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Abstract

Background: We have reported that doxycycline-induced over-expression of wild type prion
protein (PrP) in skeletal muscles of Tg(HQK) mice is sufficient to cause a primary myopathy with
no signs of peripheral neuropathy. The preferential accumulation of the truncated PrP CI fragment
was closely correlated with these myopathic changes. In this study we use gene expression profiling
to explore the temporal program of molecular changes underlying the PrP-mediated myopathy.

Results: We used DNA microarrays, and confirmatory real-time PCR and Western blot analysis
to demonstrate deregulation of a large number of genes in the course of the progressive myopathy
in the skeletal muscles of doxycycline-treated Tg(HQK) mice. These include the down-regulation
of genes coding for the myofibrillar proteins and transcription factor MEF2c, and up-regulation of
genes for lysosomal proteins that is concomitant with increased lysosomal activity in the skeletal
muscles. Significantly, there was prominent up-regulation of p53 and p53-regulated genes involved
in cell cycle arrest and promotion of apoptosis that paralleled the initiation and progression of the
muscle pathology.

Conclusion: The data provides the first in vivo evidence that directly links p53 to a wild type PrP-
mediated disease. It is evident that several mechanistic features contribute to the myopathy
observed in PrP over-expressing mice and that p53-related apoptotic pathways appear to play a

major role.
Background has gained enormous attention as the central factor in
Cellular prion protein (PrP€) is a ubiquitous glycosyl-  prion diseases [1]. In these diseases PrPC€ is converted

phosphatidyl-inositol (GPI) anchored glycoprotein that  through conformational change to a pathological form
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(PrPS¢) that self-replicates using PrPC as the substrate. The
normal functions of PrP€remain elusive despite concerted
efforts. PrP€ has been implicated in CNS development,
neurite outgrowth and neuronal survival, early synaptic
neuronal transmission and reorganization of neuronal
circuitry within the hippocampus, regulation of circadian
rhythm, memory formation and cognition, maintenance
of Ca2?+-activated K+ currents of hippocampal CA1 pyram-
idal neurons, protection against brain injury in rat and
mouse models of ischemic stroke, and in T cell develop-
ment and function [2]. Over-expression of PrPC has been
shown to exert a protective effect in BAX and TNFa-medi-
ated cell death and conversely a pro-apoptotic function in
studies of staurosporine-induced cell death [3-5]. It has
also been demonstrated that depletion of endogenous PrP
reduces susceptibility to staurosporine-induced caspase 3
and p53 activation [6].

In a previous study we generated transgenic mice,
Tg(HQK), that express human PrP¢ exclusively in the skel-
etal muscles under tight regulation by doxycycline [7]. We
found that induced over-expression of PrP€in the muscles
leads to a progressive primary myopathy characterized by
increased variation of myofiber size, centrally located
nuclei and endomysial fibrosis, in the absence of cytoplas-
mic inclusions, rimmed vacuoles, or any evidence of a
neurogenic disorder [7]. While the pathogenic mecha-
nism of the PrP-mediated myopathy was not determined,
an interesting observation was that the myopathy was
accompanied by preferential accumulation of an N-termi-
nal-truncated PrPC fragment, which was confirmed to be
the C1 fragment [7] resulting from normal PrPC process-
ing [8-12]. The C1 fragment is also found in the skeletal
muscles of wild-type mouse, but at a much lower level
and a molar ratio of close to 1:1 over full-length PrPC, in
contrast to a ratio of 3:1 in the Dox-induced Tg(HQK)
model [7].

A number of studies have shown the expression of N-ter-
minus truncated forms of PrPC€ to be associated with tox-
icity in animal models [13,14]. The protein Doppel,
which is homologous to the C-terminus of PrP, has also
been shown to be cytotoxic when ectopically expressed in
neurons [15-17]. In both cases, the toxicity can be abro-
gated by the co-expression of full length PrPC[18,19]. The
C1 fragment has also been reported to potentiate stau-
rosporine-induced toxicity via caspase 3 activation in cul-
tured cells [20], but this toxic effect is similar to what was
reported for full-length PrPC [5,21,22]. We hypothesize
that the high levels of the C1 fragment that accumulate in
Dox-treated Tg(HQK) mice is largely responsible for the
toxic effect that leads to the development of myopathy in
these mice. In order to understand the molecular mecha-
nism that underlies this PrP toxicity, we have performed
microarray analysis to determine gene regulatory net-
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works that are triggered following overexpression of PrPC
in the skeletal muscles of Tg(HQK) mice.

Methods

Animals and Treatment

The doxycycline-inducible Tg(HQK) mice were described
previously [7]. The HQK transgene contained two genes:
reverse tetracycline responsive transcription activator
(rtTA) under the control of the mouse PrP promoter of the
half genomic PrP clone, and human PrP ORF regulated by
the tetracycline-responsive promoter (tetO-hCMV*-1)
from the core plasmid [23]. The Tg(HQK) mice were gen-
erated in the FVB background, and Tg(HQK)/Prnp°/° mice
were obtained through breeding with the Zurich I PrP-
null mice [24] in FVB background. Line Tg(HQK)18,
referred to as Tg(HQK) for simplicity, was used for this
study.

Animal Treatment and Specimen Collection

Wild type (WT), PrP-null (KO), and Tg(HQK) mice were
fed food pellets either lacking or containing 6 g doxycy-
cline (Dox)/kg food (Bio-Serv) to induce PrPC€ expression.
Skeletal muscles from the quadriceps of hind legs were
removed at day 0, 4, 7, 14, 30 and 60 days following
administration of Dox. For immunoblot and microarray
analysis, the muscle tissues were immediately frozen on
dry ice, and stored at -80°C.

RNA Isolation

Total RNA was isolated from frozen skeletal muscle using
the RNeasy skeletal muscle RNA isolation kit (Qiagen)
following the manufacturer's specifications. The total
RNA preparations were further treated with Turbo DNA-
Free DNase (Ambion) to remove residual genomic DNA
contamination, and examined with a Bioanalyzer 2100
(Agilent) for purity and quantity.

RNA Amplification and Labeling for Microarray Analysis
Total RNA was amplified and labeled for microarray anal-
ysis using the AminoAllyl Message Amp II aRNA amplifi-
cation kit (Ambion) following the manufacturer's
specifications. In brief, 1 pg total RNA was reverse tran-
scribed to first-strand cDNA, followed by subsequent sec-
ond-strand ¢DNA synthesis. In vitro transcription to
synthesize amplified aRNA was performed and the result-
ant aRNA quantified. Ten to fifteen micrograms of aRNA
was designated as reference (WT) or experimental (KO,
HQK), and then coupled to either Alexa Fluor succinimi-
dyl ester 555 or Alexa Fluor succinimidyl ester 647 dye in
30% DMSO/coupling buffer in the dark at room temper-
ature for 1 hour. Each sample was labeled individually
with both Alexa Fluor 555 and 647 for subsequent dye-
swapped hybridizations to account for intensity bias.
Uncoupled dyes were removed and labeled aRNA purified
following the manufacturer's specifications.
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cDNA Microarrays

A total of 16,315 cDNA expressed sequence tags from the
Brain Molecular Anatomy Project (BMAP) mouse brain
library http://www.ncbi.nlm.nih.gov were spotted in
duplicate onto CMT-GAPS Gamma Amino Propyl Silane
coated glass slides (Corning) using the Virtek Chip Writer.
Five micrograms of both reference (WT) and experimental
(KO and HQK) Alexa Flour labeled aRNA were used in
each competitive hybridization. Each labeled aRNA was
resuspended in 35 pl DIG Easy Hyb™ hybridization buffer
(Roche) containing 20 pg mouse cotl DNA and 20 g
poly(A)-DNA to block non-specific hybridization. Three
biological replicate samples from each of the reference
and experimental groups were combined, heated for 5
minutes at 95°C, then cooled and maintained at 42°C.
The labeled aRNA sample mixtures were added to a BMAP
microarray and incubated in the dark at 42 °C overnight to
competitively hybridize to reference and experimental
samples. The number of slides hybridized in each experi-
ment corresponded to the number of biological replicates
in each group of experimental interest. Following hybrid-
ization, the slides were washed once in low stringency
wash buffer (1x SSC, 0.2% SDS) preheated to 42°C for 5
minutes, once in high stringency wash buffer (0.1x SSC,
and 0.2%SDS) for 5 minutes at room temperature, and
then once in 0.1x SSC for 5 minutes at room temperature.
The slides were analyzed in two channels using the Agilent
HT microarray scanner (Agilent). Raw, background and
net intensity values were collected using Array-Pro soft-
ware (Media Cybernetics). In order to account for varia-
tion in fluorescence, LOWESS sub-grid normalization was
performed by Gene Traffic software (Iobion), and the sub-
sequent normalized log2 ratios obtained. The resulting
ratio between reference and experimental signals for each
individual gene was used as a measure of differential gene
expression using EDGE (Extraction of Differential Gene
Expression), an open source software program for the sig-
nificance analysis of DNA microarray experiments http://
www.genomine.org/edge/.

EDGE implements statistical methodology specifically
designed for time course experiments [25]. A significance
measure is assigned to each gene via the Q value (false dis-
covery rate) methodology [26]. We selected a Q-value cut-
off to display the genes that met our significance
threshold. We performed a "between class" analysis of the
data over time; the class variables, or biological groups,
were the PrP over-expressing mice [Tg(HQK)] and the
PrP-KO mice.

Agilent Whole Mouse Genome Oligonucleotide
Microarrays

One microgram of each Alexa Fluor 555 and 647 labeled
samples as prepared above were fragmented, reference
and experimental samples together, in 250 pl fragmenta-
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tion mix in preparation for hybridization to Agilent's
Whole Mouse Genome 44 K oligonucleotide microarrays.
Following the manufacturer's protocol, an equal volume
of 2x hybridization buffer was added to stop aRNA frag-
mentation and prepare the samples for hybridization.
Four hundred fifty microliters of each mixture containing
the reference and experimental samples was then added to
an individual slide hybridization assembly and allowed to
rotate at 4 rpm at 65°C for 17 hours. Slides were washed
and scanned as recommended in the protocol, then ana-
lyzed using Agilent Feature Extraction Software. Raw,
background and net intensity values were collected. A lin-
ear and LOWESS normalization correction method was
selected in order to account for variations in fluorescence.
A two-sided t-test of feature versus background, set at a p
value of 0.05, was used to obtain a list of genes whose
log, , ratios were significant.

Validation of Gene Expression Using Quantitative PCR

Some of the genes that appeared to be differentially regu-
lated were confirmed with quantitative real-time PCR
(gRT-PCR), using probe specific TagMan gene expression
assays on the Applied Biosystems 7500 Fast Real-Time
PCR System. 100 ng of total RNA previously isolated and
used for microarray analysis was reverse transcribed using
the High Capacity cDNA Reverse Transcription kit. Subse-
quently, 1 pl from each reverse transcription reaction was
assayed in a 20 pl single-plex reaction for real-time quan-
tification with the 7500 Fast PCR System using probes
specific to those genes of interest. Each sample was run in
biological triplicate, of which 3 technical replicates were
performed. GAPDH was used as the endogenous control,
and gene expression of target genes for KO and HQK sam-
ples were quantitatively measured relative to the WT sam-
ples. Relative quantification values were determined using
the 2-22ctmethod, and expressed as fold-change over WT.

Immunoblot Analysis

Mouse skeletal muscle tissues were homogenized in lysis
buffer containing 50 mM Tris (pH 7.5), 200 mM sodium
chloride, 0.5% sodium deoxicholate, and 5 mM EDTA.
Protein concentrations were determined by the BCA pro-
tein assay (Pierce). After addition of LDS sample buffer
(Invitrogen) and sample reducing agents (Invitrogen), the
homogenates were denatured at 100°C for 10 minutes,
and the proteins were resolved on 10% NuPage Tris-Bis
Gels (Invitrogen) and blotted onto nitrocellulose mem-
branes (Invitrogen). For p53 protein detection, the mem-
brane was incubated with a monoclonal anti-p53
antibody that detects total p53 proteins (Cell Signaling)
(1:2000 diluted in 5% milk, 1x TBS, 0.1% Tween-20) at
4°C with gentle shaking overnight. For MEF2C detection,
the membrane was incubated with a rabbit polyclonal
anti-MEF2C antibody (Cell Signaling) (1:5000 diluted in
0.5% normal goat serum [Vector Laboratories], 1x TBS,
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0.1% Tween-20) at 4°C with gentle shaking overnight.
The blots were developed with the Immobilon Western
Chemiluminescent HRP substrate (Millipore) according
to the manufacturer's instructions. Skeletal muscle actin
was probed with a rabbit polyclonal antibody (Abcam)
(1:5000 diluted in 0.5% normal goat serum, 1x TBS, 0.1%
Tween-20) similarly after stripping the blots with a strip-
ping buffer containing 1.4% 2-mercaptoethanol, 2% SDS
and 62.5 mM Tris (pH 6.8). The western blots were
scanned and the protein bands were quantified with the
UN-SCAN-IT gel 6.1 software (Silk Scientific).

Accession numbers

The BMAP and Agilent microarray related data were sub-
mitted to Gene Expression Omnibus (GEO) under acces-
sion number: [GSE12576]

Results

Induction of PrPC€ Specifically in the Skeletal Muscle of
Transgenic Mice Results in a Temporally Regulated
Transcriptional Profile

The transgenic mice [Tg(HQK)] used in this study have
been described previously, in which PrPC is exclusively
expressed in skeletal muscles under the strict control of
doxycycline (Dox) and the induced over-expression of
PrPC leads to a progressive primary myopathy [7]. To
determine the temporal patterns of gene expression that
accompany the induced myopathy, we carried out micro-
array analysis of skeletal muscles from Tg(HQK) mice,
wild-type FVB mice (WT) and PrP-knockout control mice
(KO) using a 16,315-gene cDNA array constructed in our
laboratory. Skeletal muscles from the hind legs (quadri-
ceps) of the mice were collected at 0, 4, 7, 14, 30, and 60
days following administration of Dox. Three animals were
taken at each time point for each of the three mouse lines
[Tg(HQK), WT, KOJ. Temporally regulated genes in the
quadriceps of Tg(HQK) and KO, in comparison to WT,
were identified using EDGE (extraction and analysis of
differential gene expression), a significance method for
analyzing time course microarray data [27,28]. A Q value
cut-off of 0.05, and a fold change of 3 for at least one time-
point, was the criteria used for the selection of differen-
tially expressed genes. In the muscles of Dox-treated
Tg(HQK) mice, 1499 differentially expressed genes were
identified in comparison with similarly treated, age-
matched WT mice; a cluster plot of all differentially
expressed genes based on similarities in their expression
profiles is shown in Figure 1A. In contrast, only 13 genes
showed significant differential expression in the muscles
of KO mice in comparison with similarly treated, age-
matched WT mice. To verify the expression of genes iden-
tified on our cDNA array, and to sample a more complete
set of genes covering the whole mouse genome, we pur-
chased additional microarrays from Agilent technologies.
These arrays consisted of 44,000 oligonucleotide probes

http://www.biomedcentral.com/1471-2164/10/201

representing the whole mouse genome. We re-examined
the day 14 samples since the majority of the 1499 tempo-
rally deregulated genes showed differential expression at
this time point. A two-sided t-test of feature versus back-
ground, set at a p value of 0.05, was used to obtain a list
of genes whose log, , ratios were significant. This list was
in good agreement with the data from our in-house man-
ufactured cDNA array, confirming the deregulation of
almost two-thirds of genes originally identified by the
cDNA array, in addition a set of genes which were not rep-
resented by probes on our in-house cDNA arrays were
identified. In total, 1265 selected genes were annotated in
the Ingenuity Pathway Analysis (IPA) database and are
provided as Additional file 1 (up-regulated) and Addi-
tional file 2 (down-regulated). A summary of the most
common biological functions and toxicity-related path-
ways associated with these genes is shown in Figure 1B.
Gene ontology analysis revealed that up-regulated genes
were particularly enriched for genes involved in develop-
ment, cell cycle regulation, programmed cell death, lipid
metabolism and ion homeostasis (Table 1). Down-regu-
lated gene ontology categories were enriched for genes
involved in cellular energy metabolism, particularly car-
boxylic acid metabolism, protein metabolism and muscle
developmental processes (Table 2).

PrP€ Over-expression Regulates Multiple Targets with
Established Roles in Myopathy

Many of the gene expression changes identified in the
Tg(HQK) muscle are consistent with the observed pro-
gressive atrophy, which is characterized by a decrease in
myofiber size and total muscle mass accompanied by a
concomitant accumulation of lysosomes. Specific changes
included a significant down-regulation of genes coding
for the myofibrillar proteins MYH2, MYH6, MYH7, MYL2,
MYL3, and an increase in expression of the transcription
regulator MDFI (MyoD Family Inhibitor) that acts as a
negative regulator of myogenic proteins, and induction of
MyoG (myogenin), a muscle-specific transcription factor
that can induce myogenesis in a variety of cell types in tis-
sue culture. The MEF2C (Myocyte Enhancer Factor 2C)
gene was also down-regulated in Dox-induced Tg(HQK)
muscles. Immunoblot analysis showed that there was sta-
tistically significant reduction of MEF2C protein level in
the skeletal muscle from day 14 of Dox treatment, and the
reduction reached 50% after 30 days of Dox treatment
(Figure 2). MEF2C has been studied extensively in muscle
cells. It is a key regulatory transcriptional factor that plays
an essential role in the transcriptional control of muscle
development as well as remodeling of adult muscles in
response to physiologic and pathologic signals [29,30]. It
has been reported that MEF2C directly activates the
expression of a muscle specific protein kinase Srpk3 and
Srpk3-null mice exhibit widespread centronuclear myop-
athy via an unknown mechanism [31]. We speculate that
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Table I: List of genes belonging to some of the most significantly up-regulated Gene Ontology Categories

Description Gene Name

cell development

ARF6, KIF5C, PRM2, NEB, SOX9, NDN, RUNXI, FCERIG, ENAH, PRKDC, GADD45G, PURB, METRN, BIRCS5,

TRADD, LGALSI, EPHBI, TRIM35, GPXI, STMN3, E2F2, NEFL, DEDD, RHOA, JMY, MAL, DCX, CASP14,
UNCS5B, BNIPI, CD28, GDNF, ITGBIBP3, ALS2CR2, NFKBI, TIMPI, CARD10, SEMA6A, DABI, CHRNAI,
UCHLI, TNFRSFI2A, HSPAIA, MYOG, AKTISI, PIP5KIC, TRIAPI, PMAIPI, MT3, SOCS2, GADD45B, ABI2,
TNNT?2, GSK3B, SGPPI, RPS6KBI, HIPK2, IGFBP3, PERP, PPPIR13B, CDK5RI, HOOKI, EDA2R, CTFI,
EHMT?2, ITGA3, SOXI10, HIPK3, E2FI, BCL2L13, PURA, YBX2, IBRDC2, APP, BOK, TNPI, FAFI, PHLDAI,
CAMKID, CSPG4, DOCKI, FARP2, DIABLO, GDFI 1, ZFP91, PEG3, PTPRC, BAKI, RHOTI, NRAS, CDKNIA,

NAB2, DAP3

cell cycle

ANLN, CDC27, PRM2, TIMELESS, RBI, TACC3, SMARCBI, GADD45G, CDCI4A, BIRC5, INCENP, CHESI,

UHRF2, PDGFB, CGREFI, MISI2, E2F2, CDKé, PSMD?2, JMY, CITED2, SUV39H2, PPP2R3A, CD28, ALS2CR2,
PLK2, MERTK, CLASPI, CRKL, PRCI, TRIAPI, GADD45B, CPEBI, FOS, GSK3B, HIPK2, EHMT2, SPAGS,
RANBPI, E2F8, E2FI, PLEKHOI, GAK, CCRK, PURA, HDACS5, RASSF4, APP, DHX16, E2F3, THPO, MKI67,
BINI, PTPRC, RGS2, ABLI, ANAPCI, NRAS, CDKNIA, JUNB, MDM2, ITGAE

programmed cell death

ARF6, SOX9, FCERIG, PRKDC, PURB, GADD45G, BIRC5, TRADD, TRIM35, GPXI1, E2F2, NEFL, RHOA,

DEDD, JMY, MAL, CASP|4, GDNF, BNIPI, CD28, UNC5B, ALS2CR2, NFKBI, CARD 10, SEMA6A, TNFRSFI2A,
HSPAIA, AKTISI, PMAIPI, TRIAPI, GADDA45B, SGPPI, GSK3B, IGFBP3, HIPK2, PERP, CDK5RI, PPPIR13B,
EDA2R, HIPK3, E2F1, BCL2LI3, PURA, IBRDC2, APP, BOK, FAFI, PHLDAI, CAMKID, DOCKI, DIABLO,
ZFP91, PEG3, PTPRC, BAKI, RHOTI, NRAS, CDKNIA, DAP3

cellular lipid metabolic process

ISYNAI, PRKAAI, LCAT, NEB, SULT2BI, PIP5KIC, B4AGALNTI, VLDLR, FDPS, SERINC2, SGPPI, LDLR,

ADIPOR2, RDHI I, SYK, CDS2, SNCA, PRKAG2, MYOS5A, ELOVL6, HEXB, CDSI, CD81, BMPRIB,
ST6GALNACS, SOATI, FADS3, PIP5KIA, CHKB, PIGO, ELOVL3, UGCG, AYTL2, SLC37A4, AGPAT3, PBXI,
AGPAT2, SYNJI, INSIGI, PIGK, HMGCS2, PRKAB2, ACBD3, CYB5R3, PISD, SERINCI, MTMR7, HEXA

cellular ion homeostasis

CHRNAI, APP, ATOXI, CHRNG, APLP2, SV2A, CHRNB4, MT3, NDN, RYR3, PRND, ATP2A2, PTPRC, BAKI,

SLC37A4, MT4, SYPL2, ANXA7, PRNP, SLC39A5, HEXB

the down-regulated MEF2C gene expression might play a
role in the progressive central nucleus localization
observed in the skeletal muscles of Dox-treated Tg(HQK)
mice [7] through a reduction of the Srpk3 activity.

A number of lysosomal peptidases were up-regulated
including CTSS, CTSD, CTSZ, and DPEP2, coincident with
an observed accumulation of lysosomes in Tg(HQK) mice

over-expressing PrPC [7]. The gene CTSL, which codes for
a lysosomal cysteine proteinase, is commonly used as a
universal marker for muscle atrophy but was not repre-
sented on our arrays [32]. qRT-PCR revealed expression of
this gene was induced transiently following PrPC€ induc-
tion, peaking at 7 days following the onset of Dox treat-
ment and returning to the baseline by 60 days post-
induction. The genes encoding lysosomal proteins HEXA,

Table 2: List of genes belonging to some of the most significantly down-regulated Gene Ontology Categories

Description Gene Name

carboxylic acid metabolic process

NR3CI, TARSL2, AHCY, SHMT2, PTGES3, LYPLAI, IRGI, MCCCI, PRKAGI, MAT2B, CYP39AI, MCFD2,

IDH2, GLUL, IARS, PYCR2, FBP2, PLPI, ABAT, ADIPORI, LYPLA2, BCKDHA, CROT, GPD2, CAVI,

MTHFDI, SH3GLBI, ACADSB

protein metabolic process

PPP3CB, BZW2, PPP2CB, AGA, CDCI16, CHEK2, HERC2, UBE2B, PRMT7, NCKAPI, EIF4A2, CCT2, TLK2,

KLK8, PDPKI, CSEIL, OMAI, UBQLN2, SLC30A9, PRKAR2A, HATI, CAPZA2, CLKI, CPA3, LCK,
CAMK2G, CAVI, MTMI, PSMB9, HUWEI, UBE2DI, PRKRIR, FKBP8, FKBP4, ARAF, RPS6KCI, PPP2R2A,
VWEF, CCTéA, GART, EPHA7, EIF356, WWPI, DVLI, IARS, ASPH, HTRA2, RNF6, RNF8, UBE2A, MCPT4,
HS3ST5, CUL3, PCTKS3, EEF2, UBE2GI, MMPI3, UQCRC?2, PRPF4B, AP3MI, BRCC3, SH3GLBI, RPL36,
TARSL2, CDKL2, CAMKI, USP15, ULK2, BACE2, HECTDI, DNAJCI2, ITGB4BP, CRY I, RAD21, FBXLS,
DMD, MGRNI, RCHY I, IPOI I, VBPI, USPI, VPS35, YMEILI, RPL22, COPBI, LGTN, GLMN, RSLID1, RPL4,
SUV420H2, ETFI, MAP2KS, USP38, EGLNI, TBCE, CUZDI, FURIN, PAIPI, CDC25B, EIF4G2, IFNARI,

TRIM23, CAV2, PSMDé, PIGY, LAP3

muscle development

CSRP3, DMD, MYL2, TSCI, MYH7, CAV2, MTMI, CAVI, ACTCI, DVLI, ACTG2, MYH6, CACNAIS, MEF2C
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Clustering of gene expression data. A. Measurements of relative gene expression for 6 time points (after 0, 4, 7, 14, 30,
60 days of Dox treatment) in Tg(HQK) mice (HQK) and PrP knockout mice (KO). Mice were treated with 6 g Dox/kg food,
and three animals were taken at each time point as indicated. Total RNA was extracted from skeletal muscles (quadriceps)
from the hind legs and subjected to microarray analysis, yielding expression profiles of genes with normalized expression
ratios. Red and purple represent relative over-expression and under-expression, respectively, and the color intensity repre-
sents the magnitude of digression. B. Bioinformatic analysis (Ingenuity Pathways Analysis) to determine the top biological func-
tions and associated p values of the selected genes is shown. The top four categories are listed for diseases and disorders,
molecular and cellular functions, physiological system and development and function, and pathways associated with toxicity.
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MEF2C protein level is down-regulated in the skele-
tal muscles of Tg(HQK) mice treated with doxycy-
cline (Dox). Tg(HQK) mice were treated with 6 g Dox/kg
food for 0—-60 days as indicated, and three animals were
taken at each time point. Skeletal muscles (quadriceps) from
the hind legs were subjected to immunoblot analysis in three
blots. Fifteen micrograms of total proteins was loaded for
each sample. Skeletal muscle (quadriceps) sample from an
untreated wild type FVB mouse (WT) serves as the control
to normalize data from the triplicate blots. A. A representa-
tive immunoblot probed with anti-MEF2C antibody followed
by probing with an anti-actin antibody after stripping. B. Plot
of the MEF2C protein levels over increasing duration of Dox
treatment. The MEF2C protein level for each sample was
normalized against the actin level in each blot and expressed
as the ratio against the normalized MEF2C protein level in
the untreated wild type FVB mouse on the same blot. The
error bars denote standard errors calculated from the three
blots. The bars with asterisk(s) indicate a statistically signifi-
cant difference when compared to the 0 day Tg(HQK) sam-
ples. *p < 0.05; ** p < 0.001.

HEXB and LAMP1 were also up-regulated at late time
points.

Previous studies have shown that the development of
muscle atrophy in a number of models of systemic wast-
ing states (fasting, cancer cachexia, renal failure, diabetes)
and in disuse atrophy induced by denervation or spinal
cord isolation follows a common program of transcrip-
tional changes [33,34]. One of the main features of this
program is a general increase in expression of genes
involved in proteolysis including both lysosomal pro-
teases, and an ATP-dependent process requiring ubiquitin
and the proteasome. The degradation of PrP€and PrPScis
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also believed to involve the proteasome [35], and com-
promised/inhibited proteasome activity was proposed to
lead to accumulation of cytosolic PrPC that is neurotoxic
[35]; but the latter notion has been challenged [36,37].
Following induction of PrP€ we observed that the expres-
sion levels of genes involved in proteasomal protein deg-
radation were for the most part unchanged. Out of the 44
unique proteasome related genes represented on the
microarrays, only three (PSMD2, PSMD4, PSMD7) were
up-regulated and four (PSMD6, PSMD12, PSMD13 and
PSMD14) were down-regulated.

A further feature reported in a number of different models
of diseases resulting in muscle atrophy is the substantial
up-regulation of two E3 ubiquitin ligases, atrogin-1/
MAFbx (FBX032) and MuRF1 (TRIM63) [38,39], which
are generally induced early during the atrophy process.
Upon fasting, the rise in atrogin-1 expression precedes the
loss of muscle weight; conversely, deletion of either
Atrogin-1 or MuRF1 has been shown to significantly alle-
viate muscle atrophy [39]. Our microarray data did not
reveal a significant increase in Atrogin-1 expression in the
Tg(HQK) atrophy model and no probe for MuRF-1 was
present on either of our array platforms. qRT-PCR was
used to determine the expression levels of these two
genes, and a small, less than 3-fold increase in the expres-
sion of both MuRF1 and Atrogin-1 was detected following
induction of PrP¢ (Figure 3A and 3B); this is much lower
than the 10-40 fold increase generally found in other
models of muscle atrophy. In a recent study, the induction
of the FOXO1 protein (a key activator of atrophy) as well
as the fall in PGC-1 alpha and beta (transcriptional co-
repressors of Atrogin expression) were identified in
numerous types of muscle wasting [40,41]. A 3-fold
decrease of FOXO1 and no change in expression of PGC-
1 alpha and beta were detected in Dox-treated Tg(HQK)
mice. These data suggest only minor involvement of the
ubiquitin-proteasome proteolysis pathway in the
observed muscle atrophy and a program of transcriptional
changes that is not reminiscent of systemic wasting states.

Activation of p53-Mediated Signaling Pathways Following

PrPC€ Induction in Skeletal Muscle of Tg(HQK)

The dramatic transcriptional response to PrPC€ over-expres-
sion in the muscles of Tg(HQK) mice lacks key features of
the common transcriptional program indicative of several
reported forms of muscle atrophy. This includes striking
de-regulation of over 400 genes involved in cell death and
regulation of the cell cycle, which suggests a toxic effect of
the over-expressed PrP. Using the Ingenuity Pathway
Analysis (IPA) tool, we identified many pathways invoked
in response to PrPC over-expression, among which the
p53 signaling pathway scored highly with a p value of
1.27 x 10-7. Other molecular pathways that scored signif-
icantly were the related G1/S transition of the cell cycle (p
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Figure 3

Real-time PCR analysis of Atrogin-1 and MuRF1. qRT-
PCR analysis of Atrogin-1 (A) and MuRF| (B) gene expres-
sion in RNA samples from Tg(HQK) mice relative to simi-
larly treated wild-type control mice. Measurements of
relative gene expression for 4 time points (over 4-60 days)
in mice following treatment with 6 g Dox/kg food beginning
on day 0. Total RNA was extracted from skeletal muscles
(quadriceps) from the hind legs and subjected qRT-PCR anal-
ysis. Results represent the mean * s.e.m. of triplicate meas-
urements performed. * p < 0.01; ** p < 0.001.

= 1.53 x 107), mitochondrial dysfunction (p = 1.04 x 10
5) and oxidative stress response (p =4.11 x 10->) (Table 3).

The involvement of the p53 signaling pathways was of
particular interest as mounting evidence suggests that
over-expression of PrPC sensitizes cells to apoptotic stim-
uli through a p53-dependent pathway [5,20-22]. The p53
gene itself did not meet our selection criteria (a change of
3-fold or more in at least one time point) as significantly
deregulated in the microarray analysis; however qRT-PCR
showed it to be marginally up-regulated from day 7 fol-
lowing the onset of PrPC induction. This transient over-
expression was low, approximately 1.5-2.5 fold, but sta-
tistically significant in all Tg(HQK) mice tested (Figure 4).
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However, regulation of p53 is known to take place mostly
at the level of translation [42]. In accordance with this,
immunoblot analysis of the levels of total p53 protein in
the skeletal muscle (quadriceps) of Tg(HQK) mice, shown
in Figure 5A and 5B, revealed a moderate but significant
accumulation of p53 protein beginning at day 7 following
the commencement of doxycycline treatment and rising
to over 3-fold over age-matched WT controls 30-60 days
post Dox induction. Activation of p53 is kept in check by
its negative regulator MDM2 (mouse double minute 2) in
a negative feedback regulatory loop since activated p53
induces expression of MDM?2 [42]. We found that the lev-
els of MDM2 were only marginally changed at early time
points but were significantly up-regulated at the later time
points (30 and 60 days), congruent with the accumula-
tion of p53 protein (Figure 5). The moderate increase in
p53 in the muscles of Dox-treated Tg(HQK) mice is con-
sistent with the observed gradual and progressive muscle
wasting.

Deregulation of Genes Involved in p53-Dependent G, Cell
Cycle Arrest and Apoptosis

Systematic examination of the genes differentially
expressed following PrPC over expression revealed over 60
genes that were annotated, or cited in PubMed, as being
p53 responsive genes. We used the IPA tool to build a net-
work of potential regulatory interactions between the
products of these genes; the resulting network is shown in
Figure 6. The genes making up this network are primarily
involved in the regulation of the cell cycle and cell death.
A number of these are transcription factors including the
proinflammatory regulator NF-kB which has been shown
to be activated in degenerating muscle of Duchenne mus-
cular dystrophy patients and dystrophin-difficient mouse
models [43-45]. Two products of up-regulated genes
induced in Tg(HQK) muscle, CDNK1A (cyclin-dependent
kinase inhibitor, p21) and GADD45B (growth arrest and
DNA-damage inducible, beta), stand out as crucial to the
initiation of cell cycle arrest mediated by activated p53.
p53 tightly controls the expression of CDNK1A, which
mediates the p53-dependent cell cycle arrest at the G1
phase by binding to and inhibiting the activity of cyclin-
CDK?2 or cyclin-CDK4 complexes in response to a variety
of stress stimuli. Expression of CDNK1A was confirmed
by qRT-PCR to be increased by more than 20-fold over
that in control WT mice at 30 days post induction. The up-
regulation of GADDA45A, closely related in function to
GADDA45B, was also confirmed by qRT-PCR. These genes
are often coordinately expressed and can function cooper-
atively to inhibit cell growth and induce apoptosis. Other
up-regulated genes known to play a role in cell-cycle arrest
are RB1, which binds to E2F transcription factors to pre-
vent transcription of genes required for the G1 to S phase
transition, and CGREF1, which is produced in response to
stress and serves as a negative regulator of the cell cycle
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Table 3: List of genes belonging to some of the most significantly de-regulated pathways that have been implicated in toxicity-
associated biological processes as resulted by Ingenuity Pathway Analysis (up-regulated are denoted by bold type, down-regulated by

plain type)

Toxicity-Associated Process P-value Genes

P53 signaling 1.27 x 107 BBC3, BIRCS5, CI20RF5, CDKNIA, CHEK2, E2Fl, GADD45B, GADD45G, GSK3B,
HIPK2, PERP, PIK3R5, PMAIPI, PPPIRI3B, PRKDC, RBI, TP63, TP53INPI

GI1/S transition of the cell cycle  1.53 x 107 ABLI, CCNE2, CDKé, CDKNIA, E2FI, E2F2, E2F3, E2F6, GSK3B, HDACS, RBI, RBL2,
SIN3A

Mitochondrial dysfunction 1.04 x 10> AIFMI, APP, BACE2, COXé6B2, CYB5R3, GPD2, GSR, HTRA2, NDUFAFI, NDUFB5, OGDH,
PRDX3, SDHA, SDHB, SNCA, SOD2, UQCRCI, UQCRC2, UQCRFSI

Oxidative Stress 4.11 x 105 FOS, GPXI, GSR, GSTAS5, GSTM2, GSTMI, NFKB I, NFKB2, PRDX3, SOD2, STAT3

[46]. Taken together these gene expression changes indi-
cate p53-dependent G1 cell cycle arrest was induced in
Tg(HQK) muscle following induction of PrPC expression.

Following cell cycle arrest, cells either recover or undergo
p53-mediated apoptosis due to transcriptional activation
of a number of pro-apoptotic genes. Key transducers of
apoptosis include PMAIP1 (phorbol-12-myristate-13-ace-
tate-induced protein 1 or Noxa) [47,48] and BBC3 (BCL2
binding component 3 or PUMA) [49,50]. Both were sig-
nificantly up-regulated based on our microarray analysis.
PMAIP1 induces the expression of other death effectors
including BAK1 [51,52], which was also significantly
induced in Dox-treated Tg(HQK) muscles. Deregulation
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Figure 4

Real-time PCR analysis of mdm2 and p53. qRT-PCR
analysis of mdm2 (grey) and p53 (black) gene expression in
RNA samples from Tg(HQK) PrP over-expressing mice rela-
tive to similarly treated wild-type control mice. Measure-
ments of relative gene expression for 5 time points (over 4—
60 days) in mice following treatment with 6 g Dox/kg food.
Total RNA was extracted from skeletal muscles (quadriceps)
from the hind legs and subjected qRT-PCR analysis. Results
represent the mean * s.e.m. of triplicate measurements per-
formed. ** p < 0.01; *** p < 0.001.

of other apoptosis effector genes includes induction of the
pro-death genes BOKI and the down-regulation of MCL1,
a pro-survival BCL2 homologue. Numerous studies have
identified the pro-apoptotic regulator BAX to be a major
mediator of p53 induced apoptosis [53]. BAX was not
identified as up-regulated by our microarray analysis
because of the high cut-off value (> = 3-fold), but qRT-
PCR revealed a modest up-regulation of the BAX gene
(1.5-3.0 fold) over time following PrP over-expression.
Similar to p53, TP73L (p63) can mediate apoptosis and
was also found to be induced in atrophic muscles of
Tg(HQK) mice. Less is known about the regulatory path-
ways triggered by p63 and its transcriptional targets have
not been fully characterized [54-57]. Moreover, both the
p53 apoptosis effector gene PERP and the p53-inducible
ubiquitin ligase p53RFP (RNF144B) were significantly
induced in the Tg(HQK) muscles as well. PERP is a poten-
tial marker of p53 driven apoptosis since it has been
found to be induced in p53-driven apoptotic cells but not
in p53-dependent G1 arrested cells and p53RFP has also
been shown to be involved in switching a cell from p53-
mediated growth arrest to apoptosis [58,59].

These data indicate that not only do muscle cells of Dox-
treated Tg(HQK) mice undergo p53-dependent cell cycle
arrest, but at least in some instances they go on to undergo
apoptosis, which strongly suggests that p53-regulated pro-
apoptotic pathways play an important role in PrP-medi-
ated myopathy.

Discussion

We have previously described the generation of the
Tg(HQK) transgenic mice, in which Dox-induced over-
expression of PrPC specifically in the skeletal muscles
causes a primary myopathy that is correlated with accu-
mulation of an N-terminal truncated PrP C1 fragment [6].
The aim of this study was to determine the molecular
basis for the PrP-mediated myopathy by microarray anal-
ysis. The ultimate goals are to fully understand the
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Total p53 protein level is up-regulated in the skeletal
muscles of Tg(HQK) mice treated with doxycycline.
Tg(HQK) mice were treated with 6 g Dox/kg food for 0—-60
days as indicated, and three animals were taken at each time
point. Skeletal muscles (quadriceps) from the hind legs were
subjected to immunoblot analysis in three blots. Twenty
micrograms of total proteins was loaded for each sample.
Skeletal muscle (quadriceps) sample from an untreated wild
type FVB mouse (WT) serves as the control to normalize
data from the triplicate blots. A. A representative immunob-
lot probed with anti-p53 antibody followed by probing with
an anti-actin antibody after stripping. B. Plot of the total p53
protein levels over increasing duration of Dox treatment.
The p53 protein level for each sample was normalized against
the actin level in each blot and expressed as the ratio against
the normalized total p53 protein level in the untreated wild
type FVB mouse on the same blot. The error bars denote
standard errors calculated from the three blots. The bars
with asterisk(s) indicate a statistically significant difference
when compared to the 0 day Tg(HQK) samples. *p < 0.05; **
p <0.01;** p < 0.00I.

detailed molecular pathways of PrP-mediated myopathy,
so that we can better understand the role of PrP in both
normal and diseased muscles and provide some clues on
the pathogenic mechanism of prion diseases. Utilizing
two DNA microarrays, we identified more than 1000
genes that were temporally deregulated in a specific and
highly consistent manner following induction of PrP¢
over-expression in the muscles of Tg(HQK) mice and the
subsequent development of myopathy. The transcrip-
tional profiles in the muscles of Dox-treated Tg(HQK)
mice strongly implicate toxicity-induced pro-apoptotic
pathways in PrP-mediated myopathy, and they are quite

http://www.biomedcentral.com/1471-2164/10/201

different from the changes previously described in sys-
temic, disuse, and denervation muscle atrophy.

Interestingly, the transcription factor MEF2C was found to
be down-regulated at both the mRNA and protein levels
in PrPC-mediated myopathy. MEF2C is expressed specifi-
cally in muscle and brain, where it is a target for signaling
pathways involving calcium [60]. MEF2C regulates the
expression of a majority of muscle-specific genes, and
interacts with members of the MyoD family of proteins to
activate muscle differentiation [29]. Calcium signaling
was one of the pathways significantly induced in Dox-
treated Tg(HQK) mouse muscles as evidenced by a very
small p value of 8.75 x 10°. The PrPC protein has itself
been shown to play a role in Ca2* homeostasis [61-63]
and it is possible that over-expression of PrPC results in
perturbations in Ca2+signaling, which in turn modulates
the activity and/or expression of MEF2C. As calcium regu-
lation has also been shown to be altered during prion-
induced neurodegeneration, this finding potentially links
the molecular changes occurring in Tg(HQK) myopathy
to the pathobiology of prion diseases.

The most striking finding is the strong and statistically
highly significant induction of a p53-regulated pro-apop-
totic network in Tg(HQK) mouse muscles following
induction of PrPC. Central to this network are induction
of p53 protein expression and strong induction of genes
responsible for arresting the cell cycle, as well as a number
of p53-regulated pro-apoptotic (up-regulated) and anti-
apoptotic (down-regulated) genes. p53 is a critical tumor
suppressor and transcription factor, and it has been linked
to cell death in the central nervous system in a number of
disorders including most notably neurodegenerative dis-
orders such as Alzheimer's disease and prion diseases [64-
66]. The expression of p53 protein has been found to rap-
idly increase in neurons in response to a range of insults
including DNA damage, oxidative stress, metabolic com-
promise, and cellular calcium overload. Over-expression
of PrP€ has been shown to enhance staurosporine-
induced toxicity and activation of caspase-3 in the
HEK293 kidney cell line [67] and increase sensitivity to
apoptotic stimuli via p53-dependent pathways in TSM1
neuronal cell line [20]. Conversely neurons devoid of
PrPC expression were reported to display lower respon-
siveness to staurosporine, also via p53-dependent path-
ways [5].

One of the main pro-apoptotic effectors of p53 is BAX,
which plays a major role in regulating neuronal death in
the brain in response to a number of stimuli [68,69]. The
role of BAX in prion-induced neurodegeneration is not
well understood; both BAX-dependent and BAX-inde-
pendent mechanisms appear to underlie the action of
neurotoxic forms of prion proteins [70]. However, in the
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Figure 6

p53-regulated pathway analysis using the Ingenuity Pathway Knowledge Base (IPKB). This figure illustrates poten-
tial functional relationships of TP53 responsive genes de-regulated in the muscles of Dox-treated Tg(HQK) mice. Direct (solid
lines) and indirect (dashed lines) interactions reported for these genes (grey shading) in the IPKB database. Color shading cor-
responds to the type of de-regulation: red for up-regulated genes, and green for down-regulated genes. The shape of the node
indicates the major function of the protein (see key), and a line denotes binding of the products of the two genes while a line
with an arrow denotes 'acts on'.

muscle of Dox-treated Tg(HQK) mice, only a marginal
increase in BAX expression was observed whereas signifi-
cant over-expression of other p53 regulated pro-apoptotic
proteins, including BAK1, BBC3 and PMAIP1, and MCL1,
were detected, suggesting that PrP¢-mediated myopathy

observed in this model may depend on Bax-independent
pathways that involve BAK1, BBC3, PMAIP1, and MCL1.

We propose a working model to explain the mechanism
of PrP-mediated myopathy (Figure 7). Dox-induced over-
expression of PrPCin the muscles leads to accumulation of
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Figure 7

Mechanism of PrP-mediated myopathy. Accumulation
of an N-terminal truncated PrP Cl fragment in muscle acti-
vates p53 resulting in the induction of p53-regulated pro-
apoptotic networks and myopathic changes. PrPC over-
expression also results in down-regulation of MEF2C, which
may be partially responsible for the progressive central nuclei
localization observed in the muscles of Dox-treated
Tg(HQK) mice.

the N-terminal truncated PrP C1 fragment, which in turn
activates p53, thereby inducing p53-regulated pro-apop-
totic networks and myopathic changes.

PrP accumulation has been observed in the skeletal mus-
cles of patients with inclusion-body myositis, polymyosi-
tis, dermatomyositis, and neurogenic muscle atrophy, and
we have previously reported that over-expression of wild
type PrP in the skeletal muscles is sufficient to cause
myopathy in the Tg(HQK) mice [[7] and references
therein], which suggest that muscular accumulation of
PrP may contribute to the pathogenesis of some human
muscle diseases. Our finding that p53-related pathways
play a major role in the myopathy in Tg(HQK) mice sug-
gests that p53 and p53-related pathways may also be crit-
ical to the pathology of some human muscle disease
patients and p53 and p53-related pathways may serve as
potential targets for therapeutics development against
these muscle diseases.

As we have previously reported [7], the preferential accu-
mulation of the truncated PrP C1 fragment, which is gen-
erated through endoproteolysis of PrP¢ during normal
protein processing in the brain [8-12] and the muscle [7],
was closely correlated with myopathic changes in Dox-
treated Tg(HQK) mice. We hypothesize that it is this C1
fragment that is the toxic species in the Tg(HQK) model,
which is supported by recent reports showing that over-
expression of the C1 fragment increases cell death and cas-
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pase-3 activity through a p53-dependent mechanism
[20,71]. Truncation of PrP€ occurs between residues 110
and 111 within a region shown to play a pivotal role in its
conformational transition to PrPSc. So a better under-
standing of modulation of this cleavage event and the
mechanism for the truncated PrP fragments as mediators
of a toxic cellular response may be very important in dis-
secting prion disease pathogenesis.

Conclusion

In summary, we used microarrays to determine the molec-
ular mechanism that underlies the myopathy observed in
PrP over-expressing mice. The transcriptional changes
induced in the Dox-treated Tg(HQK) mice are quite differ-
ent from the changes previously described in systemic dis-
eases and disuse and denervation atrophy. Significantly
we found that the p53 protein and p53-regulated pro-
apoptotic pathways are highly activated in the muscles of
doxycycline-treated Tg(HQK) mice, correlating well with
the observed myopathic changes. To our best knowledge,
this is the first in vivo evidence that directly links p53 to a
wild type PrP-mediated disease. We hypothesize that it is
the preferentially accumulated truncated C1 fragment in
the muscles of doxycycline-treated Tg(HQK) mice that
activates the p53 pathway, resulting in the primary myop-
athy. This is consistent with recent reports showing that
over-expression of the C1 fragment increase cell death and
caspase-3 activity through a p53-dependent mechanism
in cell culture models.

Dissecting how PrP regulates the p53 pathways may help
understand PrP-mediated pathogenesis in both muscle
diseases and prion diseases. Neuronal loss, a salient fea-
ture of prion diseases, has been reported to be due to neu-
ronal apoptosis in prion-affected humans and animals
[72-75]. p53 has been shown to be a critical player in PrP
or PrP fragments-mediated cytotoxicity in neurons [5,20-
22]. Therefore, our finding that p53 plays a major role in
PrP-mediated myopathy and our future follow-up studies
on the detailed molecular mechanisms of how PrP over-
expression leads to p53 activation in the muscles, may
also provide some clues on the molecular mechanism of
prion pathogenesis in the brain.
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