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Abstract

Background: Recently there has been an explosion in the availability of bacterial genomic
sequences, making possible now an analysis of genomic signatures across more than 800 hundred
different bacterial chromosomes, from a wide variety of environments.

Using genomic signatures, we pair-wise compared 867 different genomic DNA sequences, taken
from chromosomes and plasmids more than 100,000 base-pairs in length. Hierarchical clustering
was performed on the outcome of the comparisons before a multinomial regression model was
fitted. The regression model included the cluster groups as the response variable with AT content,
phyla, growth temperature, selective pressure, habitat, sequence size, oxygen requirement and
pathogenicity as predictors.

Results: Many significant factors were associated with the genomic signature, most notably AT
content. Phyla was also an important factor, although considerably less so than AT content. Small
improvements to the regression model, although significant, were also obtained by factors such as
sequence size, habitat, growth temperature, selective pressure measured as oligonucleotide usage
variance, and oxygen requirement.

Conclusion: The statistics obtained using hierarchical clustering and multinomial regression
analysis indicate that the genomic signature is shaped by many factors, and this may explain the
varying ability to classify prokaryotic organisms below genus level.

Background

The lowering sequencing costs are resulting in an expo-
nentially increasing amount of available genetic data [1].
The increase in genomic data is rapidly approaching the
limit of what is possible to handle using today's comput-
ers. To overcome this challenge, the focus is shifting
towards the development of methods capable of analyz-
ing genomic data fast and efficiently. The advancement in

sequencing technology is also responsible for the rapidly
increasing field of metagenomics. Metagenomics is the
study of genetic material taken from microorganisms liv-
ing in different environments. The field of metagenomics
gives researches access to the genetic contents of all organ-
isms in an environment, including a wide variety of previ-
ously uncultivable organisms [2]. Metagenomic samples
may therefore consist of genomic DNA sequences with no
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homology matches or known taxonomic marker genes.
Methods that can classify unknown DNA sequences are
therefore of great interest to metagenomic research [3].

In the present work we examine the "genomic signature"
of an organism that can be found in an arbitrary fraction
of genomic DNA using dinucleotide relative abundance
patterns [4]. By dividing genomic dinucleotide frequen-
cies with the corresponding mononucleotide content,
Karlin and co-workers found a strong phylogenetic signal
in the organisms tested. This signal was therefore referred
to as a genomic signature [4]. An alternative view of this
approach is that genomic AT content bias is removed from
DNA word frequencies. This gives an odds-ratio of
observed divided by approximated oligonucleotide fre-
quencies. Comparing prokaryotes using genomic signa-
tures can be considered as a measure of how DNA words
are over- or underrepresented within genomes from what
is expected from genomic AT content alone. Although
genomic signatures were originally based on dinucleotide
frequencies [4], it has later been shown that tetranucle-
otide frequencies are better with respect to taxonomic
classification [5,6]. In addition, the tetranucleotide based
genomic signatures can distinguish between coding and
non-coding regions within genomes which is difficult
with dinucleotide based genomic signatures [6]. Since the
genomic signature method varies little within genomes, it
can also be used to detect special intra-genomic DNA
regions [5,7-9]. Such regions may include highly con-
served genes, such as TRNA operons, as well as horizon-
tally transferred DNA such as pathogenicity islands
[5,8,10,11].

Genomic signatures are presumed to be shaped by factors
such as DNA structure, restriction and transcription sys-
tems, base-stacking energies, replication and repair, and
more [12]. To what degree these factors influence the
genomic signature, however, has not been resolved [13].
The aim of this study was therefore to explore the origin
and the strength of the phylogenetic signal of genomic sig-
natures. In addition, we analyzed how the genomic signa-
ture was affected by mutational pressure, measured as the
oligonucleotide usage variance (OUV, equation (6) in the
methods section) between genomic oligonucleotide fre-
quencies and corresponding mononucleotide approxi-
mated oligonucleotides frequencies [14].

http://www.biomedcentral.com/1471-2164/10/487

The OUV measure calculates the deviance between
genomic oligonucleotide frequencies and approximated
oligonucleotide frequencies using the considered oligo-
nucleotide's mononucleotide frequencies. This reflects
how genomic oligonucleotide usage is biased compared
to what is expected from genomic AT content. In effect,
since each considered oligonucleotide frequency is
approximated by its corresponding mononucleotide fre-
quencies, complete independence is assumed between the
nucleotides in the approximated oligonucleotide. Hence,
the OUV measure approximates genomic oligonucleotide
frequencies using genomic AT content. Large OUV values
are therefore indicative of strong bias or selective pressure,
while low OUV values are associated with mutagenesis.

Additionally, we compared the phylogenetic signal of the
genomic signature to factors such as AT content, growth
temperature, habitat, and chromosome size. To do this,
867 prokaryotic chromosomes and plasmids larger than
100 kb were compared pair-wise. The method of choice
was hexanucleotide frequency based genomic signatures,
since that particular method has been found to reflect a
stronger phylogenetic signal than both di- and tetranucle-
otide based genomic signatures [5]. Since the genomic sig-
natures are metric-based, bootstrapping or related
methods are not possible [13]. K-means hierarchical clus-
tering was therefore performed on the resulting pair-wise
comparisons of all included DNA sequences. A multino-
mial regression model was subsequently fitted to the dif-
ferent cluster groups to assess the individual influences
exerted by the different factors mentioned above.

Results

Bias in oligonucleotide usage

OUV scores were calculated for observed di-, tetra- and
hexanucleotide frequencies for all DNA sequences and fit-
ted to regression models as response variables with
genomic AT content as the predictor. The equations result-
ing from the regression models can be found in Table 1,
where it can also be observed that significant association
between AT content and OUV scores were found for all
measures. Highest '% coefficient of determination', or R?
score, was achieved for the hexanucleotide frequency
based model, while the lowest score was found for the
dinucleotide frequency based model.

Table I: Regression models of genomic di-, tetra- and hexanucleotide frequencies and AT content

DNA word size Regression equations

Coefficient of determination Significance

Dinucleotides Y, = exp(-6.42-8.64X ,1 + 6.59X2,1) R2Z=0.17 p<0.00/
Tetranucleotides Y4 = exp(-8.85-14.73X \7 + 12.39X2,7) R2 =033 p <0.001
Hexanucleotides Y = exp(-11.74-21.94X 51 + 19.40X2,) R2=0.46 p <0.001
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Pairwise comparisons of genomes using genomic signatures
The prokaryotic DNA sequences compared pair-wise
using hexanucleotide-based genomic signatures were ana-
lyzed using cluster and multinomial regression analysis.
Figure 1 shows the result of the cluster analysis and an
overview of the different groupings. The full cluster dia-
gram containing all the names of the included organisms
can be found in additional file 1. A graph depicting aver-
age OUV scores and AT content for each group can be
found in Figure 2.

The cluster diagram was divided into seven major groups,
named groups 1 to 7, based on the cluster diagram in Fig-
ure 1. The most varied groups in terms of phyla were 1 and
3. Both had, on average, similar AT content and OUV
scores. Many of the organisms in these groups were host-
associated AT-rich bacteria like Buchnera spp., Mycoplasma
spp., Staphylococcus spp., Streptococcus spp., the Bacillus
cereus group [15], Clostridium spp. [16], etc.

Groups 2 and 6 contained larger host associated bacteria
predominantly from the yProteobacteria group. Average
OUV scores were similar to groups 1 and 3, while AT con-
tent was lower (Figure 2).

Groups 5 and 7 contained metabolic diverse and free-liv-
ing Proteobacteria and Actinobacteria. From Actinobacte-
ria we found genera such as Rubrobacter, Mycobacterium,
Nocardia, Frankia, Rhodococcus, Thermobifida, Bifidobacte-
rium, Streptomyces, Symbiobacterium, Propionibacterium,
Leifsonia and Corynebacterium. The Proteobacterial phy-
lum was represented with « and fProteobacterial
genomes including genera such as Caulobacter, Rhodo-
bacter, Novosphingobium, Bradyrhizobium, Azoarcus, Bur-
kholderia and Rhodopseudomonas. The average AT content
was lowest in these groups while the OUV score was high-
est.

Group 4 was the smallest of the groups discussed, and
contained only twelve genomes. Both average AT content
and OUV scores were fairly high compared to the other
groups. The group obtained, on average, low correlation
scores with the other groups and was therefore treated as
a separate group. Members of the group included Thermo-
toga spp., Rubrobacter x ylanophilus, Methanopyrus kandlerii,
Methanosaete thermophila, Thermococcus kodakaraensis,
Parabacteroidetes distasonis and Leptospira spp.

The model

The different cluster groups were fitted as a categorical var-
iable to a regression model using the factors: genome size,
AT content, OUV, phyla, growth temperature, oxygen
requirement, and habitat. In Table 2, it can be concluded,
based on the AIC (Akaike's Information Criterion) and
McFadden R? statistics, that a fairly good model, with high
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explanatory power, was obtained for the cluster groups.
AT content was the factor that had the largest impact on
the model, followed by phyla. Although the phyla factor
improved the model considerably, the effect was noticea-
bly weaker than what was observed by including AT con-
tent as a factor. Genome size, habitat and growth
temperature were also significant factors, but the regres-
sion model improved only slightly in terms of AIC and R2
scores. The OUV and oxygen requirement factors were the
weakest predictors. A factor specifying whether the organ-
isms were pathogenic was originally included in the
model, but was not found significant and was therefore
removed.

It should be noted that there is some co-linearity between
the factors in the regression model. The predicted influ-
ences of each factor in Table 2 may therefore not be com-
pletely accurate. The model should rather be considered
as a more general estimate of the influences exerted by the
different factors included.

Discussion

Selection pressure as measured by OUV

The calculation of OUV gives an indication of how ran-
dom or biased the occurrences of oligonucleotides are in
genomes (See Methods section, as well as [14,17]). Since
only AT content was used to approximate genomic oligo-
nucleotide usage, the model assumes complete independ-
ence between all nucleotides in the genome. Thus, lower
OUV scores imply more random DNA composition, and
high variance scores can be taken to mean that stronger
selection forces are affecting the distribution of genomic
oligonucleotide frequencies. Table 1 show that the differ-
ently sized oligomers are differently affected by selective
forces as measured by OUV. In other words, OUV, meas-
ured using longer oligonucleotides, are more strongly
associated with genomic AT content than OUV based on
shorter oligomers.

Analysis of the model

The multinomial regression model gives a rough predic-
tion of influences determining similarity with respect to
the genomic signature discussed here. Figure 1 indicates
that AT content and phyla appears to be associated with
group formation in the cluster diagram.

It has been observed [5] that genomic signatures grouped
organisms progressively better, with respect to 16S rRNA
based phylogeny, when the oligonucleotide size
increased. In addition, the number of wrong species iden-
tifications (false positives) dropped [5]. Hexanucleotide
based genomic signatures were therefore the only measure
considered in this study. Even though the genomic signa-
ture based comparisons cannot be directly compared to
tree based phylogenetic methods [13], the over 150 phyl-
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Figure | (see previous page)

Cluster diagram of 867 prokaryotic genomic DNA sequences compared pair-wise using hexanucleotide-based
genomic signatures. 867 prokaryotic genomic DNA sequences were compared pair-wise with hexanucleotide-based
genomic signatures. Hierarchical clustering was performed on the resulting 867 x 867 correlation matrix using average linkage
and Euclidean distance. The cluster diagram was grouped into different segments, Groups |-7, based on the cluster-tree which
reflected how the prokaryotic DNA sequences compared pair-wise. Lighter colors mean higher correlation scores, and thus
closer similarity between the compared genomes. The multi-colored horizontal bar on top indicates each chromosome's
respective phylum, while the vertical red and blue coloured bar shows AT/GC content, where red means GC content larger
than 50% and blue AT content larger than 50%. Groups 5 and 7 are mainly populated with free-living, GC rich, prokaryotes
with diverse metabolic capabilities. Groups | and 3 consist predominantly of AT rich and host-associated archaea and bacteria,
while group 2 and 6 consisted mainly of larger host-associated y-Proteobacteria. Group 4, was the smallest and most dissimilar

group, consisting of many extremophiles.

ogenetic groups found in the cluster diagram (see Figure
1) imply that the genomic signatures have limited taxo-
nomic scope below genus level compared to rRNA based
methods. TRNA based methods, on the other hand, are
not optimal to compare strains [18]. Therefore, as has
been stated previously [6,13,19], the genomic signature is
a measure to be used together with rRNA-based methods.

The categorical factors included in the model must be con-
sidered as rough, giving only inferential knowledge. This
is especially noticeable in the factor describing a genome's
habitat, where many host-associated genomes may be
found in multiple environments and vice versa.

Table 2 indicates the factors influencing comparisons

based on genomic signatures, with AT content being the
strongest. Habitat, oxygen requirement, and growth tem-

Group average AT content

AT

00 02 04 06

1 2 3 4 5 6 7

Group

Figure 2

perature were also significant factors, implying that signa-
ture differences may be found in strains and closely
related species living in different environments or having
dissimilar growth temperature and oxygen requirements.
Oxygen requirement has been associated with AT content
so this result was not unexpected [20]. Interestingly,
growth temperature was found significant. This finding
was of some interest due to the difficulty in establishing a
link between base composition and growth temperature
[21,22]. Our finding may indicate a sophisticated associa-
tion between growth temperature and genomic base com-
position not easily detected with more traditional
statistical methods.

A model was also created with the addition of a patho-
genicity factor. This factor was included since it is assumed
that pathogenic bacteria exchange DNA with the sur-

Group average OUV scores

1l

1 2 3 45 6 7

3e-06

ouv

0e+00

Group

Average AT scores and OUYV content in cluster groups. The graphs shows average AT content (left) and OUV scores
(right) on the vertical axis, for each group on the horizontal axis. High OUV scores indicate strong bias in genomic hexanucle-
otide usage, while low scores imply more random DNA composition. Free-living archaea and bacteria (groups 5 and 7) obtain
higher average OUV scores than host-associated (groups | and 3), indicating pronounced differences in mutational pressures in
the respective environments. Average AT content was considerably higher in the host-associated groups than in the free-living.
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Table 2: Polychotomous regression model with added predictors to the far left

Model components Log-Likelihood McFadden R? AAIC AIC
Model 0: constant -1534 0 0 3080
Model I: Size -1475 0.04 95 2985
Model 2: AT content -796 0.48 1333 1652
Model 3: OUV -775 0.49 30 1622
Model 4: Phyla -433 0.72 455 1167
Model 5: Oxygen req. -414 0.73 15 1152
Model 6: Habitat -360 0.77 6l 1091
Model 7: Temperature -320 0.79 56 1035
Final model -320 0.79 - 1035

The table shows a forward fitting of a set of predictors to the response variable representing the cluster groups.

roundings more often than non-pathogenic ones [23].
The pathogenicity factor was not found significant, and
was therefore removed from the final model.

Analysis of the cluster groups

Figure 1 show that Groups 5 and 7 consists of both Actin-
obacteria and Proteobacteria closely clustered together.
Since the different phyla cluster more closely together
than other Proteobacteria it may be deduced that forces
are at work giving similar oligonucleotide preference for
very distantly related bacteria. Although these bacteria are
all GCrich, it should be noted that the genomic signatures
are normalized by AT content (see Formula (2), Methods
section) in the sense that genomic oligonucleotide fre-
quencies are compared to AT content. Hence, genomic
signatures give a measure of how oligonucleotide frequen-
cies are over- and underrepresented in a genome com-
pared to what is expected from AT content alone, which,
in effect, should remove any bias from mononucleotide
frequencies. The organisms in Groups 5 and 7 are pre-
dominantly free-living, mostly found in soil, with a
diverse set of metabolic capabilities. Although the
genomes in groups 5 and 7 are varied in terms of phyla,
they share many of the other factors found in Table 2. For
instance, the genomes in both groups 5 and 7 have com-
parable AT content, genome sizes, lifestyle and growth
temperature. Despite these differences, DNA composition
usually remains similar for closely related species and
strains. This is also reflected by the genomic signature. At
the genus level and below, however, DNA compositional
differences become more pronounced. It has recently
been proposed that bacteria only rarely change habitat
and when they do it may have profound effects on DNA
composition [24]. Our results, on the other hand, indicate
that distantly related organisms may adopt similar DNA
composition when they are subjected to comparable
selective forces, as measured by the factors used in the
regression model, at least in terms of the genomic signa-
ture.

By clustering bacteria according to codon usage it was
found that genomes grouped according to their respective
habitat and life-style [25]. Although the hexanucleotide
based genomic signatures gave clear and distinct clusters
of soil/free-living bacteria, other niche specific groups
similar to the ones found using codon bias [25] were not
detected. It should be stated that the methods employed
here are not related to the codon bias-based methods
described in [25]. Codon bias is strongly associated with
AT content [25], while genomic signatures are normalized
with respect to AT content. In other words, genomic signa-
tures are not directly associated with AT content, in con-
trast to codon bias measures, but indirectly as the
regression models show.

Figure 1 shows that the groups compare differently in
terms of correlation scores in the sense that some groups
are more similar than others. These observed similarities
might illustrate an evolutionary transition from free-liv-
ing (Groups 5 and 7) to host-associated life styles (Groups
2 and 6) ending up intracellular (Groups 1 and 3). The
hypothesized direction from a free-living environment to
a host-associated is based on average OUV scores from the
different groups (Figure 2) where the free-living bacteria
were seen to have, on average, more biased oligonucle-
otide usage than the host-associated. Groups 1 and 3
obtained the lowest variance scores of all groups, indicat-
ing a more 'random' genomic oligonucleotide distribu-
tion, and hence DNA composition, in the host-associated
Proteobacteria compared to the free-living. The more ran-
dom DNA composition is presumably due to increased
mutation rates caused by the loss of DNA repair systems
[26,27]. In addition to the host associated and Gram-neg-
ative Proteobacteria, the Gram-positive and pathogenic
Actinobacterium Tropheryma whipplei (the causative agent
of Whipple's disease) is also present in Group 3. This bac-
terium is presumed to have undergone genome reduction
[28], indicating a possible niche-specific bias in oligonu-
cleotide distributions.
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The above examples illustrate that prokaryotic DNA com-
position, expressed using hexanucleotide-based genomic
signatures, can be similar regardless of kinship. The simi-
lar DNA composition is, according to our results, a conse-
quence of a collection of factors having acted on the
genomes. Thus, genomic analyses of organisms undergo-
ing evolutionary transition between different environ-
ments may give many important clues concerning how
differences in DNA composition may arise in closely
related organisms.

Conclusion

Our results, based on hierarchical clustering and multino-
mial regression, indicate that genomes compared using
genomic signatures are primarily grouped according to AT
content. In the model presented, AT content was more
strongly associated with the clustered groups than taxon-
omy. Taxonomy was, in turn, found to be more strongly
linked to the clustered groups than the other significant
factors. The remaining factors found to significantly affect
the regression model were, in order of importance,
genome size, habitat, temperature, selection bias (OUV)
and oxygen requirement. It can therefore be concluded
that the genomic signature in prokaryotes is influenced by
many factors which may explain the limited phylogenetic
scope below genus level.

Methods

All genomic DNA sequences were obtained from the
NCBI genome database [29] together with information
about the different organisms. Additional information
can also be found in additional file 2.

The computer programs used to generate the results were
made according to the explanations given below. The fol-
lowing notation will be used throughout:

Let (w,w,..w,); represent an oligonucleotide (n-mer) with
1 <i< N = 4npossible combinations. The function

z; =F, : (ww,.w,); >[01] (1)

gives the overlapping empirical frequency of the oligonu-
cleotide (w,w,..w,); with respect to the DNA sequence Z
= {w,w,..w.}, where S is much larger than n.

This means that:

z = Number of overlapping n-mers (wqwj...wy); in DNA sequence Z
! S—n+1

The hexanucleotide-based relative abundances can then

be calculated as follows:

http://www.biomedcentral.com/1471-2164/10/487

‘= Fz((wywowswawswe);)
" Fp((w1)i)Fe(w2)i)Fz((w3)i)Fz((wa)i)F(w5)i)F((w6)i)

(2)

Where 1 <i <N =4n
The genomic signature is then found by comparing two

genomic DNA sequences with the Pearson correlation for-
mula:

N
2 (&i=&)(mi-n)
1

(3)

N _ ,N

\/Z(ij—é)zg(nk—ﬁ)z
]

N = 4n designates the total number of possible DNA word
combinations, with

&= Fx((wywaw3swawswe);)
" P ((w1)i)Fx ((w2)i)Fx ((w3)i)Fx ((wg)i)Fx ((ws);)Fx ((we);)
(4)
And
0 = Fy ((wqwowaw4wswe);)
" Py ((w1)i)Fy (w2)i)Fy (w3)i)Fy ((w4);)Fy (w5)i)Fy ((we);)
(5)

The nucleotides w;, 1 <1< 6, in the denominator of equa-
tions (4) and (5), are the corresponding nucleotides in the
ith hexanucleotide w,w,w;w, wsw;.

The following formulas

|
I
z|~

=)
I
z |~

N
Zéi
N
Zﬂi

represent the average hexanucleotide relative abundance
values.

Hierarchical clustering based on Euclidean distance was
performed on the resulting symmetric 867 x 867 correla-
tion matrix. Average linkage was used to put emphasis on
the closest matches based on group similarities.

Oligonucleotide usage variance (OUV) can be considered
as a measure of oligonucleotide frequency bias, or selec-
tion pressure on the genomic DNA composition, and was
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calculated according to the given formula for each chro-
mosome:

N
ouv, = ﬁz(xi - MO((wlwz"'wn)i))2 (6)

The function M,((w,w,...w,);) approximates oligonucle-
otide frequencies with the corresponding mononucle-
otide frequencies:

Mo ((wywy..w,);) = Fx((wy);)Fx((w,);)--Fx((w,);)
(7)

The formula implicitly assumes that each nucleotide in
the approximated n-mer is independent of the neighbour-
ing nucleotides. In addition, equation (7) assumes that
genomic oligonucleotide frequencies are only influenced
by AT content, which means that low values can be inter-
preted as random mutations carrying little or no informa-
tion. High variance values, on the other hand, mean that
substantial information is carried by the oligonucleotide
being approximated.

Linear regression analysis was performed between OUV
for di-, tetra-, and hexanucleotide frequencies (response
variable) and genomic AT content (predictor variable)
using log transformation. R? designates '% coefficient of
determination'.

A conditional logistic multinomial (polychotomous)
regression model was fitted to asses the individual influ-
ences of predictors: genome size, AT content, OUV, phyla,
oxygen requirement, habitat, growth temperature and
pathogenicity, with the cluster groups as the response var-
iable. The AIC and McFadden R? statistics were used as
indicators of the quality of the fitted model. The following
multinomial logistic regression model was run in the sta-
tistical program R using the package nnet:

multinom( formula = as. factor(Groups) ~Size + Size> + AT + AT? + OUV + as.factor(Phyla) +
as. factor(Oxygen) + as. factor(Habitat) + as. factor(GrowthTemperature), maxit = 2000)

The response variable "Groups" is a categorical variable
consisting of the different cluster groups (see Figure 1).
The predictors Phyla, Oxygen, Habitat and Growth tem-
perature were also categorical factors, while Size, AT and
OUV were numerical factors. The Oxygen factor consisted
of the categories: aerobic, anaerobic and facultative. Hab-
itat consisted of the categories: host-associated, multiple,
specialized, terrestrial, and aquatic, while the growth tem-
perature factor consisted of the following categories: psy-
chrophilicc, mesophilic and thermophilic.  This
information was taken from the NCBI website http://

www.ncbi.nlm.nih.gov/genomes/lproks.cgi. The regres-

sion model converged after 220 iterations. Assessment of

http://www.biomedcentral.com/1471-2164/10/487

statistical significance was carried out with the car pack-
age.

All regression models were statistically significant with the
significance level set to p < 0.001.
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Additional file 1

Genomic signature based cluster diagram. JPG file containing 867
labelled prokaryotic DNA sequences compared pair-wise using hexanucle-
otide-based genomic signatures, and clustered using hierarchical cluster-
ing.

Click here for file
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Additional file 2

Data file. Excel file containing all 867 prokaryotic chromosomes and
plasmids larger than 100 kb along with the corresponding list of genomic
properties and phyla.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-487-S2.XLS]
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