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Abstract

Background: With the increasing number of expression profiling technologies, researchers today are
confronted with choosing the technology that has sufficient power with minimal sample size, in order to reduce
cost and time. These depend on data variability, partly determined by sample type, preparation and processing.
Objective measures that help experimental design, given own pilot data, are thus fundamental.

Results: Relative power and sample size analysis were performed on two distinct data sets. The first set consisted
of Affymetrix array data derived from a nutrigenomics experiment in which weak, intermediate and strong PPAR«
agonists were administered to wild-type and PPARa~null mice. Our analysis confirms the hierarchy of PPARa-
activating compounds previously reported and the general idea that larger effect sizes positively contribute to the
average power of the experiment. A simulation experiment was performed that mimicked the effect sizes seen
in the first data set. The relative power was predicted but the estimates were slightly conservative. The second,
more challenging, data set describes a microarray platform comparison study using hippocampal SC-doublecortin-
like kinase transgenic mice that were compared to wild-type mice, which was combined with results from Solexa/
lllumina deep sequencing runs. As expected, the choice of technology greatly influences the performance of the
experiment. Solexa/lllumina deep sequencing has the highest overall power followed by the microarray platforms
Agilent and Affymetrix. Interestingly, Solexa/lllumina deep sequencing displays comparable power across all
intensity ranges, in contrast with microarray platforms that have decreased power in the low intensity range due
to background noise. This means that deep sequencing technology is especially more powerful in detecting
differences in the low intensity range, compared to microarray platforms.

Conclusion: Power and sample size analysis based on pilot data give valuable information on the performance
of the experiment and can thereby guide further decisions on experimental design. Solexa/lllumina deep
sequencing is the technology of choice if interest lies in genes expressed in the low-intensity range. Researchers
can get guidance on experimental design using our approach on their own pilot data implemented as a

BioConductor package, SSPA http://bioconductor.org/packages/release/bioc/html/SSPA.html.
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Background

Genome-wide technologies such as microarray and
sequencing are intensively used to study differential
expression in e.g. disease and/or treatment, often com-
pared with controls. Power and sample size analysis give
valuable information about the performance of the exper-
iment: what is the optimal number of replicates? Is the
power sufficient to detect a biological effect?

Absolute power and sample size estimation must be done
using pilot experimental data in each problem separately,
as they are influenced by variability that is both technical
as well as biological [1]. For this a technology must be
chosen. So it is important to understand beforehand how
relative power and sample size behave depending on the
technology used. In particular, different technologies may
display different power depending on the gene expression
range.

Here we focus on estimating relative change in power and
sample size, given either different effect sizes or different
expression profiling technologies. In each case results are
derived from pilot experiments, so conclusions relate
directly to practice. The different expression profiling
technologies include commercial and home-spotted gene-
expression microarray platforms, as well as a deep
sequencing technology. For power and sample size calcu-
lations, we adapted the method proposed by Ferreira et al.

[2].

Methods
Power and sample size estimation

Consider the case where samples are studied under two
conditions, and interest lies in finding genes differentially
expressed between these conditions. We use the power
and minimal sample size calculation method of Ferreira et
al. [2]. This method assumes that for a set of test statistics
measuring the differential expression, their distributions
are given as each having a normal distribution N (x4, o2).
For each gene, under the null hypothesis H, of non-differ-

ential expression we have the mean x = 0, and under the
alternative H, of differential expression x # 0. If we repre-

sent by K, L the cumulative distribution functions (CDF)
of the test statistics under H, and under H,, respectively,

then the observed test statistics have mixture CDF M given
by

M(t) = 7o K(1) + (1 - nO)J'j: 1,000 (1)

where A represents the density of effect sizes 6 and 7, the
proportion of non-differentially expressed genes.
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Effect sizes can be seen as the difference between a gene's
mean expression levels at two conditions, divided by its
pooled standard deviation. Note that M is observed and K
and L are given, so 7, and A need to be estimated. After
estimating 7, using the approach suggested by Langaas et
al. [3], 1 is estimated by a deconvolution estimator. The
average power can be estimated by solving the following
equation for u:

oo
J T(u, 0)4(0)d6 = u "%, @)
oo 6(1-mq)
where I' represents the power for a single gene as function
of the p-value u and effect size #and & is the user-defined
false discovery rate. In fact, Ferreira et al. 2] showed that
the average power, given by equation 2, is controlled for
multiple testing through the adaptive Benjamini-Hoch-
berg method [4]. This is essentially the same as the origi-
nally proposed false discovery rate method of Benjamini
and Hochberg [5], corrected by the proportion of differen-
tially expressed genes to avoid over-estimation.

The effect size density is estimated unconstrained, so after
it is obtained it must be constrained to being non-nega-
tive, whilst integrating to 1. To avoid discontinuities
where the constraint is applied, we re-adjust the 7, esti-
mate (see Additional file 1).

Note that to estimate the average power in this way
involves also the power to detect effect sizes around zero,
which are technically very difficult to measure accurately.
A small region around zero can be defined that will be
excluded from the density of effect sizes and thereby
increases the estimated average power.

Data Description

Simulation experiment

A simulation study was performed based on the simula-
tion perviously described by Langaas et al. [3]. While keep-
ing the proportion of non-differentially expressed genes
fixed at 0.8, we varied the effect size distribution. Specifi-
cally, three different effect size distributions were con-
structed based on a symmetric bitriangular distribution
[3]. This means that each differentially expressed gene is
either over- or under-expressed with equal probability,
and that the mean effect size per over-expressed gene is
chosen at random from values in a window between a =
log,(1.2) and b >a, with the mode at m = log,(2), and for
under-expressed genes a window between -a and -b is
used, with the mode at -m. We used three values for b,
namely log,(2), log,(4), log,(5), generating situations
with weak, intermediate and strong effect sizes respec-
tively. This means for example that the weak-effect situa-
tion has genes with effect sizes between log,(1.2) and

log,(2).
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A total of N = 250 simulations were performed with
20000 independently generated normalized expression
values and J = 5 samples in each of two groups. Test-statis-
tics were calculated as described by Langaas et al. [3]. The
observed power was calculated as the number of differen-
tially expressed genes with Benjamini-Hochberg FDR <
10% (true positives), divided by m; = 4000. In addition,
the estimated power was evaluated using the method pro-
posed by Ferreira et al. [6].

Example | - different biological effect sizes

PPAR« is a transcription factor that is activated upon
binding by a variety of agonists, both of synthetic and nat-
ural origin [7]. In this experiment the outcome of specific
PPARe activation on murine small intestinal gene expres-
sion was examined using Affymetrix GeneChip Mouse
430 2.0 arrays. PPAR«a was activated by several PPARa-
agonists that differed in activating potency. In this paper
the data of three agonists were used, namely Wy14,643,
fenofibrate and trilinolenin (C18:3). The first two com-
pounds belong to the fibrate class of drugs that are widely
prescribed to treat dyslipidemia, whereas trilinolenin is an
agonist frequently found in the human diet. For intestinal
PPARg, Wy14,643 is the most potent agonist followed by
C18:3 and fenofibrate, as is detailed elsewhere (Hooiveld
et al. manuscript in preparation). Since time of exposure
also affects the effect size, intestines were collected 6 hrs
(all three agonists) or 5 days (Wy14,643 and fenofibrate
only) after exposure. Details of the rationale behind these
designs have been previously published [8,9]. An over-
view of the dataset is given in the upper part of table 1.
Probesets were redefined according to Dai et al. [10].
Expression estimates of probesets were obtained by GC-
robust multi-array (GCRMA) analysis, employing the
empirical Bayes approach for background adjustment, fol-
lowed by quantile normalization and summarization
[11]. For each compound and exposure time, lists of mod-
erated t-test statistics were computed, using the empirical
Bayes linear regression model as implemented in

Table I: Overview of data sets in Example | and 2

Experiment Genes group A! group B
strong, 6 hours 16539 4 (wild-type) 4 (null)
intermediate, 6 hours 16539 4 (wild-type) 5 (null)
weak, 6 hours 16539 5 (wild-type) 5 (null)
strong, 5 days 16539 4 (wild-type) 4 (null)
weak, 5 days 16539 4 (wild-type) 4 (null)
Affymetrix 45101 5 (wild-type) 5 (transgenic)
Agilent 41232 5 (wild-type) 5 (transgenic)
lllumina 46120 5 (wild-type) 5 (transgenic)
home-spotted 21771 5 (wild-type) 5 (transgenic)
Solexa/lllumina 34477 4 (wild-type) 4 (transgenic)

I The sample size given refer to the number of biologically
independent samples.
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limma[12], for each contrast representing the effect of
compound in PPARe-null mice compared to wild-type
mice. Based upon these lists, which include the full range
of effect sizes, the power and sample size analysis was per-
formed.

Example 2 - different expression profiling platforms

Gene expression profiles in the hippocampi of transgenic
0C-doublecortin-like kinase mice were compared to wild-
type. The sample size and power analysis was applied to
expression data relating to the same samples, measured
either by one of several microarray platforms, or by Sol-
exa/Illumina deep sequencing [13].

In this analysis we included expression data for the same
samples obtained with four microarray platforms, previ-
ously analyzed in the platform comparison study of
Pedotti et al. [14], namely Affymetrix, Agilent, [llumina
and home-spotted oligonucleotide arrays, the last con-
taining the 22K Sigma-compugen collection. Ten microar-
rays were used for each platform. For the one-color
platforms (Affymetrix and Illumina), each individual
RNA was hybridized to one microarray, yielding five
hybridizations in each of the groups wild-type and trans-
genic mice. A direct design was used for hybridization of
the two-color arrays (Agilent and home-spotted), i.e. each
microarray was hybridized with two RNA samples from
different groups. Dye-swapped hybridizations were done
with non-identical pairs. This design yielded ten hybridi-
zations in each of the groups, five of which being biolog-
ically independent. The data has been pre-processed as
described by Pedotti et al. [14]. mRNA expression levels
from four samples of each group were also measured
using the Solexa/Illumina deep sequencing; for details
about sample preparation and pre-processing, see [13].
Moderated t-test statistics were calculated, for each tech-
nology, using the empirical Bayes linear regression model
as implemented in 1imma[12].

To enable comparison between technologies, for each
technology subsets were generated containing only genes
mapped to the same Ensembl tags, leaving 9504 genes per
technology [14]. The datasets were stratified into three
subsets of genes of approximately equal size (3168) as fol-
lows. First the median-expression values across wild-type
samples for the Solexa/Illumina data were calculated, per
Ensembl tag. Then the 33rd and 67th percentiles of these
values were obtained. These two values were used to deter-
mine three strata: tags with Solexa/Illumina median -
expression below 33rd percentile were put into the low-
intensity range, followed by tags with median-expression
between 33th and 67th percentiles being put into the
intermediate-intensity range, and finally remaining tags
were put into the high-intensity range. In the power and
sample size analysis a region near zero ([-0.5, 0.5]) was
excluded from the density of effect sizes.
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Software

We used the R [15] environment for statistical computing
for all calculations, the BioConductor [16] packages
gcrmalll], limma[12] and multtest[17], gvalue[18]
and for graphs we used the lattice[19] package. We
adapted the original S-Plus scripts kindly made available
to us by Ferreira [6] and developed an R package called
SSPA, available from BioConductor [16]http://biocon
ductor.org/packages/release/bioc/html/SSPA.html.

Results

Simulation experiment

The main purpose of this small simulation experiment
was to show that the proposed method of Ferreira et al. [2]
is able to perform relative average power estimations in a
scenario of varying effect size distributions. Although the
estimated average power is slightly conservative, the rela-
tive power is in agreement with the true positive rate, the
fraction of truly differentially expressed genes amongst
the significant genes (figure 1).

Example | - different biological effect sizes

In this first real-life example we provide a proof-of-princi-
ple that our method is able to correctly estimate relative
power in a setting where different effect sizes are induced
as a consequence of the treatment with compounds with
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Figure |

Simulation Experiment: Compares estimated power-
with the true positive rate. Box-and-whisker plot of the
estimated average power and true positive rate for all the
simulations, for the three different effect size distributions.
The Power is displayed on the y-axis and the different simula-
tion scenario's are displayed on the x-axis fromleft to right:
weak-, intermediate- and strong-effect sizes respectively.
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different potency's and exposure times. This experiment
was originally setup to examine the effects of PPARc-acti-
vation by synthetic as well as nutritional agonists on gene
expression in various tissues in mice, including intestine.
Comparative analysis in PPARa-null mice enabled the
specific study of the regulatory role of this transcription
factor. Previous, biology-driven analysis of the array data
sets identified a hierarchy in PPARa-activating potency 8]
(Hooiveld et al., manuscript in preparation). Test statistics
were obtained by measuring the differential response on
gene expression between wild-type and PPARa-null mice.
We estimated power and minimal sample size for each
combination of compound and exposure time separately,
fixing the false discovery rate at 10%. Figure 2 shows the
estimated densities of effect sizes, per compound and
exposure time. These densities describe the standardized
effect sizes among the differentially expressed genes. For
each exposure time, the densities show increasingly heav-
ier tails with the expected PPARa-activating potency of the
compounds, from the weakest (fenofibrate) to the strong-
est (Wy14,643). Moreover, for all compounds there is rel-
atively more up-regulation than down-regulation. When

6 héurs

0.5

5 days

0.5 strong — I

0.4 {intermediate - - -

6 -4 2 0 2 4 6

Figure 2

Example I: Estimated densities of effect sizes for
combinations of compounds and exposure times. The
upper panel shows densities for 6 hours exposure time, the
lower panel for 5 days exposure time, with on the x-axis the
standardized effect size and on the y-axis the estimated den-
sities. The different compounds Wy14,643 (strong-), C18:3
(intermediate-) and fenofibrate (weak-activating potency)
correspond respectively to the solid(blue)-, dashed(pink)-
and dotted(green)-lines.
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comparing exposure times (upper and lower panels), it is
obvious that longer exposure yields more pronounced
effects, represented by the bimodal densities, compared
with shorter exposure, where densities representing the
mixture of up- and down-regulation on genes display a
single overlapping mode, with a subtle separate effect
seen on the lower tail for the stronger compounds.

From the left-panel of table 2 we can see that, by increas-
ing exposure time from six hours to five days, the esti-
mated power was doubled for the more potent compound
Wy14,643, and increased almost by a factor of four for the
weaker compound fenofibrate. Indeed, the Wy14,643
reached around 60% power, where the fenofibrate had
just 40% power. In addition, as the compound got less
potent, the proportion of differentially expressed genes
decreased, as expected. So it is clear that less potent com-
pounds, or the ones exposed for a shorter time, yield little
power to detect differences.

A more complete picture of the variation in power as the
sample size increases is given in figure 3, for each combi-
nation of compound and exposure time. As expected, the
average power increased with PPARe-activating potency
and with exposure time. For example, if a power of 50%
was desired to study the strong Wy14,643 compound, 10
arrays per group would be necessary considering a six
hours exposure, whilst the same power would be already
achieved using a five days exposure with four arrays per
group. The other two compounds needed more than 15
samples per group for a six hours exposure to yield the
same power, which after a five days exposure would be
achieved with the fenofibrate compound with six samples
per group.

Example 2 - different expression profiling platforms

This study was designed to explore the capabilities of
expression profiling technology to identify subtle differ-
ences in gene expression. To estimate power, it is essential
to estimate the proportion of non-differentially expressed
genes (7). In table 2 (right-panel) we report r, for the dif-
ferent expression profiling platforms, as estimated by the
method of Langaas et al. [3]. We used alternative methods
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for estimation of 7, with essentially similar results (see
Additional file 2). The estimated proportion of non-differ-
entially expressed genes differ significantly between the
different technologies, with Illumina displaying the high-
est proportion (right-panel of table 2). However, perhaps
the most marked point is that the power is generally low
for all technologies used. This is a reflection of the fact that
the effects on expression are mostly subtle.

As before, a better overview is given by the estimated
power curves in figure 4. The power continued to be gen-
erally low for the sample sizes considered, but increased
with sample size. Here Solexa/Illumina, Agilent and
Affymetrix are shown to be the best performing technolo-
gies for all sample sizes. The higher performance of Agi-
lent compared to Affymetrix may be a consequence of the
pilot study size, upon which the estimation of the power
curve depends. As the number of samples differs per tech-
nology (one-color: 5 biological replicates per group; two-
color: 5 biological replicates, each with 2 technical repli-
cates; and Solexa/Illumina deep sequencing: 4 biological
replicates), there is considerably more certainty about esti-
mates for Agilent and home-spotted, since their technical
variability is better estimated, than for the other cases,
especially so for Solexa/Illumina with the smallest sample
size. Yet, for all sample sizes Solexa/Illumina was esti-
mated as having the highest power, which is an indication
of how precise and powerful this technology is.

Considering the two one-color platforms, [llumina yields
less power than Affymetrix in this experiment (see right-
panel of table 2). This is also reflected by the estimated
densities of effect sizes (not shown).

The largest effects in this experiment were observed for
genes expressed in the low-intensity range, so technolo-
gies that are more sensitive to detect differences in this
range are expected to perform better. In order to gain
more insight into the sensitivity of the various technolo-
gies, we split genes into subsets according to them being
expressed in the low-, medium- and high-intensity ranges,
as given by wild-type median- expression ranking of Sol-
exa/Illumina. For each technology and subset the power

Table 2: Estimated power and adjusted proportions of non-differentially expressed genes for the pilot studies.

Example | Example 2
Experiment Power 7y Technology Power Fury
strong, 6 hours 0.27 0.68 Affymetrix 0.32 0.81
intermediate, 6 hours 0.10 0.81 Agilent 0.35 0.65
weak, 6 hours 0.10 0.76 lllumina 0.20 0.84
strong, 5 days 0.60 0.51 Home-Spotted 0.18 0.68
weak, 5 days 0.38 0.73 Solexa/lllumina 0.51 0.52
The power is estimated with a 10% FDR.
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Figure 3

Example |: Power curves for the different combina-
tions of compounds and effect sizes. The upper panel
shows the power for 6 hours exposure time, the lower panel
the 5 days exposure time, with on the x-axis the sample size
and on the y-axis the estimated power using a 10% FDR. The
different compounds Wy 14,643 (strong-), C18:3 (intermedi-
ate-) and fenofibrate (weak-activating potency) correspond
respectively to the solid(blue)-, dashed(pink)- and dot-
ted(green)-lines.

was estimated again for a range of sample sizes. Results are
displayed in figures 5 and 6 for Affymetrix, Agilent and
Solexa/Illumina, where figure 5 is ordered by intensity
range and figure 6 is ordered by platform. In the low-
intensity range, Solexa/Illumina displays considerably
more power than the two microarray platforms, whilst in
medium- and high-intensity ranges Affymetrix and Sol-
exa/lllumina were comparable, with Agilent having a
higher power (figure 5). More interestingly perhaps, Sol-
exa/lllumina displays comparable power across the three
intensity ranges, whilst each one of the microarray plat-
forms displays markedly less power in the low-intensity
range compared to the intermediate- and high-intensity
ranges (figure 6). This is due to the presence of back-
ground, which is absent in Solexa/Illumina, but affects
measurements in the low-intensity range of microarray
platforms. So the largest effects found in the low-intensity
range in this study are duly detected by Solexa/Illumina,
but missed by the microarray platforms. This is further
exemplified in Additional file 3, where the same compar-
ison is made without filtering for small effect sizes.
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Figure 4

Example 2: Power curves for the different expression
profiling platforms. The five curves solid(blue), short-
dashed(pink), dotted(green), dot-dashed(red) and two-
dashed(orange) correspond to Solexa/lllumina, Agilent,
Affymetrix, lllumina, and home-spotted oligonucleotide
arrays respectively. On the x-axis the sample size is displayed
and on the y-axis is the estimated power using a 10% FDR.

Discussion

We aim at helping researchers to understand: a) how
much change in sample size different expression profiling
technologies require to yield the same power; and b) by
how much the sample size required for a fixed power
would change, if smaller effects were to be detected. In
order to do so, we use experiments carefully designed to
answer these questions. Our experiments use tissue sam-
ples from animal models, commonly used in practice.
Not only our conclusions are easily applicable to the
design of microarray experiments, but also our approach
is available for researchers to use on their own data via our
BioConductor package SSPA.

For our study, we use the method proposed by Ferreira et
al. [2]. It makes use of a pilot study to estimate distribu-
tion of effect sizes and proportion of non-differentially
expressed genes, based upon which power is estimated.

Various other methods to estimate sample size and power
in microarray studies have been proposed. The first few
assumed that multiple testing correction is done via con-
trol of the familywise error rate [20,21], which is unlikely
to be the case in current practice. More recently, methods
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Figure 5

Example 2: Power curves for three technologies and
three intensity ranges (ordered by intensity range).
The three panels show power curves for Affymetrix, Agilent
and Solexa/lllumina, with on the x-axis the sample size and on
the y-axis the estimated power using a 10% FDR.
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Figure 6

Example 2: Power curves for three technologies and
three intensity ranges (ordered by platform). The
three panels show power curves for Affymetrix, Agilent and
Solexa/lllumina, with on the x-axis the sample size and on the
y-axis the estimated power using a 10% FDR.

were proposed to handle the more commonly used con-
trol of false discovery rate [22-25,2]. The methods differ in
how they treat the distribution of effect sizes; simpler
methods assumed a fixed value for all differentially
expressed genes, or took a subset of the largest effect sizes
[22,25]. These are unlikely to correctly describe effects
from experimental studies. Recently proposed methods
[2,24,26] estimated the distribution of effect sizes from a
pilot data set. Ferreira [2] assumes that the test statistics
follow a normal distribution, which is unlikely to be the
case. However, the extension of Ferreira's method to con-
sider statistics with a more suitable Student-t distribution
is not trivial. Indeed, to solve equation 2 is a much harder
analytical problem under the Student-t distribution. Jors-
tad et al. [24] proposed to solve this problem by discretiz-
ing the effect sizes and then estimating the components of
the resulting mixture. Ruppert et al. [26] proposed to esti-
mate the density of effect size by a linear combination of
splines optimized via penalized least squares. The number
of parameters that needs to be estimated by both methods
is considerably larger than by the method of Ferreira et al.
[2], making them computationally much more intensive.
For this reason, we chose to use Ferreira's method.

The simulation experiment shows that the estimated
power is in agreement with the observed power. Impor-

tant for the power estimation is the estimation of the pro-
portion of non-differentially expressed genes. The r,
estimates of the simulation experiment were all conserva-
tive and a little less than 7z, = 0.8, which may have led to
overestimation of the power. However, the opposite was
observed: the estimated power was found to be conserva-
tive. Generally speaking it is good to be on the conserva-
tive side in power calculations. However, this may not be
the case in other applications. Indeed, we have observed
that the relationship between observed and estimated
power depends on both 7, and the effect size distribution
(data not shown). This issue deserves further investigation
but is beyond the scope of this paper.

Both our simulation study as well as example 1 demon-
strate that our method correctly ranks the power of differ-
ent experimental scenarios and is thus suited to evaluate
the relative capacity to identify differentially expressed
genes. Some of the results obtained with this method are
as expected: in example 1, potent compounds yield higher
power than weaker compounds, as does longer exposure
time compared to a shorter one (example 1). The hierar-
chy of PPARe-activating compounds found with this
method confirms previously biologically-driven analysis
[8] (Hooiveld et al. manuscript in preparation). However,
some results are unexpected, such as that the power seems
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to increase little after a certain sample size (12, for 5-days
exposure). Since the power for 12 samples per group is
already acceptably high (80% for the stronger compound,
over 70% for the weaker one), this result suggests that it is
useless to analyse more than 12 samples to find differen-
tially expressed genes.

The higher power for the longer-exposed compounds is
associated with a markedly bimodal density of effect sizes
(figure 2). This density represents additional and impor-
tant information for the researcher. In this case, for exam-
ple, it can be seen that there are more genes up- regulated
than down-regulated after short-term exposure, and that
after long-term exposure this is more balanced, suggesting
that up-regulation is kicked off earlier on. So, we have
shown how the density of effect sizes reflects varying dis-
tributions of differential expression. This is intuitive and
seems trivial, but no other method has produced this
result before [6].

Example 2 shows great difference in performance for dif-
ferent expression profiling technologies to detect a subtle
biological effect. Commercial microarray platforms per-
form better than the home-spotted mainly due to their
higher reproducibility. The poor performance of Illumina
may be attributed to the fact that less probes are used than
Affymetrix. By estimating power separately for genes
expressed in intensity ranges varying from low to high, we
can clearly see the added value of the Solexa/Illumina
deep sequencing technology compared with microarrays.
Due to background, microarray platforms often cannot
reliably measure expression in the low-intensity range.
Indeed, Solexa/Illumina displays with 4 replicates per
group the same power as Agilent and Affymetrix with 7
replicates per group (figure 4). The reduced power of
microarray technologies is shown to be mainly due to lack
of power to detect differential expression for lowly
expressed genes, possibly due to presence of background
intensities, a problem that does not affect Solexa/Illu-
mina.

The estimated proportion of non-differentially expressed
genes p, shows great difference between the different
expression profiling technologies. This is likely due to dif-
ferences in genome mapping [14] and hybridization effi-
ciency. Since it is known that the same samples were
hybridized to the different platforms, one might wonder
if by using a common, fixed 7, value for all platforms
more consistent results would have followed. That is not
the case: power estimates are robust to variations of
roughly 10% around the estimated r, value (data not
shown). Moreover, we believe this should not be done, as
effects of technical differences between the platforms
would then have been ignored, which is undesirable. So,
we believe that for each experiment 7z, should be esti-
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mated from the data, and that a sensitivity analysis may
help reassure the researcher that power estimates are reli-
able.

Our example 2 is not trivial and no previous article, to our
knowledge, has produced power and sample size calcula-
tions in such datasets. Indeed, the MAQC study [27,28]
only involves technical replicates. So we do believe our
work, by involving not only 4 different microarray plat-
forms, but more importantly also a deep sequencing tech-
nology, does yield new knowledge. In particular, no
previous work has shown that deep sequencing technol-
ogy displays more power than microarrays in the presence
of biological, in addition to technical, variability.

The objective of the study plays an important role in
choosing the FDR-control level. Indeed, if results are
meant to be further explored via high-dimensional tools
such as pathway analysis, then there is interest in having a
longer list of possibly interesting features, albeit with a
larger FDR. This effectively expands the space on which
the subsequent analysis tool will look for associations,
improving the chance of finding more subtle, and for that
less obvious, ones. If, on the other hand, the list of
selected features must be validated by time-consuming
and labour intensive techniques, then a shorter list
obtained with as low an FDR as possible is the best. For
our objectives, we needed only to have at least a few fea-
tures selected at each instance in order to be able to draw
comparisons, but preferably not too many, and we find
this is achieved by controlling the FDR at 10%. We made
a fast and easy-to-use implementation of a power and
minimal sample size calculation method adapted from
Ferreira et al. [2]. The only input needed is a set of test sta-
tistics obtained from the pilot data and the number of
samples of the two groups. More details about this R pack-
age will appear elsewhere.

Conclusion

In conclusion relative power and sample size analysis can
help researchers make important decisions about technol-
ogy used for gene expression profiling. We showed that if
interest lies in genes expressed in the low-intensity range
Solexa/Illumina deep sequencing is the superieur technol-
ogy compared to microarray technology. Furthermore, we
have implemented our method via a BioConductor pack-
age so that other researchers can use it on their own pilot
data.
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