved in this pathway
during murine lactation regardless of bacteriological sta-
tus [60]. Mouse mammary microarray data [60] has sug-
gested the potential involvement of two systems in
controlling fatty acid metabolism. These include the LXR/
RXR pathway controlling 1) B-oxidation of fatty acids via
LXR (also known as NR1H2)/PPAR dimers; and 2) fatty
acid synthesis involving the LXR/RXR dimer, which
induce expression of the sterol regulatory element-bind-
ing proteins 1 (SREBF1) and 2 (SREBF2).

The lactating bovine mammary gland does not seem to
oxidize long-chain fatty acids as a source of energy [61],
thus, any involvement of LXR in bovine mammary tissue
might be at the level of fatty acid synthesis and/or inflam-
mation (as in non-ruminant macrophages) [57]. How-
ever, the expression of LXR in bovine mammary tissue
only increased slightly during lactation relative to preg-
nancy and it was not among DEG (M. Bionaz, S. L. Rod-
riguez-Zas, R. E. Everts, H. A. Lewin, and J. J. Loor,
University of Illinois, Urbana, unpublished results).
Those responses coupled with the lack of change in LXR
expression due to IMI were suggestive of a minor role for
LXR in mediating anti-inflammatory or lipogenic mecha-
nisms in bovine mammary tissue.

Expression of PPARA is barely detectable in bovine mam-
mary tissue (M. Bionaz, S. L. Rodriguez-Zas, R. E. Everts,
H. A. Lewin, and J. J. Loor, unpublished results) and tends
to decrease during lactation, which points to a minor role
of this nuclear receptor in bovine mammary lipid metab-
olism. We recently showed that mRNA expression of
PPARG was consistently up-regulated during lactation,
suggesting that it could play a role in milk fat synthesis
[51]. A role of PPARG in regulating bovine milk fat syn-
thesis machinery was supported by recent results we
obtained where treatment of MacT cells (bovine mam-
mary epithelial immortalized cells) with rosiglitazone, a
specific PPARy agonist, resulted in coordinated up-regula-
tion of genes involved in FA import (e.g., CD36), de novo
FA synthesis (e.g., ACACA, FASN, SREBF1), and TAG syn-
thesis (e.g., LPIN1, SCD) [62]. More importantly in the
context of the present study, a recent study with PPARy-
knockout mice indicated that its absence increased utiliza-
tion of long-chain fatty acids for synthesis of inflamma-
tory lipids due to reduced TAG synthesis [63]. PPARG-
knockout mice had a sustained increase in 12-lipoxygen-
ase (i.e., ALOX5AP) activity from parturition through the
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end of lactation. Although we did not observe a significant
effect of IMI on PPARG expression, up-regulation of
ALOX5AP (ca. 6-fold; Table S1) might have been associ-
ated with increased synthesis of eicosanoids which are
classical effectors of an inflammatory response. In addi-
tion, activation of PPARy by specific agonists reduced syn-
thesis of inflammatory cytokines in mammary epithelial
cells, suggesting this nuclear receptor has an anti-inflam-
matory role in mammary tissue [64]. A 39-fold increase of
ALOX5AP in mammary quarters challenged with E. coli in
a recent study provides further support to the inflamma-
tory role of ALOX5AP during an IMI [27].

Taken together, the above observations coupled with the
down-regulation of PPARy target genes point to PPARy as
a major player. The expression of this nuclear receptor
appeared not to be affected by IMI (at the least from
microarray data) but its activity probably was decreased as
suggested by down-regulation of its known target genes.
Similar to PPARa (Figure 4), the increase in NF«B activity
might have inhibited PPARy activity. Interestingly, insu-
lin-induced gene 1 (INSIGI), which is involved in the
inhibition of SREBP cleavage (i.e., inactivation of SREBP),
and appears to be a PPARy target gene in bovine mam-
mary epithelial cells [62], was significantly up-regulated
(1.5-fold change; Table S1). These data suggested that
INSIG1 is not only under control of PPARy but likely con-
tributed to reduced milk fat synthesis through blockage of
SREBP1 cleavage, i.e. both SREBF1 and SREBF2 are mod-
erately up-regulated during lactation in bovine mammary
tissue and could be involved in lipid synthesis through
activation of acetyl-coenzyme A carboxylase alpha
(ACACA) and fatty acid synthase (FASN) [51]. Unfortu-
nately, the IPA Knowledge Base does not contain specific
PPARy pathways, thus precluding a definitive conclusion
about the pivotal role of PPARy. It is important to note
that a possible role of PPARa cannot be excluded because
specific PPARa co-activators or up-stream factors were
down-regulated (Figure 4).

An enzyme linked to the LXR/RXR and PPARG pathways
via SREBP1 in non-ruminant liver and adipose is stearoyl-
CoA desaturase (SCD), which plays an essential role in
TAG synthesis by catalyzing the synthesis of oleic acid via
desaturation of stearic acid [65]. Oleic acid serves as a pri-
mary substrate for fatty acid binding protein 4 (FABP4)
[66], and previous work in our laboratories proposed that
FABP3 provides stearic acid, and other substrates, to SCD,
which then provides oleic acid for FABP4 [51]. Expression
of both FABP3 and FABP4 was down-regulated in infected
versus control mammary quarters (-1.46 and -1.55-fold
change, respectively). Expression of SCD was also inhib-
ited in S. wberis-infected quarters (-1.64-fold change).
Impaired PPARy signaling might have been associated
with the down-regulation of these lipogenic enzymes,
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either through down-regulation of SREBF1 or directly
through decreased binding to response elements (e.g.,
SCD and FABP4).

Our findings highlighted a potential relationship between
PPAR and LXR, two master regulators of lipid metabolism
and inflammatory responses in non-ruminants [57]. The
relationships between those two nuclear receptors with
inflammatory conditions appear to be in two directions,
i.e. their expression/activity is decreased by inflammation
in mouse liver [67] and kidney [68], and an increase in
their activity/expression leads to an anti-inflammatory
effect [57]. Overall, our results indicated that IMI with S.
uberis inhibited activity of LXR/RXR and PPAR signaling
during IMI, suggesting that the anti-inflammatory effect of
those pathways was not at play. We suggest that PPARy
signaling plays a primary role in mammary tissue but the
activity of this nuclear receptor was probably reduced. The
overall repression of lipogenic genes in S. uberis infected
mammary quarters and the mechanisms involved in LXR/
RXR or PPAR signaling and the fatty acid switch in the
mammary gland during IMI challenge have not been elu-
cidated and require further investigation. PPARy has a piv-
otal role in immune cells as well, increasing their ability
to face infections [69]. A possible role of PPARy activation
in reducing inflammation in mammary gland tissue has
been previously suggested based on in vitro data [64] and
our results support such a view.

Ceramides, inflammation, and lipid metabolism

Ceramide, which is involved in cell signaling, cell cycle,
and regulation of protein transport from ER to Golgi, is
one of the most studied sphingolipids in nature [70].
Other sphingolipids with signaling roles include sphingo-
sine (Sph) and sphingosine-1-phosphate (S1P), which
can activate NFKBIA and a cascade of inflammatory genes
(Figure 1; Additional File 2) [71]. Although minor com-
pared with TAG, sphingolipids are the third most impor-
tant lipid component in bovine milk fat [72]. Formation
of the milk fat globule membrane relies on sphingolipid
and cholesterol availability, thus, coordinated synthesis of
both compounds is pivotal to milk lipid droplet forma-
tion/secretion. Mammary tissue synthesizes sphingolipids
de novo [72] from palmitoyl-CoA, leading to ceramide
formation and incorporation into sphingomyelin. Thus,
palmitic acid used for ceramide synthesis in mammary
appears a required step and also might represent a regula-
tory point for FA synthesis because ceramides can inhibit
this process by blocking the activity of AKT/PKB [73].

Our data revealed that ceramide signaling was markedly
down-regulated (Table 3) potentially through the action
of TNF (Table S1, Additional File 2). Based on the
observed downregulation of lipogenic genes (e.g.,
ACACA, FASN; Table S1, Additional File 2) as well as ser-
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ine palmitoyl transferase (SPTLC2; Additional File 2) it
was apparent that ceramide synthesis was decreased,
which likely explains the down-regulation of other genes
that are part of its signaling pathway (Additional Files 7
and 9). The details of the pathway indicated a reduction
of ceramide synthesis from sphingomyelin through activ-
ity of neutral sphingomyelinases sphingomyelin phos-
phodiesterase. In addition, the decrease in expression of
genes involved in long-chain fatty acids import (e.g.,
CD36, LPL) and de novo fatty acid synthesis (e.g., ACACA
and FASN) had probably reduce the amount of available
palmitate for synthesis of ceramide. From our combined
results, production of ceramide did not seem to be
induced by pro-inflammatory state during IMI, but prob-
ably decrease. In addition, we observed an overall inhibi-
tion/decrease of ceramide downstream signaling, which
clearly indicated that during IMI ceramide is not involved
in apoptosis.

Significance of the immune response and milk fat synthesis

The negative relationship between DEG involved with
immune response and milk fat synthesis may serve several
beneficial purposes for the immune system within the
mammary gland. First, the ability of phagocytes such as
PMN and macrophages to engulf invading microorgan-
isms is lower in milk when compared to PMN and macro-
phages that originate from the bloodstream. Milk
phagocytes engulf milk fat globules instead of invading
pathogens, resulting in a loss of pseudopodia needed for
phagocytic capability [56]. Therefore, the less milk fat syn-
thesized during an IMI the more likely that milk phago-
cytes will engulf invading bacteria instead of milk fat
globules. As previously stated, S. uberis strain O140] has
been shown to be more resistant to PMN phagocytosis
and more capable of establishing infection when com-
pared to a noncapsular strain [12,13]. Decreased expres-
sion of genes involved in Lipid Metabolism (using IPA
Knowledge database) has also been recently reported after
IMI challenge with E. coli [27]; and suggests that reduced
lipid synthesis in the mammary gland may not be patho-
gen specific. In addition, microarray and qPCR analyses
revealed a down-regulation of LALBA (-1.46-fold; Table
S1), the rate limiting enzyme in lactose synthesis, which
confirmed previous findings [74]. This may indicate that,
at the time of biopsy (20 h post-inoculation), lactose syn-
thesis was reduced as suggested by previously-reported
milk whey analysis of mastitic cows [75]. A decrease in
lactose synthesis might help the immune system by reduc-
ing substrate (i.e. lactose) for bacteria and also preventing
a potential inhibition of PMN phagocytosis by lactose
[76]. Inflammation reduces protein synthesis in muscle
[77], but our transcript profiling did not indicate altera-
tions in protein synthesis in infected compared with non-
infected contralateral mammary quarters. However, there
was an increase in expression of CSN3 (Table S1). Further-
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more, the GO analysis uncovered an evident induction of
transcription, post-translational modification, transport,
and localization of proteins (Additional File 15). Those
findings seemed to indicate that protein synthesis in milk
should not have been decreased, but the large increase in
transcription and protein metabolism was probably more
related to increase synthesis and secretion of inflamma-
tory-related proteins such as cytokines or acute-phase pro-
teins. Unfortunately, quarter milk composition was not
analyzed during the infection period; therefore, changes
in milk fat, protein, and lactose could not be evaluated.

Milk fat synthesis down-regulated DEG

The majority of DEG down-regulated by >1.5-fold (via
gPCR or microarrays) in mammary quarters after IMI
challenge with S. uberis were associated with lipid metab-
olism including lipoprotein lipase (LPL), CD36, lipin 1
(LPINT), and butyrophilin (BTN1A1) (Table 2). However,
the changes in gene expression were not as marked as
those observed for up-regulated DEG. Swanson et al. [8]
also reported down-regulation of genes involved with
lipid metabolism (e.g., LPIN1, APOB, and APOA2) in
bovine mammary tissue after IMI with S. uberis. This is fur-
ther supported by Giinther et al. [27], who observed a
decrease in mRNA expression of factors associated with
Lipid Metabolism (using IPA Knowledge database) such as
LPL, FASN and BTN1A1 after IMI challenge with E. coli.
Exogenous sources of non-esterified fatty acids (NEFA)
and TAG in the circulation that are used for milk fat syn-
thesis in the mammary gland originate from 1) chylom-
icra from dietary sources that enter the lymphatics and
bypass the liver; 2) very low-density lipoproteins (VLDL)
that are exported from the liver; or 3) NEFA bound to
albumin that originate from adipose tissue [60]. The
VLDL and chylomicra attach to the mammary endothe-
lium by the enzyme LPL, which then hydrolyzes TG to
fatty acids. Our results indicated that LPL was the third
most down-regulated gene with a -1.98-fold change in
expression versus control quarters (Table 2). This enzyme
is located functionally in the capillaries, but is synthesized
in parenchymal cells. Recent work in our laboratories has
shown that LPL highest fold change in expression occurs
during peak lactation (~60 days in milk) when compared
to prepartum expression values [51]. Evidence also sug-
gests a role for the VLDL receptor (VLDLR) in LPL activity
[78], TAG metabolism and storage in adipocytes [79], and
positive relationships with LPL expression during early
lactation [51].

Another highly DEG during infection was CD36 (-1.91-
fold change). This gene is highly expressed during early
lactation in mammary tissue [51] and plays a role in fatty
acid transport (i.e., translocation) across the plasma
membrane of MEC, thus providing fatty acid for milk fat
synthesis. Genes involved in TAG synthesis in the mam-
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mary gland, LPIN1 and GPAM (glycerol-3-phosphate acyl-
transferase, mitochondrial; -1.57-fold change; Additional
File 2) were significantly down-regulated. LPIN1 had the
greatest fold change in expression (-2.30-fold change) out
of all DEG down-regulated in mammary from S. uberis-
infected quarters.

The transport and export of newly-synthesized milk fat
droplets is accomplished via BTN1A1, xanthine dehydro-
genase (XDH), and adipophilin (ADFP) [80,81]. During
early lactation, positive associations between BTNI1Al,
XDH, and ADFP were observed in healthy bovine mam-
mary tissue [51]. Interestingly, these genes were found to
have contrasting expression patterns during IMI with S.
uberis. Within infected quarters, BTN1A1 was one of the
top down-regulated genes (Table 2; -1.68-fold change)
and XDH had modest down-regulation (-1.17; Additional
File 2) when compared to control quarters. Furthermore,
XDH can be converted to xanthine oxidase (XO) by
reversible sulthydryl oxidation or by irreversible proteo-
lytic modification [82]. Production of XO is important for
bactericidal activity against major bovine mammary gland
pathogens including E. coli and Staph. aureus [82]. The
specific response of bacteria species to XO and the result-
ing bacteria-dependent nitrosative stress demonstrated
that, besides its central role in lipid droplet secretion,
XDH plays a role in the mammary gland immune system
[82]. The up-regulation of ADFP might have been a com-
pensatory mechanism to sustain milk lipid droplet secre-
tion. Further investigation is required to determine the
specific role of lipid droplet proteins during IMI.

Glucocorticoid signaling and related pathways
Glucocorticoids, a class of steroid hormones, exert dra-
matic effects on metabolism and immune response dur-
ing periods of stress and lead to catabolism of lipids,
carbohydrates, and proteins while increasing glucose
availability in the bloodstream [83,84]. Glucocorticoids
bind to the glucocorticoid receptor o (NR3C1) activating
it. The activated glucocorticoid receptor inhibits inflam-
mation through transcriptional repression of proinflam-
matory genes [85] and activates genes involved in the anti-
inflammatory response (e.g. annexin I/lipocortin;
ANXA1) and apoptosis (e.g. BAX) [86]. Despite lower
mRNA for NR3C1 during infection (-1.33-fold; Table S1;
Additional File 7), we observed up-regulation of ANXA1
(1.38-fold change; Table S1, Additional File 7). There was
also a tendency towards an increase in expression of BAX
(1.52-fold change; qPCR P = 0.06; Table S1).

The glucocorticoid signaling through glucocorticoid
receptor is related to ERK/MAPK and PI3K/AKT [85]. Even
though those pathways were overall likely induced by 20
h of IMI, the genes (mostly kinases) which are related
those pathways were down-regulated. ERK/MAPK signal-
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ing seems to be essential for the anti-inflammatory effect
of glucocorticoids via repression of p38 MAPK upon glu-
cocorticoid treatment in mice [87]. Evidence of a modula-
tory effect of glucocorticoids on ERK/MAPK signaling
pathways have been reported for human cancer cells [88].
Interestingly, in our case we observed a down-regulation
of most of the genes coding for kinases (Additional File
2). Explanations for the down-regulation of kinases in the
ERK/MAPK (Additional File 2) are not readily available.
The PISK/AKT is essential in the activation of NF«kB by
TNF [89], thus playing an inflammatory role in the tissue.
In our case the details of the pathway indicate that the
PI3K/AKT signaling was in favor of NFkB mediated tran-
scription probably though induction by growth factors,
while other down-stream effects were mostly inhibited
(Additional Files 7 and 12). Based on the evident induc-
tion of proliferation and apoptosis, suggested by func-
tional analysis (see above and Additional Files 3, 4, 5, 10,
and 11) and details of the PI3K/AKT pathway, we can con-
clude that the likely induction of PI3K/AKT pathway is
probably related to proliferation, apoptosis, and inflam-
mation. The down-regulation of several genes in common
with the glucocorticoid pathway seems to indicate that the
relationship among those pathways is not playing a role
in modulating inflammation at 20 h post-inoculation.

Leukocyte extravasation and pain are transcriptionally
regulated after IMI

The nervous system was not highly affected when consid-
ering functional analyses in IPA (Additional Files 3, 4, 5,
10, and 11) or GO (Additional Files 15 and 16); however,
several pathways involved in neuronal outgrowth
appeared significantly inhibited including Ephrin recep-
tor, axonal guidance, and CDK5 signaling (Figure 3A).
Most of those pathways are not strictly related to neurons.

Ephrin receptor signaling plays a role in attraction/repul-
sion, adhesion/de-adhesion implicated in axon guidance
and migration of other cells beside neurons (e.g., leuko-
cytes) but also plays a role in angiogenesis and synaptic
plasticity. It has been suggested, based on multiple lines of
evidence, that ephrin receptors play a direct role on
inflammatory response [90]. The evidence points to a
dual-phase pattern. In the early phase of inflammatory
response the ephrin pathway is activated, inducing a
decrease in adhesion between endothelial cells and epi-
thelial cells. In a subsequent phase of inflammatory
response the pathway is inhibited, increasing adhesion of
circulating leukocytes to vascular endothelium and to epi-
thelia of internal organs. The combination of the two
allows the extravasation of leukocytes. Based on these
effects, the evident inhibition of ephrin receptor signaling
in our data (Additional Files 7 and 9) seems to indicate
that at 20 h the inflammatory response was on its second
phase, i.e. namely the adhesion and extravasation of leu-
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kocytes. Similar conclusions could be drawn from the
axonal guidance signaling, which shares many of the
Ephrin receptor pathway molecular networks (Additional
Files 7 and 9). The importance of movement and invasion
of leukocytes and cell regulation of cell adhesion was
underscored also by functional analysis (Figure S2; Addi-
tional Files 15).

The CDKS5 signaling is strictly related to neuronal physiol-
ogy [91] and seems to participate in dendrite and synapse
development [91], but also in nociception [92]. The noci-
ceptive role of CDK5 signaling has been clearly demon-
strated during induction of peripheral inflammation in
mouse. During an inflammatory status, or other sort of
pain, the level of calpains increases rendering the CDK5
more stable, a process which seems to increase the percep-
tion of pain [84]. Based on those previous results, the
strong inhibition of CDKS5 signaling at 20 h of IMI (Figure
3A) seems to indicate a degree of modulation or control
of pain through decrease nociception within mammary
tissue prior peak clinical signs of infection.

Gene networks during IMI challenge with S. uberis

Figure 5 shows results from merging of the top 5 gene net-
works generated via IPA (i.e., networks most likely to have
affected the system) describing relationships among DEG
with > 1.5-fold expression due to IMI. The merged net-
works encompassed genes involved in the immune
response and lipid metabolism, with a central role of TNF.

Genes positively-associated with TNF

Not surprisingly, TNF was positively associated with pro-
inflammatory mediators such as IL8, IL1B, and NFKBIA.
The positive association with the anti-inflammatory
cytokine IL10 further supports the co-regulatory mecha-
nisms responsible for controlling the severity of the
inflammatory response during an IMI [93-95].

The network in Figure 5 also shows a positive effect of TNF
on the acute-phase protein SAA3. This supports the pro-
tein-level response observed in milk secretions from cows
during IMI challenge with S. uberis, where milk SAA con-
centrations were elevated at 20 h post-inoculation when
compared to pre-inoculation concentrations [14]. Serum
amyloid proteins have immunological properties and the
SAA3 isoform (i.e. M-SAA3) has been shown to be highly
expressed in bovine MEC during mastitis [96]. Expression
of mRNA for SAA3 in MEC is significantly enhanced in
quarters challenged with LPS from E. coli or with Staph.
aureus when compared to healthy quarters, indicating that
the main source of SAA in milk during infection may be
from MEC and not hepatocytes [4]. This premise is further
supported by results of Eckersall et al. [97], who demon-
strated that expression of M-SAA3 mRNA and hap-
toglobin (HP) mRNA were up-regulated during an
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experimental challenge with Staph. aureus and that mRNA
for M-SAA3 was greater than that for HP. This increased
expression of SAA3 and HP is specific to infected quarters
because several studies have indicated that expression is
minimal or not detectable in MEC from healthy quarters
[98,99]. It is challenging to be able to distinguish between
2 gene isoforms with a 70-bp oligonucleotide on a micro-
array platform. The latest annotation of our microarray
identified this oligo as both SAAT and SAA3 and it clearly
depends on the tissue type (i.e. liver or mammary) as to
which isoform is primarily expressed. Upon verification,
we confirmed that the sequencing results of primers were
specific for SAA3 (Tables S3 and S4 in Additional File 1).
IPA network analysis indicated that TNF-a protein has
been shown to increase SAA3 mRNA expression in mouse
granulosa cells [100] and in 3T3-L1 adipocyte cell lines
[101]. SAA is primarily involved in the acute phase
response and has been shown to increase leukocyte adhe-
sion [102], but no relationships between SAA3 and genes
encoding SELL and selectin-P (SELP) have been identified
(Figure 5). However, TNF has been shown to affect both
the expression and protein release of SELP, but not SELL,
in murine endothelial cells (Additional File 15) [103].

Gene network analysis also shows that TNF has a positive
relationship with PLAU and PLAUR. The enzyme PLAU is
required for the normal repair of wounds originating on
skin [104] and, as stated earlier, S. uberis can activate the
conversion of PLAU to plasmin [23]. Plasmin increases
during mastitis and hydrolyzes a,-casein, $-casein, and -
casein [105]. An increase in expression of k -casein (CSN3;
1.82-fold change) was observed in S. uberis infected quar-
ters (Table S1). Concentrations of k-casein and plasmin
were not quantified in milk secretions from infected quar-
ters for this study, thus further research will be needed to
investigate their correlations between mRNA expression
and protein concentrations in milk as well as their specif-
icity to S. uberis-associated mastitis.

In the nucleus, both FOS and BCL3 expression are stimu-
lated by TNF (Figure 5). Expression of FOS was enhanced
in human omental microvascular endothelial cells when
incubated with TNF-a for 10 min [106], whereas BCL3, a
nuclear protein primarily found in B lymphocytes,
increased when human hepatocellular carcinoma cell
lines (HepG2) were stimulated with TNF-a [107].
Another positive association within the network involved
LTF, which competes for iron with invading microorgan-
isms that require it for growth [108]. Watanabe et al. [109]
observed a significant increase in LTF 4 h after intramam-
mary infusion of recombinant bovine TNF-a..

Increased CD14 and TLR2 expression was observed in S.
uberis-infected quarters when compared to healthy (con-
trol) quarters (Table S1). Hermoso et al. [110] observed
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an increase in TLR2 mRNA expression in carcinomic
human alveolar basal epithelial cells (A549 cells) after
stimulation with recombinant human TNF-a. Regarding
CD14, TNF-a protein increased CD14 expression in rat
Kupffer cells [111]. The CD14 molecule is primarily acti-
vated via the PAMP sequence associated with Gram-nega-
tive bacteria (LPS) [112], but it has been shown to
increase in Gram-positive associated IMI [15].

Genes negatively-associated with TNF

As discussed above, several genes involved in milk fat syn-
thesis were down-regulated in S. uberis-infected quarters.
Network analysis by IPA indicated that the products of
CD36, GPAM, FABP4, LPIN1, LPL, and SCD, known to be
involved in milk fat synthesis [51], were negatively-associ-
ated with the expression of TNF. It has been demonstrated
that TNF reduces expression of LPL in rat adipocytes
[113]; GPAM in mouse adipocytes [114], and CD36,
FABP4, and SCD in adipocytes from human, mouse, or rat
[115-117]. Most researchers examining gene expression
responses after IMI challenge have primarily focused on
genes involved with the immune response, and very few
studies [8] have examined large-scale gene expression pro-
files in the mammary gland during an IMI challenge with
S. uberis. This research provides evidence of a role for TNF
in modulation of milk fat synthesis in the mammary
gland during an IMI.

Conclusion

Our study indicated that IMI challenge with S. uberis
(strain O140J) elicited a strong transcriptomic response,
leading to an overall up-regulation of genes involved in
the innate immune response. Results provided additional
information into the early response factors associated
with the innate immune response to S. uberis infection.
Although the degree of down-regulation among DEG dur-
ing IMI challenge was not as marked (<2.5-fold change in
expression), it was interesting that the majority of these
genes were associated with lipid metabolism and, particu-
larly, milk fat synthesis. Pathway analysis suggested an
inhibitory effect of IMI on LXR and PPAR signaling (most
likely PPARy). The latter may provide a mechanistic expla-
nation for the inverse relationship between immune
response and milk fat synthesis. This finding deserves
more attention due to the possibility of manipulating
PPAR signaling through diet.

Milk composition analysis would be useful in the future
to relate with mammary gene expression changes during
an IMI. The growing amount of information regarding dif-
ferences in mammary response to major mastitis-causing
pathogens such as E. coli, Staph. aureus, and S. uberis has
provided researchers with new insights into the transcrip-
tomic mechanisms involved in immune response and
metabolism during an IMI. Mechanisms involved in the
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immune response to these invading microorganisms war-
rant further investigation.

Methods

All procedures involving animals received approval from
the Institutional Animal Care and Use Committee at the
University of Illinois at Urbana-Champaign (protocol
05179). Details of animal management and preparation
of bacterial inoculum are published elsewhere [14].
Briefly, 10 multiparous Holstein cows in mid-lactation
were used for this study. To be eligible, cows must have
exhibited positive energy balance for > 2 consecutive
weeks with composite milk SCC < 200,000 cells/mL, and
cows must not have been treated for clinical signs of mas-
titis or any other disease during early lactation. Since com-
posite rather than quarter foremilk samples were
collected, all quarters from all cows must have been bac-
teriologically negative to confirm that no quarters were
sub-clinically infected with an invading pathogen. Eligi-
ble cows were paired based on parity, days in milk and
milk yield. Cows were housed and fed in individual tie-
stalls, had free access to water, and were milked twice
daily at 0500 and 1700 h. Cows averaged 39.2 + 7.4 kg
milk/d and were 77 + 12 days in milk at the start of the
trial. A primary objective was to evaluate the effect of neg-
ative energy balance (NEB) on immune response reported
elsewhere [14]. At ~77 days in milk, half of the cows (n =
5) were feed-restricted to 60% of calculated net energy for
lactation requirements to induce NEB. Feed restriction
lasted 7 days. Control cows (n = 5) were fed the same diet
ad libitum (i.e., positive energy balance; PEB).

Prior to inoculation, a 10-uL loopful of S. uberis colonies
(strain O140]J; provided by J. Hogan; The Ohio State Uni-
versity, Wooster) was incubated in 100 mL of Todd-
Hewitt broth for 6 h at 37°C. Following incubation, the
broth culture was diluted in sterile Mammalian Ringer's
Solution (Electron Microscopy Sciences, Hatfield, PA) to
yield ca. 5,000 cfu in a 2-mL volume (i.e., 2,500 cfu/mL).
Following the afternoon milking on day 5 (132 h; h =0 of
infection) of feed restriction, 2 mL of inoculum contain-
ing S. uberis was infused into one rear quarter of each cow
via a sterile disposable syringe fitted with a sterile teat can-
nula using the full insertion infusion method. Prior to
inoculation, challenged teats were rigoursly cleaned with
cotton balls containing 70% isopropyl alcohol. Immedi-
ately following inoculation, all teats were immersed in a
postmilking teat disinfectant containing 1% iodine with
lanolin. Systemic and local inflammatory indicators were
used to monitor the clinical response to intramammary S.
uberis challenge as described by [14]. Briefly, rectal tem-
perature, heart rate, respiration rate, and fecal scores were
evaluated at 0, 3, 6, 12, 14, 16, 18, 20, 24, 30, 36, 42, and
48 hours post-challenge. Based on previous experience
[17], peak clinical signs of S. wuberis inoculation were
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expected at 24 to 36 hours post-inoculation. At 20 h post-
inoculation, and before peak clinical signs, both the S.
uberis infected (i.e., YES) and non-infected (i.e., NO) rear
quarters were biopsied for RNA extraction and microarray
analysis. Duplicate samples of quarter foremilk were asep-
tically collected for bacteriological examination and SCC
before feed restriction and immediately before IMI chal-
lenge. In addition, samples were collected at 12, 20, 24,
30, and 36 h post-challenge to confirm infection by quan-
tifying bacterial and SCC concentrations. The SCC was
determined using infrared procedures (FOSS 4000, Dairy
Lab Services, Inc., Dubuque, IA). Foremilk samples for
culture were collected aseptically according to National
Mastitis Council recommendations [118].

Details of mammary biopsy, RNA isolation, microarray
procedure, primer design and qPCR analysis are found in
Additional File 1.

Statistical analysis

Microarrays

Oligonucleotides that were flagged with "-100" by Gene-
Pix were removed from the analysis, and the remaining
data were normalized to control for dye effects using the
median of control elements on the microarray. In a subse-
quent normalization step, the log, normalized ratio of
mammary versus reference (i.e., RNA mixture of different
tissues including mammary) signal intensities were
adjusted for global dye and microarray effects and nor-
malized by Lowess. A mixed-effects model was then fitted
to the adjusted ratios (mammary/reference) using Proc
MIXED [119]. The model consisted of treatment (TRT;
NEB and PEB), infection (INF; YES and NO), and the TRT
x INF interaction. YES identifies mammary quarters inoc-
ulated with 5,000 cfu of S. uberis; and NO identifies con-
tralateral rear control quarters (i.e., non-inoculated). The
fixed effect was dye with cow and microarray as random
effects. Statistical significance probability values for TRT,
INF and TRT x INF effects were adjusted for the number of
comparisons using Benjamini and Hochberg's FDR. For
this paper, the effect of INF, regardless of TRT [14], will be
discussed. Differentially expressed genes were based on
FDR P-value < 0.06 which corresponded to an unadjusted
P £ 0.01. Fold change was presented as the backtrans-
formed LSMeans (i.e., adjusted log, normalized ratios of
mammary versus reference) of the infected versus non-
infected quarters.

gPCR
After normalization with internal control genes (ICG, see
above), data were analyzed using the MIXED procedure of
SAS with a random effect of pair within block (day of
inoculation). Class variables included cow, TRT, INF, pair,
and block. The model included TRT, INF and the TRT x
INF. Statistical differences were declared as significant and
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highly significant at P < 0.05 and P < 0.01. Trends towards
significance are discussed at P < 0.10. Relative expression
values are presented as least square means (LSM). The fold
change was presented as the LSMeans of the infected ver-
sus non-infected quarters.

Microarray data
The microarray data files discussed in this publication
have been deposited in NCBI's Gene Expression Omnibus

(GEO; http://www.ncbi.nlm.nih.gov/geo/) and are acces-
sible through GEO series accession number [GSE15344].

Data mining

Networks, functions, and pathways analyses were gener-
ated using IPA (Ingenuity Systems, http://www.ingenu
ity.com, Redwood City, CA) which assists with microarray
data interpretation via grouping DEG into known func-
tions, pathways, and networks based primarily on human
and rodent studies. In addition, data were analyzed using
GO by means of GeneSpring GX7 (Agilent Technologies,
Santa Clara, CA).

Approach used in IPA

The 2,102 oligos (with FDR < 0.06) with their associated
annotation (when present) and the LSmean (after back-
transformation) were uploaded into IPA. Data from qPCR
analysis instead of microarray were used for those genes
verified. Because we uploaded data from part of the oligo-
nucleotides present on the microarray (i.e., those with
FDR £ 0.06), the IPA Knowledge Base was used as a refer-
ence set for statistical analysis of enriched functions/path-
ways. This approach suffers from the biases towards
overrepresented functions in the bovine oligonucleotide
microarray platform. Each annotated gene was mapped to
its corresponding gene object in the IPA Knowledge Base.
The 2,102 DEG were run without fold-change cut-off or
with 1.5-fold change cut-off (a total of 173 genes passed
this last criterion). The latter was done with the purpose
of identifying highly affected functions. For both datasets,
several analyses were run:

- Functional Analysis. The functional analysis in IPA
identified the biological functions that were most sig-
nificant to the data set. To minimize false positives
among significantly-enriched functions an FDR <
0.000001 (-log P-value = 6.0) was used to determine
the probability that each biological function assigned
to that data set was due to chance alone.

- Network Generation. It was conducted only with the
158 DEG with a > 1.5-fold cut-off that were eligible to
generate a network. See the above sections for greater
description.
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- Canonical Pathway Analysis: Canonical pathway anal-
ysis identified the pathways from the IPA library that
were most significant to the data set. Genes from the
data set that were associated with a canonical pathway
in the IPA Knowledge Base were considered for the
analysis. The significance of the association between
the data set and the canonical pathway was measured
in 2 ways: 1) a ratio of the DEG that mapped to the
pathway divided by the total number of genes that
mapped to the canonical pathway; 2) an FDR <£0.0005
to calculate a P-value determining the probability that
the association between the DEG and the signaling
canonical pathway was explained by chance alone. For
metabolic pathways a less stringent approach (FDR <
0.06) was used because no metabolic pathways were
present among the canonical pathways at an FDR cor-
rected P-value < 0.0005.

Criteria used to interpret the IPA functional analysis
These criteria are valid only for the analysis of the 2,102
DEG. The description of the functions in IPA was a con-
sideration of the response of the genes (up- or down-reg-
ulated) and the "effect on function" feature in IPA. The
final evaluation on the effect on any particular function
was an extrapolation of the ensemble following these cri-
teria (see Additional Files 3, 4, 5, 6, 7, 8 and 9):

- when a function in IPA "effect of function" had a
number of genes in "increase/decrease function" that
was <10% higher from those in "decrease/increase
function" including genes in "affect function" which
evidently induce or inhibit the function (assessed by
carefully considering the IPA links which include IPA
descriptions or the original papers for those functions)
the functions were considered to be in equilibrium or
not having a net effect (or not evident net effect). Fur-
ther, even though the function was significantly
enriched with DEG, a final judgment of a biological
outcome was not feasible, thus the function was con-
sidered in equilibrium (denoted by «<).

- when a function in IPA "effect of function" had a
number of genes in "increase/decrease function” that
was > 10% higher from those in "decrease/increase
function" including genes in "affect function", which
evidently induce or inhibit the function (as reported
above), the function "tends to increase/decrease (or
induced/inhibited)" which for simplicity was denoted
with arrows (tendency to induce or increase = T; ten-
dency to inhibit or decrease = J/);

- when the number of genes which increase/induce or
decrease/inhibit the function was > 100% more (or >
2-fold) compared to decrease/inhibit or increase/
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induce, the function was considered to be evidently
induced or inhibited (simple arrows 1 or ?);

- when all, or nearly all, the genes found in increase/
induce or decrease/inhibit function or the analysis of
"affect function" stated that they were involved in
inducing or inhibiting the function, the function was
considered to be completely induced or inhibited (111!
or 7?);

- genes which were up-regulated and were found in
"decrease function" were considered to actively
decrease or inhibit the function;

- genes which were down-regulated and were found in
"decrease function" were considered to decrease the
function and also to allow the function to take place;

- genes which were up-regulated and were associated
with "increase function" were considered to increase
or induce the function;

- genes which were down-regulated and were associ-
ated with "increase function" were considered as fail-
ing to increase or induce the function;

- the final evaluation on the state of a particular func-
tion was a sum of all up- and down-regulated genes.

GO analyses

This analysis was performed by means of GeneSpring GX7
with the annotation updated on March 3, 2009 by the
automatic annotation feature in GeneSpring GX7 using
GeneBank accession numbers. The updated GO had
7,710 annotated out of 13,257 total oligos in Biological
process (Bp), 7,765 in Cellular component (Cc), and
8,327 in Molecular function (Mf) oligos. The analysis was
run for the overall DEG (2,102 oligos, 1,359 annotated
for Bp, 1,365 for Cc, and 1,452 for Mf; Additional File 15),
for the overall up-regulated DEG (1,082 oligos, 738 anno-
tated for Bp, 731 for Cc, and 776 for Mf), overall down-
regulated DEG (1,020, 621 annotated for Bp, 634 for Cc,
and 676 for Mf); DEG with > 1.5-fold change (173 oligos,
130 annotated for Bp, 128 for Cc, and 132 for Mf; Addi-
tional File 16), up-regulated DEG > 1.5-fold change (130
oligos, 99 annotated for Bp, 101 for Cc, and 101 for Mf),
and down-regulated DEG > 1.5-fold change (43 oligos, 31
annotated for Bp, 27 for Cc, and 31 for Mf). The P-value
was set at 0.05. Results from each GO category and from
each list was saved as a text file, and formatted and proc-
essed with Excel (see Additional Files 15 and 16). All GO
results with a P-value < 0.05 are available in Additional
Files 15 (i.e., all DEG) and 16 (DEG with > 1.5-fold).
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Criteria used to interpret the GO categories and build GO

figures

The GO analysis provided a P-value and the number of
genes in each sub-category within Bp, Mf, or Cc. The most
representative list is that using the overall DEG (2,102 oli-
gos), which simultaneously considered all genes/func-
tions which were affected regardless of the direction of the
change (see Additional Files 15 and 16). This allowed vis-
ualization of the enrichment of GO categories but did not
facilitate an interpretation of the biological effect (i.e.,
inhibition or activation). The separate analysis of up- and
down-regulated DEG was performed with the purpose of
overcoming this limitation. Because all genes in each spe-
cific list had the same direction the interpretation was
facilitated. However, it is important to note that use of
only the separate analysis could be tricky because there are
GO categories which can be enriched equally in up- and
down-regulated DEG, thus precluding a conclusion except
on the evidence of the enrichment. Using Microsoft Excel
software we clustered all the GO categories significantly
enriched in the overall gene list, 1 genes and ? genes
simultaneously, and by means of Pivot table in Excel, we
compared the simultaneous enrichment of each specific
category in overall, up-, and down-regulated DEG. When
the significantly-enriched categories in the overall DEG
list were enriched in up- and down-regulated DEG, we
concluded that the category was induced (if the significant
enrichment was present in up-regulated DEG) or inhib-
ited (if the significant enrichment was present in down-
regulated DEG). When the enriched category in the over-
all DEG list was present in both up- and down-regulated
DEG we concluded that the category was induced if the
number of up-regulated DEG was at least 30% greater
than in down-regulated DEG and inhibited when vice
versa. If a category in the overall DEG list was also present
in up- and down-regulated DEG and the aforementioned
criteria was not satisfied or the category was absent from
both up- and down-regulated DEG, we concluded that the
category was enriched but without a clear directional (up
or down) effect.
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Additional file 1

Methods and Figures S1 and S2. The file contains additional results
including Table S1 titled 'Quantitative PCR (qPCR) and microarray
gene expression results due to an intramammary infection'; Figure S1
titled 'Individual quarter milk SCC (A) and shedding of S. uberis (B)
from all 10 cows before (hour 0), after (hour 12) and prior to mammary
biopsy (hour 20) for gene expression prolifing'; and Figure S2 titled 'Gene
expression changes of specific neutrophil and macrophage markers (from
http://www.antibodybeyond.com/index.htm) in mammary tissue of Hol-
stein cows treated with S. uberis (strain O140]) (YES) or control (NO)
quarters'. This file also contains additional materials and methods. RNA
isolation, primer design and testing, quantitative PCR and identification
of internal controls accompanied by 4 tables: Table S2 titled 'GenBank
accession number, hybridization position, sequence, amplicon size, and
source of primers for Bos taurus used to analyze gene expression by qPCR.
List also includes primers for internal control gene'; Table S3 titled
'Sequencing results obtained from qPCR product of Bos taurus specific';
Table $4 titled 'Sequencing results of genes using BLASTN from NCBI
against nucleotide collection with total score'; and Table S5 titled 'qPCR
performance including slope and coefficient of determination of the stand-
ard curve (R2), efficiency (E)?, and median cycle threshold (Ct) of the
measured transcripts'.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-542-S1.DOC]

Additional file 2

All 2,102 DEG. The file contains the complete list of DEG based on
microarray analysis that includes statistical P-values and fold-change of
expression for each gene due to IMI with S. uberis.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-542-S2 XLS]

Additional file 3

Functions UP and DOWN all DEG. Overall functions up and down-reg-
ulated during IMI with regards to all DEG (n = 2,102) using IPA Knowl-
edge Base (Ingenuity Systems, Inc.).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-542-S3.XLS]

Additional file 4

Functions UP all DEG. Functions up-regulated during IMI with regards
to all DEG (n = 2,102) using IPA Knowledge Base.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-542-S4 XLS]

Additional file 5

Functions DOWN all DEG. Functions down-regulated during IMI with
regards to all DEG (n = 2,102) using IPA Knowledge Base.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-542-85 XLS]

Additional file 6

Metabolic pathways all DEG. Overall canonical metabolic pathways
most enriched during IMI with regards to all DEG (n = 2,102) using IPA
Knowledge Base.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-542-S6.XLS]

Additional file 7

Signaling pathways all DEG. Overall canonical signaling pathways most
enriched during IMI with regards to all DEG (n = 2,102) using IPA
Knowledge Base. File includes glucocorticoid signaling.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-542-S7 XLS]

Additional file 8

Metabolic and signaling pathways UP all DEG. Canonical metabolic
and signaling pathways up-regulated during IMI with regards to all DEG
(n =2,102) using IPA Knowledge Base.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-542-S8.XLS]

Additional file 9

Metabolic and signaling pathways DOWN all DEG. Canonical meta-
bolic and signaling pathways down-regulated during IMI with regards to
all DEG (n = 2,102) using IPA Knowledge Base.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-542-S9.XLS]

Additional file 10

Functions UP of DEG with 1.5 fold change or greater. Functions up-
regulated during IMI for DEG with expression > 1.5-fold using IPA
Knowledge Base.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-542-S10.XLS]

Additional file 11

Functions DOWN of DEG with 1.5 fold change or greater. Functions
down-regulated during IMI for DEG with expression > 1.5-fold using IPA
Knowledge Base.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-542-S11.XLS]

Additional file 12

Metabolic and signaling pathways UP and DOWN of DEG with 1.5
fold change or greater. Overall canonical metabolic and signaling path-
ways up- or down-regulated during IMI for DEG with expression > 1.5-
fold using IPA Knowledge Base.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-542-S12.XLS]
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Additional file 13

All 19 networks of DEG with 1.5 fold change or greater. All networks
(n =19; 158 DEG) within IPA analyses associated with IMI for DEG
with expression > 1.5-fold using IPA Knowledge Base.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-542-S13.XLS]

Additional file 14

Top 5 networks of DEG with 1.5 fold change or greater. Top 5 networks
(100 DEG) within IPA analyses associated with IMI for DEG with
expression > 1.5-fold using IPA Knowledge Base.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-542-S14.XLS]

Additional file 15

GO analysis all DEG. This file contains results from GO analysis of the
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GX 7.0 (Agilent Technologies).
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