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Abstract
Background: Genome elucidation is now in high gear for many organisms, and whilst genetic maps have been
developed for a broad array of species, surprisingly, no such maps exist for a crocodilian, or indeed any other
non-avian member of the Class Reptilia. Genetic linkage maps are essential tools for the mapping and dissection
of complex quantitative trait loci (QTL), and in order to permit systematic genome scans for the identification of
genes affecting economically important traits in farmed crocodilians, a comprehensive genetic linage map will be
necessary.

Results: A first-generation genetic linkage map for the saltwater crocodile (Crocodylus porosus) was constructed
using 203 microsatellite markers amplified across a two-generation pedigree comprising ten full-sib families from
a commercial population at Darwin Crocodile Farm, Northern Territory, Australia. Linkage analyses identified
fourteen linkage groups comprising a total of 180 loci, with 23 loci remaining unlinked. Markers were ordered
within linkage groups employing a heuristic approach using CRIMAP v3.0 software. The estimated female and male
recombination map lengths were 1824.1 and 319.0 centimorgans (cM) respectively, revealing an uncommonly
large disparity in recombination map lengths between sexes (ratio of 5.7:1).

Conclusion: We have generated the first genetic linkage map for a crocodilian, or indeed any other non-avian
reptile. The uncommonly large disparity in recombination map lengths confirms previous preliminary evidence of
major differences in sex-specific recombination rates in a species that exhibits temperature-dependent sex
determination (TSD). However, at this point the reason for this disparity in saltwater crocodiles remains unclear.

This map will be a valuable resource for crocodilian researchers, facilitating the systematic genome scans 
necessary for identifying genes affecting complex traits of economic importance in the crocodile industry. In 
addition, since many of the markers placed on this genetic map have been evaluated in up to 18 other extant 
species of crocodilian, this map will be of intrinsic value to comparative mapping efforts aimed at understanding 
genome content and organization among crocodilians, as well as the molecular evolution of reptilian and other 
amniote genomes. As researchers continue to work towards elucidation of the crocodilian genome, this first 
generation map lays the groundwork for more detailed mapping investigations, as well as providing a valuable 
scaffold for future genome sequence assembly.
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Background
Microsatellites are an excellent choice of genetic marker
for genome mapping due to their hyper-variability and
abundance throughout most vertebrate genomes [1]. Typ-
ing of microsatellite DNA loci by routine polymerase
chain reaction (PCR) was developed almost 20 years ago
[2-4], and has since facilitated the construction of dense
genetic maps in many species. Genetic maps are valuable
tools in numerous areas of genetic research, particularly
for the localization and dissection of quantitative trait loci
(QTL), and for comparative mapping between species.
Comprehensive linkage maps have been developed using
microsatellite markers in humans, many biomedical
models, livestock, fish, birds, invertebrates, plants and
other organisms [5-13]. Although genetic linkage maps
have been developed for a broad array of species, no such
maps exist for any crocodilians, or indeed any other non-
avian member of the Class Reptilia.

Crocodilians are the sole surviving reptilian archosaur, a
group of diapsids that include dinosaurs and other
ancient reptiles that gave rise to birds [14]. Diverging from
the evolutionary lineage that gave rise to mammals more
than 300 million years ago [15-17], Reptilia represent a
valuable intermediate evolutionary group placed between
mammals and more distantly related vertebrate species
such as fish [7,16]. Recent progress in the development of
genomic resources for studies in reptiles has given impe-
tus to comparative genomics aimed at understanding the
evolution and structure of the reptilian genome [17-19].
Genome sequences are now available for two avian spe-
cies [chicken [20], and zebra finch http://www.songbirdg
enome.org/index.html], as well as for one non-avian rep-
tile, the green anole (Order Squamata, http://
www.broad.mit.edu/models/anole/). Work is also cur-
rently underway to sequence the genome of the painted
turtle (Order Chelonia, http://www.genome.gov/
10002154). Although the Order Crocodylia remains
unrepresented, the generation of a comprehensive genetic
map for a crocodilian will provide a significant step
towards the elucidation of the crocodilian genome, pro-
viding a valuable scaffold for genome sequence assembly,
and will be of intrinsic value to comparative mapping
efforts aimed at understanding the molecular evolution of
reptilian, as well as other amniote genomes.

From an economic perspective, crocodilians play an
important role in modern agriculture, as well as forming
a basis for tourism, with management programs in more
than 40 nations worldwide [21]. The Australian crocodile
industry produces farmed saltwater crocodiles (Crocodylus
porosus) for the international skin trade. Although still an
emerging livestock industry, the Australian crocodile
industry, following the lead of other livestock industries,
has recently developed a comprehensive genetic improve-

ment program [22]. Research efforts have thus far focused
on genetic and phenotypic parameter estimation for selec-
tion objectives and selection criteria required for multi-
trait index selection [22-26]. However, this type of animal
selection occurs with little or no knowledge of what is
occurring at the DNA level. One of the major limitations
to performance-based selection in crocodiles is the large
generation interval, which is estimated to be 13 years [22].
To improve the rate of genetic gain currently achieved in
the industry, particularly for traits that are difficult to
measure such as disease resistance and sex limited traits,
as well as other complex traits such as growth rate, animal
survival and skin quality, trait-linked DNA markers will be
necessary. Animal selection employing marker informa-
tion will increase the rate of genetic gain by permitting
early selection decisions to be made on large animal
resources, thereby both increasing selection intensity and
reducing the generation interval. The availability of a
comprehensive linkage map, with markers evenly spaced
across the genome, will facilitate the systematic searches
necessary to identify genes affecting traits of economic
importance, with the potential to incorporate marker
information into the animal selection process using
marker assisted selection (MAS) [27,28]. Accordingly, a
genetic linkage map for the saltwater crocodile will have
both scientific and commercial benefits.

Evidence of genetic linkage between ten microsatellites
was previously reported for the saltwater crocodile by
Isberg et al. [29] based on a limited number of genetic
markers developed by Fitzsimmons et al. [30]. However,
Miles et al. (2009a) [31] have since developed 253 novel
polymorphic microsatellite markers for saltwater croco-
diles, thus providing a sufficiently large marker resource
for genome mapping. Besides the previous lack of suitable
markers, another major reason why there are no genome
maps for the Order Crocodylia is the difficulty in breeding
informative predigrees from which DNA resources can be
developed. Indeed, the lack of pedigreed animals has thus
far thwarted efforts to generate a linkage map for other
model reptiles, such as Anolis. Fortunately, the use of uni-
tized breeding pens, coupled with detailed pedigree
records in the Australian crocodile industry, has provided
the pedigrees and complementary DNA resources neces-
sary for the construction of the first crocodilian genetic
map.

Results
Data integrity
Pedigree analyses identified incorrect parentage assign-
ment for one of the six full-sib families comprising the
Linkage Reference Panel. Unfortunately, the correct parents
could not be identified within the population, and conse-
quently this family was removed from the Linkage Refer-
ence Panel and future linkage analyses. The final Linkage
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Reference Panel consisted of five full-sib families compris-
ing 83 individuals. Average heterozygosities for the paren-
tal animals are described in Miles et al. (2009a) [31].

Linkage map characteristics
The average number of informative meioses for the 203
genotyped markers was 195, with a maximum of 848 and
a minimum of 12. Two-point linkage analyses assigned
180 of the 203 typed microsatellites to 14 linkage groups
at a LOD ≥ 3.0, with linkage group sizes ranging from two
to 56 markers. Twenty-three microsatellites (CpDi16,
CpF401, CpP1003, CpP1005, CpP1413, CpP1502,
CpP1608, CpP1611, CpP201, CpP207, CpP2209,
CpP2505, CpP2705, CpP2813, CpP2816, CpP3202,
CpP3507, CpP4111, CpP607, CpP714, CpP715, CpP717,
CpP1006) did not show significant linkage to any other
markers. The total lengths for the female and male recom-
bination maps were 1824.1 cM and 319.0 cM, respec-
tively, indicating an uncommonly large disparity in sex-
specific map lengths. Due to this large difference, no sex-
averaged map is presented. In the female map, linkage
group lengths varied from 9.2 to 476.6 cM, with inter-
locus distances ranging from 0 to 88.1 cM, and an average
distance of 14.9 cM. In the male map, linkage group
lengths ranged from 0.0 to 94.3 cM, with inter-locus dis-
tances ranging from 0 to 42.4 cM, and an average distance
of 4.0 cM. The current female and male maps contain 145
and 95 genetically separated positions, respectively. Fur-
ther parameters for the saltwater crocodile linkage maps
are summarized in Table 1. The spacing and ordering of
markers along the 14 linkage groups for the female- and
male-specific maps are presented in Figure 1, 2 and 3.

Differences in sex-specific recombination maps
The exclusive mapping of co-dominant markers in the
saltwater crocodile has permitted the direct comparison of
inter-locus distances between sexes along the entire length
of the recombination map. The female map length
exceeds that of the male for every linkage group (Table 1),
and the overall female map length is 5.7-fold greater than
that of the male map. However, this disparity varies quite
significantly among linkage groups. With the exception of
those LGs where zero recombination is apparent in the
male, the ratio of female-to-male map lengths ranges
between 1.8:1 and 13.7:1 (Table 1), suggesting that
although the high level of observed heterochiasmy exists
across the entire map, it is not necessarily evenly distrib-
uted across the entire genome.

Discussion
An uncommonly large difference in sex-specific 
recombination rates
This study reports the first genetic map for a non-avian
reptile. The most unusual feature of this map is the
uncommonly large difference in female and male map

lengths, with significantly lower recombination evident in
the male. Evidence of heterochiasmy in Crocodylia was
previously reported by Isberg et al [29], based on only
three pair-wise linkages and a single linkage group com-
prising four loci exhibiting a female-to male recombina-
tion ratio of 2.8:1. The generation of a comprehensive
linkage map incorporating 180 microsatellites presents far
stronger support for this observation, with an estimated
sex-specific recombination ratio exceeding 5.7:1 for
females relative to males. The magnitude of this difference
not only supports previous findings, but also establishes
convincingly that it is a genome-wide phenomenon.
Cytogenetic analysis of female and male meiosis will be
required to further understand the basis of this uncom-
monly large difference.

Recombination heterogeneity
Differences in recombination rates between sexes are not
uncommon, and have been well documented in numer-
ous vertebrate species. In mammals, this ratio has typi-
cally ranged between 1.0 and 2.0, with the heterogametic
sex typically exhibiting the lower recombination rate
[5,6,8,32,33], with several notable exceptions [10,34,35].
It has been suggested that birds show no sex-specific dif-
ferences in recombination [36], whilst in other non-mam-
malian and non-avian vertebrates species, the sex-specific
recombination ratio has been shown to exceed 2:1. Fish
species are reported to exhibit the most extreme levels of
heterochiasmy among vertebrates, with average ratios of
7.4:1 reported for the Japanese flounder [37], 8.26:1
reported for Atlantic salmon [38], and a ratio in excess of
10:1 reported for the Western Australian seahorse when
four microsatellites were compared [39]. Although the
average disparity for saltwater crocodiles did not exceed
these previous reports, the disparity between female and
male recombination maps lengths reached an upper limit
as high as 13.7:1 for LG1. This evidence suggests that croc-
odilians exhibit one of the greatest disparities in recombi-
nation frequencies between sexes among vertebrate
species. This finding also adds to the empirical evidence
that fish and non-avian reptiles exhibit higher levels of
heterochiasmy compared with mammals and birds.
Moreover, the current saltwater crocodile map provides a
further exception to the Haldane-Huxley rule [40,41],
which purports that the reduced recombination frequency
is characteristically observed in the heterogametic sex,
since crocodilians exhibit temperature-dependent sex
determination (TSD) and lack classical sex chromosomes.
It would appear that heterochiasmy is in fact unrelated to
the sex chromosomes as previous theories have implied,
but presumably relates to other major differences in male
and female meiosis.

Although the reason for the disparity in map distances
between male and female saltwater crocodiles is thus far
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Linkage groups 1 to 4 of the female-specific linkage map for C. porosusFigure 1
Linkage groups 1 to 4 of the female-specific linkage map for C. porosus. The female-specific genetic map comprises 
180 markers assigned to 14 linkage groups (LG1-LG14), and spans a total map length of 1824.1 cM. Linkage groups 1 to 4 are 
presented here. The number of loci and total estimated genetic lengths (cM) are provided above each respective linkage group. 
Locus nomenclature, map order, and inter-locus distances (Koasambi distances) are provided next to each of the linkage 
groups. Markers assigned to the same map location are boxed. Markers indicted by an asterisk ** could not be ordered within 
the existing map.
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Linkage groups 5 to 14 of the female-specific linkage map for C. porosusFigure 2
Linkage groups 5 to 14 of the female-specific linkage map for C. porosus. The female-specific genetic map comprises 
180 markers assigned to 14 linkage groups (LG1-LG14), and spans a total map length of 1824.1 cM. Linkage groups 5 to 14 are 
presented here. The number of loci and total estimated genetic lengths (cM) are provided above each respective linkage group. 
Locus nomenclature, map order, and inter-locus distances (Koasambi distances) are provided next to each of the linkage 
groups. Markers assigned to the same map location are boxed.
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The male-specific genetic linkage map for C.porosusFigure 3
The male-specific genetic linkage map for C.porosus. This genetic map comprises 180 markers assigned to 14 linkage 
groups (LG1-LG14), and spans a total map length of 319.0 cM. The number of loci and total estimated genetic lengths (cM) are 
provided above each respective linkage group. Locus nomenclature, map order, and inter-locus distances (Koasambi distances) 
are provided next to each of the linkage groups. Markers assigned to the same map location are boxed. Markers indicted by an 
asterisk ** could not be ordered within the existing map.
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unexplained, several theories have been proposed for
other vertebrate species. In eutherian mammals, it has
been proposed that differences in the rate of male and
female recombination might be related to the sex-specific
environment in which the germ cell finds itself, as
opposed to the genotype [42]. Hassold and Hunt [43]
proposed that temporal differences in the initiation and
progression of meiosis in males and females could affect
recombination distribution and frequency between sexes.
Alternatively, Tease and Hulten [44] proposed that differ-
ences in the pairing and synapsis of homologs at meiosis
cause spermatocytes and oocytes to have different
exchange patterns. Several studies using sex-reversed ani-
mals or meiocytes have investigated the relationship
between phenotypic and genotypic sex on synaponemal
complex (SC) length, chiasma distribution and recombi-
nation frequency, and all have reported the consistent
association of sex-specific differences with phenotypic sex.
In particular, Lynn et al. [42,45] showed that the rate and
pattern of recombination in meiocytes from XY sex-
reversed and XO female mice and humans were virtually
identical to those in normal XX females. Similarly, sex-
reversal studies in fish species have shown that pheno-
typic sex, rather than genotype, determines SC length, chi-
asma distribution, and recombination frequency,
regardless of the sex determining system (i.e. XX/XY or
WZ/WW [46,47]). SC length has been shown to be corre-
lated with recombination frequency in placental mam-
mals [45], whilst no clear relationship appears to exist
between the sexual dimorphism of SC length and recom-

bination frequency in fish species [46]. Similar cytoge-
netic studies should be undertaken in crocodilians, and
other species with TSD, to determine whether sex-specific
differences in recombination are attributable to differ-
ences in the architecture of SC between males and
females.

Map construction and genome coverage
The number of markers that showed significant linkage
(LOD ≥ 3.0) with at least one other marker was high
(88.7%). Of the 23 loci that remain unassigned, more
than half had relatively low numbers of informative mei-
oses and hence less power. Although fourteen linkage
groups were identified, based on the karyotype available
for the saltwater crocodile (2n = 34; [48]), at least three
chromosomes still remain unrepresented. This informa-
tion indicates that the true map length will be larger than
that reported in the current map, therefore exceeding cur-
rent estimates of 1824.1 and 319.0 cM for females and
males, respectively. As additional markers are mapped to
locations beyond the terminal markers of each linkage
group, it will be of interest to note whether there is an
inflation of the male recombination map length as a result
of distal localization of chiasmata. Similar observations
have been reported in the female fat-tailed dunnart,
Sminthopsis crassicaudata, as a result of distal localization
of chiasmata in all of the autosomes [49]. Certainly, clus-
tering of chiasmata at the ends of chromosomes, coupled
with interstitial chromosomal regions devoid of chias-
mata in the male, would explain the significantly reduced

Table 1: Parameters of the C. porosus linkage map

No. of intervals

Map Length (cM) No. of positions Average interval (cM) 15 – 30 cM > 30 cM

Linkage Group No. of markers Female Male F:M
ratio

F M F M F M F M

1 56* 476.6 34.7 13.7 42 28 11.3 1.2 4 0 5 0
2 28 301.6 36.4 8.3 18 13 16.8 2.8 3 0 3 0
3 28 275.3 25.6 10.8 22 13 12.5 2.0 6 0 2 0
4 18 150.3 54.5 2.8 12 12 12.5 4.5 1 1 2 0
5 12 215.3 27.4 7.9 11 6 19.6 4.6 1 0 3 0
6 10 171.8 94.3 1.8 8 9 21.5 10.5 1 0 3 2
7 7 17.2 2.1 8.2 4 2 4.3 1.1 0 0 0 0
8 4 9.2 1.7 5.4 3 2 3.1 0.9 0 0 0 0
9 3 23.2 0.0 8 3 1 7.7 0.0 1 0 0 0
10 3 25.5 19.8 1.3 2 2 12.8 9.9 1 1 0 0
11 3 88.1 0.0 8 2 1 44.1 0.0 0 0 1 0
12 3 18.5 0.0 8 3 1 6.2 0.0 1 0 0 0
13 3 28.5 8.8 3.3 3 3 9.5 2.9 1 0 0 0
14 2 22.9 13.7 1.7 2 2 11.5 6.9 1 0 0 0

total 180 1824.0 319.0 5.7 135 95 13.8 3.4 21 2 19 2

* Two markers could not be ordered within this linkage group
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size of the male recombination map compared with the
female. However, with the data currently available, the
cause of this disparity remains unclear.

While this framework map is reasonably comprehensive,
it will undoubtedly evolve with the addition of more
markers, allowing the establishment of linkage on unrep-
resented chromosomes, and refining interval orders for
those existing linkage groups. Ideally, the addition of fur-
ther microsatellites would be desirable due to their high
levels of heterozygosity. However, microsatellites are
expensive and labor intensive to generate. Moreover,
reported low levels of repetitive sequence in non-avian
reptiles may limit the rapid development of a saturated
crocodilian genetic map with microsatellites alone [19].
Fortunately, recent advances in next generation sequenc-
ing technologies, coupled with the production of high-
density microarray systems for highly multiplexed geno-
typing, have made genome-wide genotyping with thou-
sands of single nucleotide polymorphism (SNP) markers
possible [50], thus providing an efficient and cost-effec-
tive means of saturating genome maps. The generation
and mapping of a saltwater crocodile SNP resource to
refine the framework map is anticipated in the near future.

Physically anchoring the C. porosus linkage map
The 14 linkage groups are not yet assigned to saltwater
crocodile chromosomes. However, the recent generation
of a Bacterial Artificial Chromosome (BAC) library for the
saltwater crocodile (further information available at http:/
/www.mgel.msstate.edu/dna_libs.htm) will facilitate the
anchoring of the linkage map in the near future. The local-
ization of BAC clones containing markers terminally
located within linkage groups to saltwater crocodile chro-
mosomes via fluorescent in situ hybridization (FISH) will
not only permit the anchoring and orientation of linkage
groups, but will also provide an indication of the level of
genome coverage. This work is already underway.

Linkage mapping and QTL analysis in the crocodile
In spite of future plans to refine the saltwater crocodile
map, the current linkage map is sufficiently dense to facil-
itate preliminary systematic genome searches for QTL
affecting economically important traits, as well as traits of
evolutionary significance in farmed saltwater crocodiles.
Marker information and phenotypic profiles obtained
from QTL studies may, in the future, be incorporated into
animal breeding programs through marker assisted selec-
tion (MAS). The ability to select replacement breeding
stock based on marker genotypes at day of hatch would
significantly improve the genetic improvement system by
discounting the need to performance test animals prior to
selection (particularly for sex-limited traits and those
which are expressed late in life). This would also increase
the intensity of selection and improve the overall rate of

genetic gain by expediting selection information from day
of hatch. This framework map is the first step towards the
identification of QTL in farmed saltwater crocodiles.
However, the accuracy of map interval order is of intrinsic
importance to the dissection of complex quantitative
traits [51]. Thus, continued map refinement will be vital
to the future utility of the saltwater crocodile map for the
development of MAS tools for the crocodile industry.

Potential for comparative mapping of Crocodylia
Of the 180 microsatellites incorporated in this map, more
than 70 have also been cross-amplified in as many as 18
non-source species of Crocodylia [52]. The high success of
cross-amplification (more than 90% success for Crocodylus
species) opens up the possibility for comparative map-
ping among the 14 extant Crocodilidae species, as well as
between different genera of Crocodylia. Comparative
mapping studies would permit researchers to draw upon
the map information now available for the saltwater croc-
odile, and apply it to other crocodilians. For example, the
genotypic determinant of a valuable phenotype in one
species could be directly tested for its involvement in a
similar phenotype in another species [33]. Furthermore,
investigation of map synteny between species could pro-
vide valuable insights into genome organization and
chromosome evolution in Crocodylia and other taxa [53].
Accordingly, this first-generation linkage map not only
represents a valuable resource for researchers working
with saltwater crocodiles, but also for crocodilian
researchers and evolutionary biologists collectively.

Conclusion
This linkage map for the saltwater crocodile genome rep-
resents the first genetic map for a crocodilian, or indeed
any other non-avian reptile, and reveals major differences
in genome-wide sex-specific recombination rates in a spe-
cies that exhibits temperature-dependent sex determina-
tion (TSD). This framework map lays the groundwork for
future detailed mapping studies of Crocodylia, in which
additional microsatellites, SNPs and other markers will be
added for rapid construction of next generation high-den-
sity maps. Given the high level of success of cross-species
amplification reported for the mapped microsatellites
[52], the existing map presents a valuable opportunity to
conduct comparative mapping investigations aimed at
understanding genome organization and patterns of
genome evolution in Crocodylia. Furthermore, while it
will be necessary to increase marker density before con-
ducting detailed QTL mapping investigations, this first
generation map is sufficiently dense to facilitate prelimi-
nary systematic genome searches to identify QTL and
genomic regions affecting traits of economic importance
in farmed crocodiles, as well as traits of ecological impor-
tance in wild populations. The Porosus Mapping Resource
has been invaluable for the construction of the framework
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map, and it will hopefully continue to support map
refinement in the future. DNA from this resource will be
made available to research groups seeking to place addi-
tional public domain markers on the existing framework
for map refinement.

Methods
Mapping population
The long generation interval (13 years) for saltwater croc-
odiles [22], coupled with the relative infancy of the indus-
try, means that no deep pedigrees are available for making
DNA resources for mapping. The mapping panel devel-
oped for this study, the Porosus Mapping Panel, was there-
fore derived from a simple two-generation pedigree.
Parents chosen for inclusion in this resource were long-
term, known-breeding pairs housed in unitized pens at
the Darwin Crocodile Farm, Northern Territory, Australia.
The parents were wild-caught and assumed to be unre-
lated. Eggs from breeding pairs were collected and artifi-
cially incubated until hatch. Upon hatch, the offspring
were uniquely marked using scute cuts [22]. Clutches aris-
ing from the 2005, 2006 and 2007 nesting seasons were
included in this study. Capture, handling and blood sam-
pling of crocodiles was approved by Australian Animal
Ethic Committee, permit No. N00/8-2005/3/4177.

As the purpose of constructing a genetic linkage map is to
facilitate whole genome scans for QTL, data from animals
subsequently typed for QTL studies were integrated into
the final linkage analysis. Consequently, the Porosus Map-
ping Panel can be divided into two sub-panels: the Linkage
Reference Panel and the QTL Resource Panel.

Linkage Reference Panel
The Linkage Reference Panel consisted of 96 individuals
from six full-sib families. This panel size was chosen to
correspond with the 96-well plate platform used for both
PCR and genotype analyses in order to streamline data
generation and collection. All family cohorts in this panel
were selected from 2007 offspring, and family sizes
ranged from 14 to 18 individuals. This resource was typed
for all available polymorphic loci to construct the frame-
work linkage map.

QTL Resource Panel
The QTL Resource Panel consisted of 482 individuals from
ten full-sib families comprising offspring from the 2005,
2006 and 2007 cohorts. Individual families included in
the QTL resource were selected based on the large varia-
tion in residuals for traits of interest, after accounting for
fixed effects, using the restricted maximum likelihood
(REML) models described in Isberg et al. [24-26]. Family
sizes ranged from 13 to 89 individuals. Eighty-three of the
individuals from this panel were also present in the Link-
age Mapping Panel. The 399 individuals that did not

appear in the Linkage Mapping Panel were typed for 71
microsatellite loci selected for their even distribution
across the resulting framework linkage map based on the
Linkage Reference Panel alone.

DNA extraction
All blood samples were collected with EDTA (ethylenedi-
aminetetraacetic acid) syringes from the cervical sinus
using the method described in Lloyd and Morris [54], and
immediately frozen for later processing. DNA was isolated
and purified from C. porosus blood using a phenol-chloro-
form extraction protocol adapted from Sambrook et al.
[55].

Microsatellite genotyping
In total, 262 polymorphic microsatellites [30,31] were
genotyped on the Linkage Reference Panel. PCR reactions
for each marker were performed in 12.5 μl-volumes using
PTC-100 (MJ Research) and GeneAmp PCR System 9700
(Applied Biosystems) thermocyclers. Final concentrations
for optimized reactions were 10 mM Tris pH 8.4, 50 mM
KCl, 0.5 μM unlabeled primer, 0.05 μM tag labeled
primer, 0.45 μM universal dye labeled primer, 2.0 mM
MgCl2, 0.5 mM dNTPs, 0.5 U units JumpStart Taq DNA
Polymerase (Sigma), and approximately 20 ng DNA. Uni-
versal CAG-primers were labeled with either VIC, 6-FAM
or NED fluorescent dyes, as previously described in Miles
et al. (2009a) [31]. Reactions were placed on one of two
stratified touchdown profiles [56], with each profile
encompassing a 10°C span of annealing temperatures
(ranges: 65-55°C and 55-45°C), according to the optimal
conditions identified for each respective primer [31]. PCR
amplicons for each of the respective fluorochromes were
pooled (VIC, 6-Fam and NED) and analyzed on an ABI
3130xl or 3730xl automated DNA sequencer. Raw data
were imported into Genemapper version 4.0 (Applied
Biosystems) for genotype analysis. Genotypes for each
microsatellite locus were scored, and exported into a sin-
gle data set via a custom BioPython script.

Errors in genotype data are known to considerably inflate
genetic map distances [57]. To circumvent genotype errors
in the current dataset, all genotypes were verified by an
independent third party. The PREPARE function in
CRIMAP was also used to flag spurious genotypes that
departed from the expected Mendelian segregation pat-
terns. Any discordant genotypes were either retyped or
removed from the dataset. Of the 262 markers genotyped,
203 performed satisfactorily enough to be included in
subsequent linkage analyses.

Dataset integrity
Prior to linkage analyses, genotype data were analyzed
using the software Cervus version 3.0 [58] to ensure pedi-
gree integrity and correct parentage [59]. Assuming a typ-
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ing error rate of 0.01, and strict confidence levels of 95%,
probabilities of exclusion were estimated for all individu-
als in the mapping population.

Linkage map construction
CRI-MAP v3.0 [60] was used to construct the saltwater
crocodile linkage map. Markers were assigned to linkage
groups based on linkage supported by two-point LOD
scores ≥ 3.0, and later ordered within these groups using
multi-point linkage analyses employing a heuristic
approach. LOD ≥ 3.0 was chosen as the minimum statis-
tical support criterion for ascertaining locus order of
framework loci within linkage groups using the BUILD
option. This threshold was subsequently reduced to LOD
≥ 2.0 to place the remaining loci within the framework
map. For markers not supported with a LOD ≥ 2.0, prob-
able map locations were determined using the ALL func-
tion. Upon incorporation of all possible markers, the
FLIPS option was used to ascertain the best possible locus
order by looking at all possible permutations for up to six
adjacent loci within the resulting map. Once the most
likely map order had been derived, sex-specific map dis-
tances in centimorgans (cM) were estimated for each link-
age group using the Kosambi [61] mapping function.
Maps were drawn using the software MapDraw version
2.2 [62]. Linkage group nomenclature was assigned in
order of descending number of markers per linkage group.
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