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Abstract
Background: The deleterious effect of a mutation can be reverted by a second-site interacting
residue. This is an epistatic compensatory process explaining why mutations that are deleterious
in some species are tolerated in phylogenetically related lineages, rendering evident that those
mutations are, by all means, only deleterious in the species-specific context. Although an extensive
and refined theoretical framework on compensatory evolution does exist, the supporting evidence
remains limited, especially for protein models. In this current study, we focused on the molecular
mechanism underlying the epistatic compensatory process in mammalian mitochondrial OXPHOS
proteins using a combination of in-depth structural and sequence analyses.

Results: Modeled human structures were used in this study to predict the structural impairment
and recovery of deleterious mutations alone and combined with an interacting compensatory
partner, respectively. In two cases, COI and COIII, intramolecular interactions between spatially
linked residues restore the folding pattern impaired by the deleterious mutation. In a third case,
intermolecular contact between mitochondrial CYB and nuclear CYT1 encoded components of
the cytochrome bc1 complex are likely to restore protein binding. Moreover, we observed
different modes of compensatory evolution that have resulted in either a quasi-simultaneous
occurrence of a mutation and corresponding compensatory partner, or in independent
occurrences of mutations in distinct lineages that were always preceded by the compensatory site.

Conclusion: Epistatic interactions between individual replacements involving deleterious
mutations seems to follow a parsimonious model of evolution in which genomes hold pre-
compensating states that subsequently tolerate deleterious mutations. This phenomenon is likely
to have been constraining the variability at coevolving sites and shaping the interaction between the
mitochondrial and the nuclear genome.
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Background
The deleterious impact of mutations can be reverted by
epistatic interaction with a second-site which acts as a
compensatory partner through a process known as com-
pensatory evolution [1]. A detrimental mutation coupled
to its compensatory partner results in a compensated
background. As long as the deleterious effect of a muta-
tion is neutralized, they find a chance to persist until pos-
sibly reaching fixation.

Several examples of compensatory evolution have been
reported [2-9], with the great majority of studies involving
coevolving nucleotide pairs that participate in the struc-
tural folding of RNA molecules. However, theoretical and
empirical data are scarce for protein models [10-16]. This
remains the case despite the expected impact that a net-
work of intramolecular and intermolecular compensatory
epistatic interactions may have on the expression of phe-
notypes [17] and protein evolution.

Although the most uncomplicated model of compensa-
tory interaction comprises a two-locus, two-allele system,
each compensated background may hold more than a sin-
gle compensatory site for each deleterious mutation
[2,18]. In addition, the functional rescue of each particu-
lar mutation may involve distinct compensatory solutions
[19,20]. A recent study [21], focusing on the structural
and physico-chemical properties of compensated muta-
tions, revealed that the probability of a residue being com-
pensated depends upon its location in the protein
structure and on the degree of similarity between the
changed and the newly arisen residues. That is to say;
structurally exposed mutations and replacements involv-
ing similar residues are more easily compensated. Overall,
these positions seem to represent about 10% of the
observed replacements in a protein [12,13,22].

One of the most interesting issues concerning the interac-
tion between coevolving residues is the succession of
events that precede the fixation of a compensated genetic
background. Two distinct explaining models have been
proposed to explain this issue. In one model, a deleterious
mutation arises in a background already harboring a fixed
or polymorphic compensatory solution [10,12,23].
Because this deleterious effect is suppressed from the
moment it occurs, it appears that the occurrence of
human deleterious mutations in other mammals
[10,12,24] can easily follow this model. Recently, we have
shown that a lethal mutation in humans is naturally com-
pensated in chimpanzees. In this case, the ancestral allele
acts as a compensatory residue by restoring the protein
activity to levels equivalent to the wild-type background
[14]. However, unambiguous evidence regarding the
recurrence of this model in compensatory evolution still
awaits large-scale analyses. In the alternative model, a del-

eterious mutation occurs first, being subsequently com-
pensated by a second-site substitution. This model
presents two possible scenarios. In the first scenario, a
mutation persists in the population at low frequencies
while waiting for a compensatory solution to arise de novo
by mutation [25,26], or as a polymorphism that may
become associated via recombination [10]. In the second
scenario, the fixation of the mutation always precedes the
occurrence/fixation of its compensatory partner [27,28].
As expected, this scenario would not apply to strong fit-
ness-affecting mutations.

Herein, the availability of data for a large number of
related species motivated the selection of mitochondrial-
encoded (OXPHOS) proteins to elucidate the molecular
mechanism by which a compensatory residue provides
structural, and consequently functional, rescue for the
damaging effect of a deleterious replacement through the
use of modeled structures. In addition, taking advantage
of the large amount of available data for mammalian spe-
cies, we pursued an extensive phylogenetic analysis to
illustrate the sequence of events by which a mutation and
a compensatory partner became paired in a compensated
background.

Results and Discussion
Identification of human deleterious mutations in non-
human mammals
At the time of this study, information was available for a
total of 199 mammalian species as well as for 49 missense
disease-associated mutations occurring at mitochondrial-
encoded OXPHOS proteins (detailed information is given
in the methods section). We started the analysis by iden-
tifying human missense pathological mutations repre-
senting the wild-type residue at the homologous site in
non-human mammals, following a previously reported
methodology [12]. A total of three unambiguously delete-
rious mutations [29-31], one at cytochrome c oxidase sub-
unit I (COI), another at cytochrome c oxidase subunit III
(COIII), and a third at cytochrome b (CYB) were identi-
fied and further examined (Table 1).

The COI-Leu196Ile mutation was detected in a patient
suffering from epilepsia partialis continua [31]. Compari-
son of protein sequences revealed that the Leu196 residue
is invariant in mammals indicating a critical role for nor-
mal protein function. Nevertheless, this mutation over-
laps the wild-type residue in a rodent lineage (M. glis). The
COIII-Phe251Leu mutation, known to be associated with
mitochondrial encephalomyopathy, lactic acidosis and
stroke-like episodes (MELAS) [29] was observed in seven
primate species, all members of the Cercopithecidae fam-
ily (C. aethiops, C. tantalus, C. sabaeus, C. pygerythrus, S.
entellus, M. mulatta and M. sylvanus). Finally, the CYB-
Gly251Ser replacement was detected in a patient present-
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ing paracrystalline inclusions and low aerobic capacity
[30]. This deleterious Ser251 residue was found in nine
primate species (P. pygmaeus, P. abelii, M. sylvanus, C. gue-
reza, T. obscures, R. roxellana, P. melalophos, P. badius and S.
entellus) as well as in two marsupial species in the Dipro-
todontia order (T. vulpecula and P. cinereus).

Uncovering mutation-compensation pairs
We next concentrated on the identification of the most
likely compensatory site under the previous assumption
[12] which stated that if a mutation is deleterious in
humans but neutral in related species, protein sequence
comparisons should reveal a compensatory site that dis-
tinguishes human and non-human wild-type sequences.
That is, a compensatory residue must be recognizable in
non-human mutation carriers and simultaneously be
absent from the normal human sequence.

Here we propose a further extension to these assumptions
namely, if a mutation is as deleterious in non-human
mammals as it is in humans unless paired with a compen-
satory partner, the corresponding compensatory residue
should be able to rescue the impairment of the human

protein. In this perspective, the identification of the most
likely compensatory partner for each mutation was ini-
tially based on comparative sequence data and subse-
quently complemented with 2D and 3D structural
analyses to allow the recognition of the molecular basis of
interactions. These analyses resulted in a vast list of poten-
tial compensatory sites for each mutation [see Additional
file 1] from which the interacting residues in close spatial
vicinity [12,15,16,18,32-34] were selected. Because the
crystal structure of the human COI, COIII and CYB pro-
teins has not been solved thus far, we built the structural
models using previously established structures of bovine
proteins [35,36] as templates (detailed information is
given in the methods section).

Under these models, the compensatory residue for the
deleterious COI-Ile196 found in M. glis was predicted to
be at position 195 (Table 2) represented by an isoleucine
in this lineage whereas all the other mammals preserve the
leucine. Additional analyses provided compelling support
for the compensatory role of Ile195 when interacting with
deleterious Ile196. In the human modeled wild-type
background (Leu195-Leu196, Figure 1A), side-chain

Table 1: Human deleterious mutations at mitochondrial-encoded proteins present as wild-type amino acid in mammalian 
orthologues.

Protein Human mutation
(associated phenotype)

Non-human mutation carriers

COI (Cytochrome c oxidase subunit I) Leu196Ile
(Epilepsy)

Order: Rodentia
Family: Gliridae
Species: Myoxus glis (Fat dormouse)

COIII (Cytochrome c oxidase subunit III) Phe251Leu
(Encephalopathy/MELAS)

Order: Primates
Family: Cercopithecidae
Species: Chlorocebus aethiops (African green monkey); Chlorocebus tantalus 
(Tantalus monkey);Chlorocebus sabaeus (Green monkey); Chlorocebus 
pygerythrus (Vervet monkey); Semnopithecus entellus (Hanuman langur); 
Macaca mulatta (Rhesus monkey); Macaca sylvanus (Barbary ape)

CYB (Cytochrome b) Gly251Ser
(Exercise intolerance)

Order: Primates
Family: Hominidae
Species: Pongo pygmaeus (Bornean orangutan);Pongo abelii 
(Sumatran orangutan)

Order: Primates
Family: Cercopithecidae
Species: Macaca sylvanus (Barbary ape);Colobus guereza 
(Guereza);Trachypithecus obscures (Dusky leaf monkey);Rhinopithecus 
roxellana (Golden snub-nosed monkey);Presbytis melalophos
(Mitred leaf monkey);Procolobus badius (Western red 
colobus);Semnopithecus entellus (Hanuman langur)

Order: Diprotodontia
Family: Phalangeridae
Species: Trichosurus vulpecula (Silver-gray brushtail possum)

Order: Diprotodontia
Family: Phascolarctidae
Species: Phascolarctos cinereus (Koala)
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interactions between α-helix V and VI are achieved, at
least partially, through an H-bond involving Ser187 (α-
helix V) and Leu248 (α-helix VI) (Figure 1B and Figure
1E). This bonding was not predicted in the deleterious
background (Leu195-Ile196, Figure 1C), strongly indicat-
ing an impairment in protein folding, a hypothesis sub-
stantiated by functional evaluations of the affected patient
[31]. The connection between α-helices V and VI was
restored when the conserved Leu195 was replaced by an
Ile, a combination that represent the compensated back-
ground (Ile195-Ile196, Figure 1D and Figure 1E). Two
interesting points arise here. First, the novel interaction
also involves novel intervening residues (Ser198 and

Table 2: Candidate compensatory residues for three human 
deleterious mutations.

Protein Human mutation Compensatory residues

COI Leu196Ile Ile195

COIII Phe251Leu Val254

CYB Gly251Ser Pro258, Ser263

Molecular mechanism of compensation at COIFigure 1
Molecular mechanism of compensation at COI. (A) Three-dimensional model of human cytochrome oxidase c complex 
showing Leu195 and Leu196 positions in COI. (B) Detailed view of the wild-type background (195Leu-196Leu) showing side-
chain bonding involving Ser187 (α-helix V) and Leu248 (α-helix VI). (C) Deleterious background (Leu195-Ile196) revealing the 
absence the H-bonding between α-helices V and VI. (D) Compensated background (Ile195-Ile196) establishing a novel H-bond 
involving Ser198 (α-helix V) and Phe238 (α-helix VI). (E) Transmembrane structure of the human wild-type COI showing the 
mutation position (red), the interchain connection in the wild-type background (orange) and the new interaction in the com-
pensated background (green).
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Phe238) apart from the mutation (Ile196) and the com-
pensatory residue itself (Ile195). Second, the compensa-
tory residue does not intervene directly to maintain the
connection between the two helices, although interaction
with other residues seem to contribute to maintain proper
protein folding [37]. The reestablishment of the original
bonding pattern leading to the rescue of a deleterious phe-
notype is a remarkable observation in line with previous
documented data [18].

For the identification of a compensatory partner for the
COIII-Phe251Leu mutation we followed a similar
approach. Comparative sequence analysis revealed 14
candidate compensatory residues for the residue 251
(Table 2), 13 of which are common to all of the species
carrying the Leu251 mutation. Of these, position 254
emerged as the most likely compensatory site given the

spatial proximity in structural models (Figure 2A to 2C).
These structures revealed that the human disease-associ-
ated background (Leu251-Val254, Figure 2D) holds an
extra H-bond with Ser255 that is not seen in the wild-type
background (Phe251-Val254, Figure 2C) and no longer
observed in the compensated background (Leu251-
Ile254, Figure 2E). Also, despite the amino-acid difference
in positions 251 and 254 between wild-type and compen-
sated background, the bonding pattern that involves both
residues showed to be surprisingly similar (Figure 2C and
Figure 2E).

Regarding the CYB-Gly251Ser mutation, interspecies
sequence comparisons failed to reveal a compensatory
residue that was shared by all species carrying the human
deleterious Gly251 (Table 2) and this holds true even
when placental mammals were considered separately

Molecular mechanism of compensation at COIIIFigure 2
Molecular mechanism of compensation at COIII. (A) Transmembrane structure highlighting the deleterious Leu251 at 
the C-terminus region and sequence comparison between human and primate species harboring the mutation and the most 
likely candidate to compensatory site. (B) Three-dimensional model of human cytochrome oxidase c complex showing posi-
tions Phe251 and Val254 at COIII. (C) H-bonding interactions between Phe251 and Val254 in the wild-type background. (D) 
Deleterious background (Leu251-Val254) showing a de novo interaction with Ser255. (E) Compensated background (Leu251-
Ile254) illustrating the reestablishment of the original bonding pattern.
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from marsupial lineages. Nevertheless, it is known that
more than one compensatory site may exist for any given
mutation [19] and thus phylogenetically related lineages
can hold distinct compensatory solutions. We mapped
onto the modeled 3D structure of CYB all of the possible
compensatory alternatives (residues that differ between
humans and all of the other mammals) although no struc-
tural proximity between each of these residues and
Gly251 was evident (Figure 3A).

A previous study in yeast [18] revealed that mutations at
the mitochondrial CYB can be reverted by distinct com-
pensatory residues and also that each interacting pair lay
on the same side of the membrane. To determine whether
these evidence apply to the particular case of the
Gly251Ser mutation, we focused on the loop that harbors
the target residue 251 (Figure 3B). This domain revealed

two compensatory candidates, Pro258 and Ser263.
Because no direct interaction between mutation and com-
pensatory residue alone or in combination was evident
(Figure 3A) and, as argued previously [38], mutations in
this strongly conserved domain impairs the complex
assembly, we hypothesized that the structural recovery of
the mitochondrial bc1 complex would require intermo-
lecular interactions with other catalytic subunits, namely
the nuclear-encoded cytochrome c1 (CYT1) [39]. In Fig-
ure 4, structures representing the mitochondrial-encoded
CYB and the interacting region of CYT1 are shown for
wild-type (Figure 4A and Figure 4B) and mutated human
backgrounds (Figure 4C), as well as for all the possible
combinations between the deleterious (251) and the
compensatory 258 and 263 residues (Figure 4D to 4F).

Molecular mechanism of compensation at CYBFigure 3
Molecular mechanism of compensation at CYB. (A) Human CYB model highlighting the Gly251 residue and all putative 
compensatory sites [see Additional file 1]. (B) Transmembrane structure with the deleterious residue highlighted and compar-
ison of human wild-type sequence with non-human carriers of the deleterious Ser251 (red) and compensatory Pro258 and 
Ser263 partners (blue).
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Although protein-protein contact is unlikely to be con-
ducted directly by the 258 and 263 residues, the region
encompassing CYB/CYT1 interaction would involve H-
bond salt bridges between the oppositely charged CYB-
Asp248/CYT1-Arg496 and CYB-Asp254/CYT1-His499
residues (Figure 4B). These particular H-bonds are com-
mon across protein interfaces [40] and contribute to the
stabilization of protein complexes [37,41]. In the mutated
background (Figure 4C), one of these bonds (CYB-
Asp254/CYC1-His499) seems to be missing, whereas it is
recovered in two of the putative compensatory back-
grounds harboring Ser263 alone or Ser263 in combina-

tion with Pro258 (Figure 4E and 4F). In the remaining
background, which harbors Pro258 solo, this interaction
was not restored (Figure 4D), similarly to what was
observed in the deleterious background which may be
explained by sequence differences in CYT1 between
humans and the more distantly related mammals. These
differences may contribute to structural recovery through
interaction with the Pro258 residue. Unfortunately, no
sequence data related to CYT1 is currently available for
these non-human species to confirm this hypothesis. For
that reason, this candidate was not included in the subse-
quent analyses.

Mitonuclear interaction between CYB and CYT1Figure 4
Mitonuclear interaction between CYB and CYT1. (A) Human model showing structural proximity between CYB (grey) 
and CYT1 (yellow). (B) Structure of the wild-type background illustrating H-bond salt bridges across CYB/CYT1 interfaces 
(CYB-Asp248/CYT1-Arg496 and CYB-Asp254/CYT1-His499). (C) Structure of the deleterious background (CYB-Ser251). 
(D), (E) and (F) Structure of the compensated backgrounds (CYB-Pro258, CYB-Ser263 and CYB-Pro258-Ser263, respectively). 
A synopsis of the CYB/CYT1 salt bridge bonding patterns for all of the backgrounds is provided below the structures.
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To our knowledge, this study provides the first evidence
for a compensatory interaction involving proteins
encoded by mitochondrial and nuclear genomes in mam-
mals, although a previous study focused on the fitness
effect of mitonuclear epistatic interactions in Drosophila
melanogaster [42] presented evidence that complement
our results.

Coupling of a deleterious mutation with a compensatory 
partner
After the identification of four mutation-compensation
pairs, we attempted to reconstruct the sequence of events
that coupled a deleterious mutation with a compensatory
partner.

The particular case of COI strongly suggested a quasi-
instantaneous occurrence of the Ile196 mutation and
compensatory Ile195, since either possible intermediate
state (Leu195-Ile196 or Ile195-Leu196) could only have
reached fixation at a prohibitively high fitness cost. In one
case (Leu195-Ile196) the deleterious impact of the
Leu196Ile substitution is well-documented [31]. The
other possible intermediate state (Ile195-Leu196) would
imply the replacement of an invariant residue (Leu195) in
mammals, fishes, amphibians and reptiles, signaling its
critical role to the protein function and put on evidence
the constraints in replacing leucine for an alternative
amino acid. Thus, each of these intermediate states would
only be tolerated in heteroplasmy at low frequencies
before reached fixation. It is worth noting that replaced
residues (195 and 196) lie in the immediate vicinity but
do not involve contiguous nucleotides. Thus, it is not
obvious whether both nucleotide changes (the first posi-
tion of each codon) have resulted from the same error
during replication or, alternatively, have occurred sequen-
tially towards the rapid fitness escape from unfavorable
combinations [43]. But regardless of the mechanism of
origin, a quasi-instantaneous fixation of the compensated
background (homoplasy) is possible to have occurred
within a small number of generations [44,45].

The deleterious mutations in COIII and CYB were
observed in multiple species allowing for the reconstruc-
tion of their evolutionary history using a perfectly
resolved primate phylogenetic tree (Figure 5). We verified
the presence of the candidate compensatory residues in
several lineages without the deleterious mutations, but
the opposite was never observed. Moreover, it was possi-
ble to track at least two independent events resulting in
the deleterious COIII-Leu251, but again only in lineages
harboring the corresponding compensatory solution. Our
previous data also showed that a deleterious mutation in
a nuclear-encoded protein (OTC) occurred independently
in chimpanzees and dogs. In this case, the compensatory
solution is the ancestral amino acid [10]. From these

examples, we are presenting a model of co-evolution in
which genomes hold potential compensatory solutions
for upcoming deleterious events.

In order to investigate whether other mammalian lineages
could also have their genomes pre-compensating for
COIII-Leu251 and CYB-Ser251 mutations the phyloge-
netic analysis was extended. The results, based on the
analysis of all mammalian orders included in NCBI data-
set, are graphically represented in Figure 6. The wide-
spread occurrence of compensatory COIII-Ile254 and
CYB-Ser263 across mammalian orders provides further
support that these residues arose through independent
mutational events. The remaining CYB-Pro258 residue is
invariant in all mammalian orders, except for primates,
and represents the ancestral residue as demonstrated by
the perfectly resolved deepest branch of the tree (Figure
5B). This is similar to the case mentioned before [10].

Conclusion
The role played by compensatory processes during protein
evolution may now be understood at a greater level. This
is aided by the emergence of more sophisticated theoreti-
cal and computational prediction tools and increasing
empirical evidence. A mutation-compensation pair
defines a structural and a functional example of coevolv-
ing sites in which the deleterious effect of the mutation is
suppressed by its compensatory partner.

In this study, our efforts were directed towards the under-
standing of the molecular and evolutionary processes of
compensation in three highly deleterious mutations that
are the wild-type residue in non-human mammalian lin-
eages. In two cases (COI-Leu196Ile and COIII-
Phe251Leu), the reestablishment of the original bonding
pattern in compensated backgrounds was observed
through the extensive analysis of human modeled 3D
structures. In the third case (CYB-Gly251Ser), no explicit
interactions were observed between the mutation and any
of the putative intramolecular compensatory partners.
Nevertheless, as both are located in a critical region for the
assembly of the bc1 complex, we were able to infer the
interaction between mitochondrial CYB and nuclear
CYT1 in a noteworthy process of intermolecular epistatic
interaction between the two genomes.

Although our analyses focused on mitochondrial-
encoded proteins, the main conclusions may be extended
to nuclear-encoded proteins as well. Under the assump-
tion that a deleterious mutation occurs in pre-compensat-
ing nuclear background, one may explain how dominant
and fitness-costly mutations are tolerated and reach fixa-
tion in various lineages. Furthermore, highly deleterious,
yet recessive, mutations may persist in heterozygosity
until a compensatory partner arises or becomes linked by
Page 8 of 12
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recombination. However, because even a small rate of
recombination leads to increased fixation time of a com-
pensated background under a strong selection pressure
[25,26,46], the pre-compensating model would renders
more likely the process of compensatory evolution, in
particular when highly deleterious mutations are
involved.

Methods
Sequences and pathological data
Mitochondrial-encoded protein sequences from over 230
mammalian species were extracted from NCBI Organelle
Genome Resources [34]. Whenever data for more than
one subspecies was available for each species, only one of
those was considered resulting in a total of 199 distinctive
species. Sequences were aligned with Clustal W software
[47].

Mitochondrial mutations associated with non-LHON
clinical phenotypes were obtained from the table
"MtDNA Mutations with Reports of Disease-Associations-
Coding & Control Region Mutations", available at Mito-
map [48]. Only missense substitutions were considered.
For all cases, the homologous site at the non-human pro-
tein was examined. This resulted in a total of nine cases
where the human mutation overlaps the non-human
homologous site in mammals (ND1-Met1Thr, ND1-
Ala4Thr, ND1-Thr164Ala, ND2-Ala331Ser, ND4-
Ile423Val, ND6-Val112Met, COI-Leu196Ile, COIII-
Phe251Leu and CYB-Gly251Ser). Since no crystal struc-
ture was available for the respiratory complex I, only three
cases, COI-L196I, COIII-F251L, and CYB-G251S were
analyzed in the present study.

Maximum likelihood tree showing lineages harboring compensatory residues alone (blue) and compensated backgrounds (red)Figure 5
Maximum likelihood tree showing lineages harboring compensatory residues alone (blue) and compensated 
backgrounds (red).
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Transmembrane structure model
Transmembrane models were obtained from the Human
Mitochondrial Genome Polymorphism Database [49].

Protein comparative modeling and structure visualization
We used the human sequence of COI (complex IV) and
CYB (bc1 complex) as templates to search for the highest
E-value pdb using BlastP analysis [50]. The resulting codes
of bovine structures (pdb 1occ and 1bgy for complex IV
and bc1, respectively) were then used in MODELLER [51]
in order to build human structural models. The accuracy
of the predicted 3D human models [see Additional file 2]
was estimated using ProSA-web [52], as previously
described [53,54]. All of the structures here analyzed were
built using MODELLER and are available at http://
www.portugene.com/data_Azevedo2008.html[55]. All
residue-residue bonds were calculated using Pymol soft-
ware [56] and all of the structures were visualized using
the same software.

Phylogenetic inferences
The primate phylogenetic tree was created using maxi-
mum likelihood calculations estimated with the PhyML
algorithm [57] from an alignment of concatenated COIII
and CYB protein sequences. The amino acid matrix used
was mtRev and the substitution model was assumed to
follow an approximate gamma distribution [58]. For test-
ing the reliability of the PhyML tree topology, the original
alignment file was converted to nexus format and served
as input for the phylogenetic Bayesian software MrBayes

[59,60]. The amino acidic substitution model used was
Mtmam following a gamma distribution [58,61,62].
Default settings were used for all of the remaining param-
eters. The statistical evaluation of posterior distribution
for likelihood (LnL) was performed for the two independ-
ent MrBayes runs in Tracer v1.4 [63]. The resulting topol-
ogy of the consensus Bayesian tree was identical to that
generated by maximum likelihood analysis [see Addi-
tional file 3].

Abbreviations
mtDNA: mitochondrial DNA; NCBI: National Center for
Biotechnology Information; OXPHOS: oxidative phos-
phorylation; COI: cytochrome c oxidase I; COIII: cyto-
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Distribution of pre-compensating mammalian genomesFigure 6
Distribution of pre-compensating mammalian genomes. The Eutheria (E), Metatheria (M) and Prototheria (P) orders 
are represented in the X-axis. The number of species is presented at the Y-axis.
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Additional file 1
Candidate compensatory residues for human deleterious mutations. 
This table provides all the possible compensatory sites for three human del-
eterious mutations found in non-human mammals.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-266-S1.doc]

Additional file 2
Quality evaluation of the modeled structures of human mitochondrial 
proteins. This figure presents the evaluation of model quality for the pre-
dicted 3D structures of human COI/COIII (A), CYB (B) and CYT1 (C) 
both overall (left) and locally (right) as estimated in ProSA-web. Both 
modeled structures showed z score values (black dots) that lie within the 
cloud, representing experimentally determined features of native proteins 
by X-ray and NMR analysis. Energy plots show a smooth fluctuation with 
overall negative energy of residue stretches (green lines) demonstrating 
that the predicted 3D structures show minimal deviations from normal 
energy values.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-266-S2.tiff]

Additional file 3
Consensus phylogeny of primate lineages. The figure shows the MrBayes 
consensus tree illustrating primate topology (A), the marginal density of 
posterior distribution of likelihood (LnL) for first and second MrBayes 
runs (B) and Tracer statistical results for tree likelihood, TL (tree length) 
and alpha in first and second run of MrBayes (C).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-266-S3.tiff]
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