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Abstract
Background: Grasses are among the most important and widely cultivated plants on Earth. They provide
high quality fodder for livestock, are used for turf and amenity purposes, and play a fundamental role in
environment protection. Among cultivated grasses, species within the Festuca-Lolium complex
predominate, especially in temperate regions. To facilitate high-throughput genome profiling and genetic
mapping within the complex, we have developed a Diversity Arrays Technology (DArT) array for five grass
species: F. pratensis, F. arundinacea, F. glaucescens, L. perenne and L. multiflorum.

Results: The DArTFest array contains 7680 probes derived from methyl-filtered genomic
representations. In a first marker discovery experiment performed on 40 genotypes from each species
(with the exception of F. glaucescens for which only 7 genotypes were used), we identified 3884
polymorphic markers. The number of DArT markers identified in every single genotype varied from 821
to 1852. To test the usefulness of DArTFest array for physical mapping, DArT markers were assigned to
each of the seven chromosomes of F. pratensis using single chromosome substitution lines while
recombinants of F. pratensis chromosome 3 were used to allocate the markers to seven chromosome bins.

Conclusion: The resources developed in this project will facilitate the development of genetic maps in
Festuca and Lolium, the analysis on genetic diversity, and the monitoring of the genomic constitution of the
Festuca × Lolium hybrids. They will also enable marker-assisted selection for multiple traits or for specific
genome regions.
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Background
Grasses are among the most important and widely culti-
vated plants on Earth, with a total area of grassland esti-
mated to be twice that of cropland. In Europe, fifty percent
of the farmed landscape is under grasses which accounts
for a large proportion of the annual production of beef
and milk with a total value of more than € 70 billion [1].
They are also used extensively for turf and amenity pur-
poses, and play an important role in soil conservation and
protection of environmental resources. Among the culti-
vated grasses, ryegrasses (Lolium spp.) and fescues (Festuca
spp.) predominate, especially in temperate climates [2].

Fescues and ryegrasses are closely related and belong to
the Poaceae. Whereas Lolium consists of only eight diploid
species, Festuca comprises nearly 500 species with ploidy
levels ranging from diploid to dodecaploid. The two agro-
nomically exploited fescues - F. pratensis and F. arundina-
cea - belong to the Bovinae section, subgenus Schedonorus
[3,4], but the systematics of Lolium and Festuca are still a
subject for review. Darbyshire [5] proposed to merge Fes-
tuca subgenus Schedonorus with the Lolium. However, clear
differentiation of Lolium and Festuca into two separate
taxa is supported based on morphological traits, isozymes
[6], RAPD markers [7], analysis of ITS and the chloroplast
trn region [8], as well as EST-SSR markers [9].

Decades of breeding resulted in superior ryegrass and fes-
cue cultivars outperforming their wild progenitors. How-
ever, there is a risk that some desirable alleles of the
progenitors were lost during the breeding process. The
analysis of genetic diversity in cultivars of Dactylis glomer-
ata and Gossypium arboreum revealed lower levels of
intraspecific variability as compared to the wild types
[10,11]. Similar trends were observed in F. pratensis [7]
and L. perenne [12]. Investigations of genetic diversity of
Nordic F. pratensis cultivars and natural populations have
shown that although the molecular genetic variation has
not been reduced by breeding [13], the phenotypic varia-
tion in important agronomic traits is lower in cultivars
when compared to natural populations [14]. Thus, the
existing gene pool of wild accessions represents an inval-
uable source of alleles, which can be introduced into exist-
ing cultivars. The risk of erosion of species' gene pools
calls for characterization of the natural genetic variability
and its conservation in gene banks. An ideal system to
describe genetic diversity should allow for parallel screen-
ing of thousands of genomic loci and quickly analyze
many accessions at a low cost. Such a method will allow
more effective selection of material for breeding purposes.

A high-throughput genotyping system is also required to
speed up the development of new cultivars with desirable
attributes using marker assisted selection (MAS). For MAS,

the development of genetic markers and genetic linkage
maps is required. Several genetic maps were constructed
for Lolium spp. using isozymes, RFLP, AFLP, RAPD, SSR,
and EST-derived CAPS markers [15-21]. Markers associ-
ated with traits such as disease resistance [22-24], winter
hardiness [25], quality parameters [26] and fertility traits
[27] have been identified through the analysis of quanti-
tative trait loci (QTL). Within fescue species, genetic maps
were generated for both agronomically important species
- F. arundinacea and F. pratensis [28,29]. The identification
of QTLs for resistance to biotic and abiotic stresses as well
as the application of genetic markers in cultivar develop-
ment has been recently summarized by Zhang et al. [30].

In addition to breeding of fescue and ryegrass cultivars,
some breeding programs have released cultivars originat-
ing from intergeneric crosses of Festuca with Lolium (called
Festuloliums), thereby combining desirable agronomic
characteristics of both genera [2]. The ryegrass species - L.
multiflorum Lam. and L. perenne L. are highly nutritious,
palatable and digestible, and display numerous valuable
characteristics for turf culture including deep green color,
uniformity, and rapid establishment. Fescues are known
for their adaptation to abiotic stresses. In particular, F.
arundinacea is well known for its drought tolerance, while
F. pratensis carries genes for winter hardiness. Until
recently, the genomic constitution of commercial Festulo-
lium cultivars was mostly a matter of speculation and
extrapolation from research stocks. Kopecký et al. [31],
using genomic in situ hybridization (GISH), demon-
strated that genomic composition of the commercial Fes-
tulolium varied significantly, depending on the parents
used for hybrid development and the breeding strategy
employed. While GISH is a very powerful and simple
method for karyotypic studies in the Lolium-Festuca com-
plex, it does have limited resolution. While this resolution
limit has not yet been established in grasses, in wheat-rye
hybrids it was found to be up to the Mb level [32]. Obvi-
ously, this limits the technique to identification of large
genomic regions. Low throughput is another bottleneck
preventing its broader use in breeding. Thus, a more sen-
sitive and effective system is needed for genotyping in
breeding of commercial Festulolium cultivars.

The need for a high-throughput genotyping system led to
the development of various DNA arrays and chips
(reviewed in [33]). Although they are based on different
principles, all of them can be used to screen thousands or
hundreds of thousands genomic loci in a single pass.
However, most of them are based on scoring single nucle-
otide or single feature polymorphisms (SNP and SFP,
respectively) and the development of such markers
requires detailed knowledge of the DNA sequence. There-
fore, it can only be used with some degree of success in
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species with at least some minimum level of DNA
sequencing completed. In contrast, Diversity Arrays Tech-
nology (DArT) is a microarray hybridization based tech-
nique that permits simultaneous screening thousands of
polymorphic loci without any prior sequence information
[34]. DArT is high-throughput, low-cost, quick and repro-
ducible. It has been used for genotyping and genetic map-
ping of genomes in numerous species, such as Arabidopsis
thaliana [35], Hordeum vulgare [36,37], Triticum aestivum
[38,39], Cajanus cajan [40], Sorghum bicolor [41] and many
others. DArT markers were also employed in the construc-
tion of a physical map of wheat chromosome 3B [42].

In this study we report on the development of a DArT
array for five agronomically important species within the
Festuca-Lolium complex. We demonstrate the utility of the
approach for the estimation of intra- and interspecific
genetic diversity. Moreover, by combining the DArT array
with cytogenetic information in specific stocks of Festulo-
lium, we illustrate successful anchoring of sets of DArT
markers to individual chromosomes and chromosome
bins.

Results
Development of DArT array
We developed a DArT array containing 7680 probes
derived from methyl-filtered (through the use of PstI
restriction enzyme) genomic representations. In the first
marker discovery experiment performed with 40 geno-
types from each of the species L. perenne, L. multiflorum, F.
pratensis and F. arundinacea, and seven genotypes of F.
glaucescens, we identified 3884 polymorphic markers with
standard DArTsoft settings. This is the highest frequency
of polymorphism (50.6%) reported for DArT arrays, con-
sistent with a very high level of DNA sequence variation in
the fescue/ryegrass complex. Such a high degree of poly-
morphism was not unexpected, because the array consists
of five different species of two genera. Most of these mark-
ers detected reliable polymorphisms across all accessions
tested, while a subset of markers worked reliably only in a
subset of diversity tested on the array.

In order to estimate the level of redundancy of markers on
the array we used 184 festuloliums samples. It is impor-
tant not to confuse the apparent redundancy (very high
level of correlation between pairs of markers) which is due
to Linkage Disequilibrium (LD) in the material analysed
and probe sequence redundancy due to sampling the
same (or highly similar) restriction fragment due to the
random cloning process. The festuoliums lines we used
for redundancy analysis were derived from various par-
ents through interspecific hybridizations therefore they
are expected to have very low level of LD. We applied cor-
relation analysis of all possible pairs of 2352 markers dis-
covered in the analysis (data not presented) and found a

low level of redundancy: out of 1983 unique score signa-
tures we found 1713 singletons, 198 bins with 2 markers,
53 bins with 3 markers, 11 bins with 4 markers, 6 bins
with 5 markers and single bins with 6 and 7 markers,
respectively. The detected level of redundancy (16%) will
be verified in the future through sequencing, but taking
this preliminary estimate we can conclude that there are
approximately 3260 unique markers on the array (0.84 ×
3884).

Analysis of genetic diversity using DArT markers
Of the 3884 polymorphic markers identified on the array
when polymorphic markers detected in each species were
summed up only 2629 markers gave unequivocal scores
in the joint fuzzy C-means clustering-based classification
of all five species (see Additional file 1). Joint classifica-
tion of signal on DArT arrays was compromised for the
remaining 1255 markers by multiple alleles present in the
same locus of the five species. Different alleles present in
targets, especially when dealing with different species,
often result in different levels of relative signal intensity
for a probe on the array, either due to sequence or frag-
ment length difference. These different levels of signal
intensity do not conform to bimodal distribution DArT-
soft requires for unambiguous 0/1 binarisation (scoring).

Using these 2629 markers, we compiled a dendrogram
including all 167 accessions of fescue and ryegrass. This
differentiated two major groups, representing the fescue
and ryegrass genera (Figures 1 and 2). Both ryegrass spe-
cies analyzed (L. perenne and L. multiflorum) were closely
related, but divergent enough to form separate groups.
Fescue species formed two major groups. The first one
included F. pratensis and, as the level of DArT polymor-
phism among F. pratensis accessions was low, they formed
a tight group in the dendrogram. The second group
included F. arundinacea and F. glaucescens. This group
included two subgroups, one representing F. arundinacea
accessions and the second F. glaucescens accessions. F.
arundinacea accession Fa-35 (Moroccan ecotype 599533)
was placed distant from the main F. arundinacea cluster.
Similarly, one accession of F. glaucescens Fg-7 (genotype
FRA001, obtained from Seed Bank, W. Reg. P. I. Station,
Pullman, WA) clustered with the subgroup of F. arundina-
cea. All plants of this accession tested had chromosome
numbers 2n = 42, indicating that this accession was prob-
ably a mislabeled F. arundinacea, and not of F. glaucescens
origin. Moreover, the number of markers that scored pos-
itive ("1") in this accession (1253 markers) was higher
than in any other accession of F. glaucescens (1059 - 1101
positive markers per accession) and was similar to those
of F. arundinacea (1000 - 1351 markers per accession).
Another inconsistent accession, F. pratensis Fp-40 (Norwe-
gian cultivar Norild), was located outside of all other spe-
cies in the dendrogram probably due to contamination of
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its DNA. Both accessions (Fg-7 and Fp-40) were excluded
from further analyses.

The molecular genetic diversity analyses revealed several
attributes characteristic for all species:

(1) Ecotypes from one country were usually more closely
related than those from different countries (as in case of
Lithuanian ecotypes of F. pratensis 3982 and 3985).

(2) Cultivars released in one country usually displayed lit-
tle polymorphism (as in case of F. arundinacea cultivars

Eldorado and Wrangler released in USA and L. perenne
cultivars Jakub and Kelt released in Czech Republic).

(3) Ryegrasses displayed higher levels of polymorphism
than fescues.

Polymorphism between the parents of mapping 
populations
With the prospect of using the array for mapping various
agronomically important traits, we evaluated the presence
of polymorphisms among (grand-) parents of mapping
populations, which were deliberately included in our set
of genotypes in the marker discovery stage of the project.
It is clear that the level of marker polymorphism among
the parents of mapping populations depends primarily on
the purpose for which any specific map was developed.

UPGMA dendrogram (shown as Radial tree)Figure 1
UPGMA dendrogram (shown as Radial tree). UPGMA 
dendrogram (shown as Radial tree) based on hybridization of 
80 Lolium and 87 Festuca genotypes to 2629 DArT markers 
and Felsenstein's modified Nei/Li restriction fragment dis-
tance. Two major groups representing the fescue and rye-
grass genera are clearly differentiated. Both ryegrass species 
display higher genetic diversity than fescue species. Note that 
the accession of F. arundinacea Fa-35 (Moroccan ecotype 
599533) was found distant of the major group. Similarly, one 
accession of F. glaucescens (Fg-7) clustered with the subgroup 
of F. arundinacea. Another inconsistent accession, F. pratensis 
Fp-40 (Norwegian cultivar Norild), was located separately 
outside of all other species in the dendrogram.

Fa-35
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Lolium multiflorum Lolium perenne

Festuca pratensis

Festuca glaucescens
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UPGMA dendrogram (shown as Rectanglar cladogram)Figure 2
UPGMA dendrogram (shown as Rectanglar cladog-
ram). UPGMA dendrogram (shown as Rectanglar cladog-
ram) based on hybridization of 80 Lolium and 87 Festuca 
genotypes to 2629 DArT markers and Felsenstein's modified 
Nei/Li restriction fragment distance. Groups of Festuca and 
Lolium accessions are marked using colored lines. Inconsist-
ent accessions (Fp-40, Fg-7 and Fa-35) are marked using 
arrows.
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Where the purpose was to generate general genetic maps,
the parents should be genetically as distant as possible,
thus the number of polymorphic markers was expected to
be high. This was the case for the L. perenne F2 mapping
population VrnA, where 464 DArT markers were poly-
morphic between the grandparents NGB and VEYO (see
Additional file 2). On the other hand, when a mapping
population was generated to target a few specific traits, the
parents can be genetically similar except for the region(s)
harboring the gene(s) of interest. For example, only 289
polymorphic markers were found between LTS-01 and
LTS-02. These two parental genotypes are both derived
from similar gene pools, but designed to maximize heter-
ozygosity for nitrogen use efficiency and cell wall digesti-
bility, respectively.

Genus- and species-specificity of DArT markers
Reliable discrimination of DNA markers from both grass
genera tested here, and possibly also from individual spe-
cies, would greatly expand the utility of the DArT array. As
the DArTFest array contained markers derived from both
genera and all five species tested, our subsequent analysis
focused on identifying genus- and species-specific mark-
ers. Of 3884 polymorphic DArT markers identified, over
1,000 markers detected a positive ("1") allele in each spe-
cies (Table 1). The highest number of such markers "1"
was in F. pratensis (between 1619 and 1821 markers per
accession) and in L. multiflorum (between 1507 and 1852
markers per accession). Lower numbers of markers were
detected in F. arundinacea (between 1000 and 1351 mark-
ers per accession), in F. glaucescens (between 1059 and
1101 markers per accession) and in L. perenne (between
821 and 1127 markers per accession). However, a large
proportion of markers present in all five species tested
reduced the numbers of species-specific markers. Thus,
only nine species-specific markers were detected in F.

glaucescens. For the two other fescue species, 34 and 123
species-specific markers were identified in F. arundinacea
and F, pratensis, respectively. The number of markers
shared between the allopolyploid F. arundinacea and its
progenitors - F. pratensis and F. glaucescens - was high. Spe-
cifically, F. arundinacea shared 274 markers with only F.
glaucescens and 82 markers exclusively with F. pratensis. In
ryegrass, 52 markers specific for L. perenne and 82 markers
specific for L. multiflorum were identified. Another 381
markers were present in both ryegrass species and absent
in fescues. The number of markers, which could be used
to identify particular genomes in intra- and interspecific
hybrids, is shown in Figure 3.

Based on the proportion of markers shared by pairs of spe-
cies, genome relationships within this complex are as fol-
low: Fa-Fg >> Lm-Lp >> Fa-Fp >> Fp-Lm > Fp-Fg > Fg-Lm
> Fa-Lm > Fa-Lp > Fg-Lp > Fp-Lp. This correlates with the
results of the cluster analysis.

Mapping DArT markers to F. pratensis chromosomes and 
chromosome bins
We used a complete set of Festuca-Lolium single chromo-
some substitution lines of F. pratensis into tetraploid L.
multiflorum to allocate DArT markers showing interspe-
cific polymorphism to individual chromosomes of F. prat-
ensis. In total, 160 DArT markers were anchored this way
with six to 34 DArT markers anchored to a specific chro-
mosome (Table 2). This represents 56% of all markers
present in F. pratensis but absent in L. multiflorum. The
lowest numbers of chromosome-specific markers were
found on chromosome 4 (10 markers) and chromosome
7 (6 markers). However, another 18 markers were shared
by the two chromosomes. This was surprising, as any
other pair of chromosomes shared up to four markers
only.

Table 1: Species-specific DArT markers

Species Scored markers* Positive markers** Polymorphic markers*** Species-specific markers****

L. perenne 2638 1725 (821-1127) 1407 52

L. multiflorum 3883 2761 (1507-1852) 2148 82

F. pratensis 3884 2257 (1619-1821) 1078 123

F. glaucescens 2630 1346 (1059-1101) 387 9

F. arundinacea 2638 1572 (1000-1351) 512 34

*) Note that some markers were not scored in all species
**) Range of positive markers for individual accessions is in parentheses
***) Markers polymorphic among the accessions
****) Identified after scoring 2629 markers
Number of species-specific DArT markers obtained from a DArT array containing 3884 polymorphic markers of 40 accessions each of Lolium 
perenne L., L. multiflorum Lam., F. pratensis Huds., F. arundinacea Schreb. and seven available accessions of F. glaucescens Boiss.
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Based on the analysis of 14 recombinant lines with differ-
ent lengths of the introgressed F. pratensis segments of
chromosome 3, we were able to anchor 36 DArT markers
to seven bins of this chromosome (Figure 4). Each bin
contained between one and nine markers; nine markers
were also shared with other chromosomes. The co-locali-
zation was found with all six remaining chromosomes
with similar frequency.

Discussion
The results of this study represent a major step toward the
development of a high-throughput genotyping platform
for important grass species from the genera Festuca and
Lolium. Both genera contain agronomically important
species, and are frequently intercrossed to combine com-
plementary species characteristics. The 3884 DArT mark-
ers on the array is by far the highest number of markers
ever used in studies of diversity or for genetic mapping of
Lolium and Festuca species [7,16]. Our choice of the DArT
array was motivated by the relative ease of its develop-
ment, a good chance for extensive marker polymorphism,
and its low cost per data point for future applications.

The results obtained in a set of 167 accessions represent-
ing two genera and five species proved the usefulness of
the array to analyze genetic diversity. Intraspecific varia-
bility evaluated based on the detection of 2629 DArT
markers was found to be higher in both ryegrass species as
compared to the fescues. The lowest intraspecific variabil-
ity was detected among the accessions of F. arundinacea.
Using RAPD markers, Kölliker et al. [7] revealed much
lower intraspecific variability in F. pratensis compared to
L. perenne. Fjellheim et al. [43] found that the number of
cpDNA haplotypes in F. pratensis was only about 25% of
that observed in L. perenne by Balfourier et al. [44], and
suggested that F. pratensis in Europe has been through a
recent bottleneck. The higher intraspecific variability in
ryegrasses compared with that in fescues was also noted
based on screening of EST-SSR markers [9] and based on
the observations of phenotypic traits (Жernoch et al.,
unpublished). Although it was outside of the immediate
goal of this study, the bottleneck created by interspecific
hybridization in the evolution of tall fescues seems a rea-
sonable assumption.

The set of genotypes used in this study included parents
from the B14/16 × HF2/7 mapping population of F. prat-

DArT markers for hybridsFigure 3
DArT markers for hybrids. Number of DArT markers 
which can be used to estimate the genomic constitution in 
hybrids within the Festuca-Lolium complex. In each pair-wise 
combination, a high proportion of markers is shared by both 
species. The markers shared by both parental genomes are in 
the middle section of the bar.

Table 2: DarT markers specific for chromosomes of F. pratensis

Chromosome number
(in Triticeae numbering system)

Number of chromosome-specific markers

1 31

2 34

3 29

4 10

5 20

6 30

7 6

Number of the DArT markers specific for individual chromosomes of F. pratensis
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ensis [28]. The genetic map of this population contains
550 loci from homologous and heterologous RFLP, AFLP,
isozyme, and SSR markers, and has a total length of 658.8
cM with an average marker density of 1.4 cM/marker. The
number of polymorphic DArT markers between the par-
ents of this mapping was 322. Thus, the number of DArT
markers released in this study could significantly increase
the density of the genetic linkage map.

Prior to this study, no high-throughput approach was
available to study genomic constitutions of interspecific
and intergeneric hybrids of Festuca and Lolium, nor in any
other combination of frequently mated species/genera,
such as wheat and rye. Yet, such systems would enable

characterization of unknown accessions as well as hybrid
breeding materials and cultivars, and assist greatly in early
characterization of all primary recombinants that have to
be generated in large numbers whenever high precision of
alien introgression is required [45]. Our analyses indicate
that the DArT array is very useful for these purposes. For
each of the analyzed species, a number of species-specific
markers were identified. For two species of high interest in
relation to production of Festulolium cultivars, L. multiflo-
rum and F. pratensis, over 400 species-specific markers
were identified. Such a high number of markers will facil-
itate detailed analyses of genomic constitution in wide
hybrids. It should also be possible to establish genome
profiles specific for individual genotypes (e.g., cultivars),
which could be useful in terms of legal protection of com-
mercial cultivars.

In our previous work, we have shown that several hybrid
Festulolium cultivars do not contain complete parental
chromosome sets [31]. The range of applications of the
DArTFest array to characterize genomic constitution in
these cultivars would be greatly expanded, if DArT mark-
ers were assigned to individual chromosomes. This was
partially achieved in this study using Festuca-Lolium chro-
mosome substitution lines and 160 markers were
anchored to individual chromosomes of F. pratensis. The
observation of 18 markers co-localizing on chromosomes
4 and 7 could be explained by ancestral or more recent
duplication(s).

In addition to varying proportions of parental chromo-
some sets, Festuca × Lolium hybrids often contain recom-
bined chromosomes resulting from meiotic crossing-over
between homoeologous chromosomes [31,46]. To
describe genomes of hybrids at the subchromosomal level
using DArT markers, these need to be assigned to specific
chromosome regions via genetic mapping. However, as
genetic linkage between genetic markers does not corre-
spond to physical distances [47], physical mapping seems
a better choice. In this study, we assigned a set of DArT
markers to seven bins on chromosome 3 using 14 recom-
bination lines of this chromosome. We developed about
30 such recombinant lines for each chromosome of F.
pratensis and thus it will be possible to dissect the entire
genome of F. pratensis into ca. 70 chromosomal bins. In a
similar study, King et al. [47,48] utilized a set of introgres-
sion lines of diploid L. perenne harboring chromosome
segments of F. pratensis. The authors reported the estab-
lishment of 18 bins for chromosome 3 of F. pratensis and
physical localization of 104 AFLP markers. As DArT mark-
ers are much more amenable to multiplexing than AFLP
markers (thousands rather than dozens of markers per
assay) the throughput and cost advantage of the DArT
array is significant (below 1 cent per datapoint). This
advantage can be further enhanced through planned array

DArT markers physically mapped to bins of F. pratensis chro-mosome 3Figure 4
DArT markers physically mapped to bins of F. praten-
sis chromosome 3. Nine out of 36 markers co-localized to 
one or more chromosomes (chromosome numbers in brack-
ets).
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expansion that could easily double the number of markers
per assay, thereby further reducing the cost per datapoint
with a minimum increase in price per sample. In addition,
DArT markers are "sequence-ready", cloned genomic frag-
ments, which offer important advantages over AFLPs for
physical and genetic mapping. Sequencing of DArT mark-
ers identified in this study will enable in-silico compari-
sons of physical maps of fescue and ryegrass
chromosomes with the sequenced grass genomes.

Conclusion
The results of this study suggest that the newly developed
DArTFest array will find numerous applications in grass
genetics and breeding. It can be used to characterize
genetic diversity as well as to develop genetic maps and
identify markers linked with traits of interest. The ability
to physically map DArT marker using chromosome sub-
stitution and recombinant lines will support the develop-
ment of integrated genetic and physical maps of fescue
and ryegrass. We also envisage a great impact of the array
on characterizing genomic constitution of interspecific an
intergeneric hybrids at the chromosomal and subchromo-
somal level. This progress should provide tools to under-
stand the behavior of hybrid genomes as well as to
improve the breeding of grass cultivars.

The array data have been deposited on a publically avail-
able website http://bioinf.scri.ac.uk/germinate_grasses/.
The website will be permanent and will be expanded by
genetic and physical mapping data as they become availa-
ble.

Methods
Plant material
For the development of the DArT array, 40 accessions each
of L. perenne L. (2n = 2x = 14), L. multiflorum Lam. (2n =
2x = 14 and 2n = 4x = 28), F. pratensis Huds. (2n = 2x =
14) and F. arundinacea Schreb. (2n = 6x = 42, plus all
seven available accessions of F. glaucescens Boiss. (2n = 4x
= 28) were chosen to discover the maximum genetic vari-
ability within the Lolium-Festuca complex and included
ecotypes, cultivars and parents of mapping populations
(see Additional file 1).

To map DArT markers to individual chromosomes of F.
pratensis, we used single chromosome monosomic and
disomic substitutions of Festuca into tetraploid L. multiflo-
rum, as described by Kopecký et al. [46]. Whenever possi-
ble, five plants of each substitution line were used. To test
whether DArT markers could be anchored to defined
chromosome intervals, we selected 14 recombinant lines
of F. pratensis chromosome 3 (using the Triticeae chromo-
some nomenclature system) in tetraploid L. multiflorum,
with various lengths of Festuca chromatin present. These
recombinants were selected from among backcross prog-

eny of a monosomic substitution of chromosome 3 in
tetraploid L. multiflorum (unpublished data).

Development of the DArTFest array
For each of the five species tested, we developed a library
of DArT clones using the PstI/TaqI method of complexity
reduction. Both methods of complexity reduction and
procedures for the library construction were performed as
reported by Akbari et al. (2006). Each library consisted of
1536 clones organized into 4 microtiter plates with 384
clones per plate. Inserts from individual clones were
amplified in the 384 microtiter plates using M13 primers
so that part of the polylinker region of the cloning vector
was co-amplified [34]. The amplicons were dried at 37°C,
washed with 70% ethanol, and dissolved in a spotting
buffer developed specifically for the Erie Scientific poly-L-
lysine microarray slides (Wenzl et al., in preparation). The
arrays containing inserts from 7680 clones were printed in
duplicate using a MicroGridII arrayer (Biorobotics, Cam-
bridge, UK) onto poly-L-lysine-coated slides (Erie Scien-
tific, Portsmouth, NH, USA). Arrays were hybridized with
fluorescently labeled targets from all genotypes used for
the array development. Targets were prepared using a PstI/
TaqI complexity reduction method [38]. For the marker
discovery experiment, two replicated targets were ana-
lyzed for each genotype so that the technical reproducibil-
ity of markers discovered could be easily evaluated by
comparing scoring consistency among technical repli-
cates.

After overnight hybridization at 62°C, the slides were
washed and scanned using a Tecan LS300 (Grödig, Salz-
burg, Austria) confocal laser scanner. Three images were
generated from each slide: the image produced with a 488
nm laser was used for quality control and image process-
ing was measuring the intensity of hybridisation of the
reference (vector's polylinker) labelled with FAM fluores-
cent dye, and two images representing two independent
targets, one produced with the 543 nm laser (Cy3 labelled
targets) and one produced with the 633 nm laser (Cy5
labelled targets). The image processing and marker classi-
fication were performed using DArTsoft version 7.3 (DArT
Pl, unpublished), a dedicated software package developed
at DArT P/L (Yarralumla, Australia). Briefly, the relative
hybridisation intensity of each clone on each slide was
determined by dividing the hybridisation signal in the tar-
get channel (genomic representation) by the hybridisa-
tion signal in the reference channel (polylinker). Clones
with variable relative hybridisation intensities across
slides were subjected to fuzzy k-means clustering to con-
vert relative hybridisation intensities into binary scores
(presence vs. absence). The clustering was performed on
averaged log-transformed relative intensity of two repli-
cates printed for each probe on the array. The markers
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reported in this paper were selected with a call rate >80%
and with technical reproducibility of above 99%.

We processed individual samples in the same way as sam-
ples for marker discovery experiments using similar
marker quality thresholds in DArTsoft analysis.

Analysis of genetic diversity
The DArTsoft-generated 0-1 scores were used as input for
the RESTDIST and NEIGHBOR programs of the PHYLIP
3.6 software package to construct a dendrogram based on
the Unweighted Pair Group Method with Algorithmic
Mean (UPGMA) and Felsenstein's modification of the
Nei/Li restriction fragment distance [49,50].

Mapping DArT markers to fescue chromosomes and 
chromosome bins
To anchor markers to individual chromosomes of F. prat-
ensis, DNA isolated from monosomic and disomic substi-
tution lines for individual chromosomes of F. pratensis in
tetraploid L. multiflorum were hybridized to the DArT
array. A marker present in F. pratensis and absent in L. mul-
tiflorum was assigned to a chromosome if it was present in
at least one substitution line for a particular chromosome.
Several markers were assigned to multiple chromosomes.
The same approach was used to anchor markers allocated
on bins of F. pratensis chromosome 3 using the recom-
binant lines described above.
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