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Abstract

Background: MicroRNAs (miRNAs) are a new class of small RNAs of approximately 22
nucleotides in length that control eukaryotic gene expression by fine tuning mRNA translation.
They regulate a wide variety of biological processes, namely developmental timing, cell
differentiation, cell proliferation, immune response and infection. For this reason, their
identification is essential to understand eukaryotic biology. Their small size, low abundance and high
instability complicated early identification, however cloning/Sanger sequencing and new generation
genome sequencing approaches overcame most technical hurdles and are being used for rapid
miRNA identification in many eukaryotes.

Results: We have applied 454 DNA pyrosequencing technology to miRNA discovery in zebrafish
(Danio rerio). For this, a series of cDNA libraries were prepared from miRNA:s isolated at different
embryonic time points and from fully developed organs. Each cDNA library was tagged with specific
sequences and was sequenced using the Roche FLX genome sequencer. This approach retrieved
90% of the 192 miRNAs previously identified by cloning/Sanger sequencing and bioinformatics.
Twenty five novel miRNAs were predicted, 107 miRNA star sequences and also 4| candidate
miRNA targets were identified. A miRNA expression profile built on the basis of pyrosequencing
read numbers showed high expression of most miRNAs throughout zebrafish development and
identified tissue specific miRNAs.

Conclusion: This study increases the number of zebrafish miRNAs from 192 to 217 and
demonstrates that a single DNA mini-chip pyrosequencing run is effective in miRNA identification
in zebrafish. This methodology also produced sufficient information to elucidate miRNA expression
patterns during development and in differentiated organs. Moreover, some zebrafish miRNA star
sequences were more abundant than their corresponding miRNAs, suggesting a functional role for
the former in gene expression control in this vertebrate model organism.
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Background

MicroRNAs (miRNAs) are small RNAs that regulate
eukaryotic gene expression at the post-transcriptional
level [1]. They are transcribed as long precursor RNA mol-
ecules (pri-miRNAs) and are successively processed by
two key RNAses, namely Drosha and Dicer, into their
mature forms of ~22 nucleotides [2]. These small RNAs
regulate gene expression by binding to target sites in the 3'
untranslated region of mRNAs (3'UTR) [3,4]. Recognition
of the 3'UTR by miRNAs is mediated through comple-
mentary hybridization between nucleotides 2-8, num-
bered from the 5' end (seed sequences) of the small RNAs,
and complementary sequences present in the 3'UTRs of
mRNAs [3,5,6]. Perfect or nearly perfect complementari-
ties between miRNAs and their 3'UTRs induce mRNA
cleavage by the RNA-induced silencing complex (RISC),
whereas imperfect base matching induces translational
silencing through various molecular mechanisms [7],
namely inhibition of translation initiation and activation
of mRNA storage in P-bodies and/or stress granules [1].
Interestingly, miRNAs also direct rapid deadenylation of
target mRNAs, leading to decapping and rapid mRNA
decay by the combined activities of the exosome (3' to 5'
degradation) and the exoribonuclease Xrn1 (5' to 3'degra-
dation) [7,8].

Since the discovery of the first miRNA in 1993 in C. ele-
gans [9], thousands of mature miRNAs have been uncov-
ered in several species, suggesting that they appeared early
in eukaryotic evolution and play fundamental roles in
gene expression control. Indeed, miRNAs have been iden-
tified using a combination of bioinformatics, cloning and
Sanger sequencing, and lately through new generation
sequencing methods, namely the Roche 454 Pyrose-
quencer, the Solexa/Illumina Genome Analyzer and the
Applied Biosystems SOLiD™ Sequencer, in a wide range of
eukaryotes, namely plants [10-13], mammals [14-16],
birds [17,18], fish [19-21], amphibians [22], worms [23],
flies [24], in the unicellular green algae Chlamydomonas
reinhardtii [25] and in viruses [26]. These small RNAs were
originally thought to regulate developmental processes
only [27-29], but recent studies show that they regulate a
variety of other pivotal biological processes, namely dif-
ferentiation [30], immune response [31], infection
[32,33] and cancer [34,35]. The exact mechanism by
which they regulate such a variety of molecular processes
is not yet fully understood, however 2-3% of the human
genes encode miRNAs and approximately 30% of human
mRNAs contain miRNA binding sites in their 3'UTRs, sug-
gesting major roles for these small RNAs in eukaryotic
gene regulation [36].

The quantification of miRNA expression has been techni-
cally challenging and rather expensive due to their small
size, low abundance, low stability and contamination
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with other cellular RNAs and mRNA fragments. Recently,
the above mentioned parallel DNA sequencing methodol-
ogies have been successfully applied to both miRNA iden-
tification and quantification [11,14,16,37]. The
enormous sequencing power of these technologies has
overcome most of the technical hurdles associated to
miRNA identification and increased dramatically the
number of miRNAs deposited in public databases [11].
These new methodologies are also promoting large scale
initiatives to identify most eukaryotic miRNAs, under-
stand their evolution and identify target genes and gene
networks regulated by them.

In zebrafish (ZF), 337 miRNA genes encode 192 different
mature miRNAs [38]. However, deep DNA sequencing
has not yet been applied to this model organism and one
is not sure whether those miRNAs represent the full ZF
miRNA population [19,20]. As in other eukaryotes, recent
ZF studies highlighted critical miRNA roles in gene expres-
sion control since defective miRNA processing arrested
development [39,40]. Also, a specific subset of miRNAs is
required for brain morphogenesis in ZF embryos, but not
for cell fate determination or axis formation [41]. In other
words, miRNAs play an important role in ZF organogene-
sis and their expression at specific time points is relevant
to organ formation and differentiation. Since identifica-
tion of the complete set of miRNAs is fundamental to fully
understand these and other fundamental biological proc-
esses, we have used high throughput 454 DNA pyrose-
quencing technologies to fully characterize the ZF miRNA
population. This study increased the total number of ZF
miRNAs from 192 to 217 and identified several star
sequences (miRNA*, complementary to miRNA
sequences). In addition, miRNAs predicted by homology
were retrieved and novel miRNA genes encoding known
miRNAs were identified.

Results

454 DNA sequencing of zebrafish miRNAs

In order to increase coverage of ZF miRNAs by 454 pyro-
sequencing, small RNA libraries were prepared from ZF
samples collected at various developmental time points,
i.e., 24 hours post-fertilization (hpf), 72 hpf, 96 hpf, 5
days post-fertilization (dpf), 45 dpf, and from young
adult fish, adult brain, eyes, gills, muscle, heart, skin, fins
and gut/liver (Figure 1). For this, total RNA from each
sample was isolated with TRIzol® and fractionated by
PAGE. Small RNAs ranging from 15 to 30 nt in size were
isolated from gels and subjected to two successive liga-
tions, i.e., a first ligation with a 3' adapter was followed by
a second ligation with a 5' adapter (see Methods). First
strand ¢cDNA synthesis was then carried out and PCR-
amplified using adapter specific primers. Specific tags for
each ¢DNA library corresponding to different develop-
mental stages and tissues were incorporated into the PCR
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Outline of the experimental protocol used for prepa-
ration of small RNA libraries. RNA was isolated from ZF
developmental samples and from adult tissues using TRIzol®
and fractionated on 12.5% denaturing PAGE. Small RNAs
were purified from those gels and then ligated to a 3' adapter
(AMP-5'p-5'p/CTGTAGGCACCATCAATdi-deoxyC- 3') and
to a 5' linker (see Methods). cDNA was prepared and ampli-
fied using 20 PCR cycles. PCR products were subjected to
clonal amplification by emulsion PCR and then pyrose-
quenced using a 454 genome sequencer.

primers. PCR products of ~100 nt in length were then
purified from a 10% denaturing PAGE containing 7 M
urea. The 14 PCR products, corresponding to different
developmental stages and to different mature tissues were
sequenced using massively parallel DNA pyrosequencing.
Raw data filtration was performed using specialist soft-
ware incorporated into the FLX Genome Sequencer
(Roche) [42]. The above mentioned sequencing tags and
the sequencing adapters were identified computationally.
Reads with recognizable adapters were retrieved, adapter
sequences were then removed, and those reads with size >
15 nt were analysed using miRDeep software [43]. The lat-
ter scores the compatibility of the position and frequency
of the RNA sequence with the secondary structure of the
miRNA precursor and identifies new, conserved and non-
conserved miRNAs with high confidence. miRDeep also
estimates false positives by random permutation of the
signature and structure-pairings in the input dataset to test
the hypothesis that the structure (hairpin) of true miRNAs
is recognized by Dicer and causes the signature. In our
study, the prediction of false positives was below 8%.
Since miRDeep is a highly stringent algorithm some miR-
NAs are likely to escape detection. To minimize this prob-
lem the false negative rate was also calculated. For this,
our sequencing data set was subjected to a megaBlast
search using known mature miRNAs present in miRBase
12.0. Perfect alignments were considered as true positives
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and the retrieved miRNA list was then compared with the
list of sequences predicted by miRDeep. False negatives
were considered when miRNAs were present in the blast
analysis and missed in the miRDeep prediction. This esti-
mated ~19% of false negatives in the miRDeep prediction
list. For this reason, the search for novel and known miR-
NAs in our ZF samples was complemented by a megaBlast
alignment between our dataset and mature sequences
deposited in miRBase 12.0 and also the novel miRNA
transcripts predicted by Ensembl and by Thatcher et al
[44] (see Additional File 1).

A total of 67,044 high quality reads were obtained from
cDNA libraries using pyrosequencing mini-chips (max nr
reads = 100,000). From these, 63,637 had a recognizable
TAG, 61,672 (size > 15 nt) and were retrieved after primer
trimming, 46,904 matched the ZF genome using megaB-
last and 36,989 corresponded to miRNA reads (Table 1).
The majority of miRNA reads (~98%) matched known or
predicted ZF miRNAs and less than 2% corresponded to
putative novel miRNAs. This approach identified a total of
198 miRNAs: 173 of the known 192 mature miRNAs
which are annotated in miRBase 12.0 plus 25 novel miR-
NAs. The identified miRNAs covered 90% of the known
ZF miRNAs (Figure 2A; Table 2; see Additional File 2), pre-
viously identified by cloning and Sanger sequencing or
predicted by bioinformatics (Table 3). The number of
microRNA reads predicted by bioinformatics algorithms
was rather low (average of 37) suggesting that the inability
to detect and identify them by cloning and Sanger
sequencing may be related to their low abundance.

Reads matching the ZF genome (90%) were between 19 to
22 nt in length which corresponded to the mean length of
mature miRNAs (Figure 2B). This high percentage of true
miRNAs showed that inefficient amplification, sequenc-
ing or trimming errors did not affect our experiment [45].
Population statistics [46,47] was then applied to calculate
the population of miRNAs expected in our dataset. Repre-
sentativeness assessed through a rarefaction analysis [48]
of the ZF miRNA population estimated a population size
of 198 different miRNAs (Figure 3A). The homogeneity of
the ZF miRNA population was evaluated by the Chaol
diversity estimator [49], which indicated the maximum
number of miRNAs expected for the pyrosequencing data-
set. The Chao1l reached a stable mean value of 207, with
lower and upper bounds of 200.37 and 229.66, respec-
tively, for 95% confidence interval. This was in good
agreement with the 217 ZF miRNAs identified: 198 miR-
NAs identified by the 454 pyrosequencing approach (173
known and 25 new) plus 19 miRNAs previously identified
by cloning and Sanger sequencing (not identified in our
experiment). In other words, the total number of identi-
fied miRNAs is near the upper limit of expected ZF miR-
NAs in the samples studied (Figure 3B). However, one
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cannot discard the hypothesis that some novel miRNAs
may still be uncovered in tissues that were not analyzed in
this study.

Since 14,768 pyrosequencing reads did not match the ZF
genome, we repeated the alignment using the mapping
algorithm SHRiMP, which allows for introduction of
insertions/deletions in the alignment. In this case, 87%
(13,046 reads) of those reads produced matches in the ZF
genome, however novel miRNAs were not identified. This
analysis revealed some sequence variation in known miR-
NAs which may be related to sequencing errors or eventu-
ally to post-transcriptional miRNA editing [50]. For
example, 14 reads of the dre-miR-124 family had a (C->A)
substitution at position 20, but the low number of reads
of each sequence did not permit unequivocal differentia-
tion between miRNA editing and sequencing errors. This
should be investigated further in a new study.

miRNA expression patterns in zebrafish

The 24 hpf sample, corresponding to the developmental
sample series, yielded low number of sequencing reads
corresponding to 13 different miRNAs. The number of
reads increased dramatically at late stages of development
and 72 hpf sample produced the highest number of reads
and the highest miRNA diversity (149 unique miRNAs)
(see Additional File 3). At 96 hpf lower number of reads
and lower miRNA diversity was observed. As ZF reached
the adult stage, the number of reads and the number of
different miRNAs raised again, which was consistent with
previous studies [40,51]. This suggested that miRNAs play
an important role in differentiation and maintenance of
tissue identity, rather than in tissue fate establishment
[40]. In adult fish, the brain sample produced the highest
number of reads and the highest miRNA diversity (160
unique miRNAs). The gut/liver showed lower miRNA
diversity (55 unique miRNAs) and the skin produced the
lowest number of reads corresponding to 58 different
miRNAs (see Additional File 3).
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Although the number of reads can be used to estimate
miRNA abundance (expression profile) the variation in
the total number of reads between samples would lead to
erroneous interpretation of miRNA expression patterns by
direct comparison of absolute read numbers. To over-
come this limitation, the number of reads per sample was
normalized, as described by Chen and colleagues [19],
and expression of some miRNAs was validated by quanti-
tative Real-Time PCR (qRT-PCR). After this, a global
miRNA expression profile was generated for ZF (Figure 4).
A large set of miRNAs were expressed in more than one tis-
sue while some were mainly expressed during develop-
ment (Figure 4A). Others were tissue specific or showed
strong expression in specific tissues (Figure 4B). For exam-
ple, the miR-430 family, dre-miR-135c and dre-miR-9
were mainly expressed during development, but the miR-
430 family was absent in adult fish, while dre-miR-135c
and dre-miR-9 showed decreased expression in mature
organs with exception of the brain.

Of the 173 known miRNAs, which were also sequenced in
this study, some were highly represented in all samples.
For example, dre-miR-124 was the most abundant miRNA
during both development and in adult ZF. Its expression
was slightly higher during late stages of development and
highly increased in the central nervous system (both brain
and eyes), as confirmed by qRT-PCR (Figure 5). This
miRNA alone accounted for ~48% of the total number of
sequencing reads. At 24 hpf, when a significant part of the
brain development was completed, dre-miR-124 repre-
sented 42% of the miRNA pool. These values increased to
80% at 5 dpf and also in mature tissues where it repre-
sented 80% of brain and 54% of eye miRNAs [19]. Mem-
bers of the let-7 family and dre-miR-21 showed high levels
of expression in the majority of tissues, e.g., dre-miR-21
yielded 21% of muscle miRNAs. Finally, some miRNAs
were enriched in development and in a particular adult
tissue; dre-miR-203a and dre-miR-203b were expressed
early in development and maintained high level of expres-

Table I: Distribution of microRNA reads in developmental and tissue samples.

Development stages Mature organs Total

Nr reads (perfect match to the genome) 20514 26390 46904
Nr non-miRNA reads 2610 7305 9915

Nr miRNA reads 17904 19085 36989

Nr known miRNA reads 17682 18984 36666
Nr putative new miRNA reads 222 101 323

Approximately 90% of the pyrosequencing reads matching the ZF genome corresponded to mature miRNA reads, 2% were novel miRNAs. The
distribution of pyrosequencing reads was similar in developmental (87%) and adult tissue (78%) samples.
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Table 2: Total number of miRNAs and miRNA genes identified
in this study.

Number of known miRNAs detected 173
Number of new miRNAs identified in this study 25
Total number of miRNAs identified in this study 198
Number of known predicted miRNA genes detected 265
Number of novel genes identified in this study 55
Total of genes indentified in this study 320

DNA pyrosequencing identified 198 miRNAs. |73 were known from
cloning and Sanger sequencing and 25 were novel miRNAs. These
mature miRNAs are encoded by 320 ZF genes.

sion in gills and skin. The heart showed accumulation of
dre-miR-101a, dre-miR-130b, dre-miR-130c, dre-miR-
221 and dre-miR-499, while dre-miR-1 and dre-miR-133a
expression was detected in both muscle and heart. The
expression of miR-133a was confirmed by qRT-PCR and
its relative concentration was higher in muscle than in
other tissues (Figure 5). Dre-miR-133b and dre-miR-133c¢
were mainly found in muscle and were not detected in the
heart, while dre-miR-103 and dre-miR-122 were specific
of gut/liver and dre-miR-150 and dre-miR-738 were
enriched in gills and skin.

Novel zebrafish miRNAs are mostly non-conserved

A large set of both conserved and non-conserved miRNAs
were previously identified in ZF by cloning/Sanger
sequencing [19,20], using miRNA c¢DNA libraries pre-
pared mainly from brain and from few developmental
stages, and also using bioinformatics [44]. Our approach
of isolating and preparing separated miRNA cDNA librar-
ies from 24 hpf, 72 hpf, 96 hpf, 5 dpf, 45 dpf, total adult
and from brain, eyes, heart, gills, muscle, fins, skin and
gut/liver resulted in identification of 25 new miRNAs (see
Additional File 4), using the miRDeep software package in
combination with our data pipeline analysis (see Addi-
tional File 1). The miRDeep algorithm performed strin-
gent searches based on the miRNA biogenesis model [43]
and produced information on miRNA conservation, ther-

Table 3: miRNAs predicted by homology and experimentally
validated.

miRNA miRNA* present Read number

Dre-let-7j No 9
Dre-miR-103 No 45
Dre-miR-107 Yes 32
Dre-miR-135b No 5
Dre-miR-152 No 46
Dre-miR-365 Yes 76
Dre-miR-429 No 35
Dre-miR-455 Yes 41

Some of the known miRNA:s identified in this study were predicted
previously by comparative genomics using homology and similarity
searches.
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modynamic stability, ability to form a hairpin with the
shape and sequence of the pre-miRNA molecule, number
of sequences that matched mature miRNA sequences and
number of sequences that matched star sequences. This
algorithm alone was able to detect 153 known and 23
novel miRNAs. Our data pipeline (see Additional File 1)
identified 20 known miRNAs missed by miRDeep in our
samples, resulting in a total of 173 known miRNAs iden-
tified. The extension of this analysis to sequences pre-
dicted by Ensembl and by Thatcher et al [44] permitted
detection of two additional novel miRNAs, raising the
prediction number to 25.

The 25 novel miRNAs belong to 16 novel candidate
miRNA families (16 novel miRNAs in total) and to 8 con-
served miRNA families, according to our conservation cri-
teria based in previous studies [20,52] (> 90% identity for
the mature miRNA and > 60% identity for the precursor).
The conservation of the novel miRNAs was confirmed by
blast analysis against miRBase 12.0 and Ensembl data-
base. The novel conserved miRNAs identified also showed
100% identity in the seed sequence between nucleotides
2 and 8. This criterion is largely used when assessing
miRNA conservation [52,53], simultaneously with the
mature and precursor identity. Interestingly, the con-
served novel miRNAs retrieved by miRDeep, namely
miR_4 (miR-429 family), miR_5 (miR-429 family),
miR_6 (miR-1788 family), miR_11 (miR-196 family),
miR_15 (miR-196 family), miR_16 (miR-103 family) and
miR_21 (miR-222 family) were also predicted as novel ZF
miRNAs by Ensembl algorithms (Table 4). miR_17 (miR-
455 family), and miR_25 (miR-126 family), although not
retrieved by miRDeep, were considered putative novel
miRNAs since they were also predicted by Ensembl algo-
rithms after applying our complementary analysis. Most
of these novel miRNAs were detected throughout devel-
opment and in adult tissues indicating that they may be
involved in differentiation or maintenance of tissue iden-
tity [40]. Nine of the novel miRNAs started with uridine
(U), which is characteristic of the first nucleotide position
of mature miRNAs (see Additional File 4).

Star sequences were also identified for at least five of the
novel miRNAs, supporting the authenticity of the corre-
sponding miRNAs, as their detection is an important cri-
terion for miRNA validation (Figure 6). Such star
sequences are small RNAs complementary to mature miR-
NAs, which are produced during pre-miRNA processing,
but are not loaded into the RISC complex and are
degraded [1]. Indeed, star sequences were not identified
for 20 novel low abundance miRNAs, most likely due to
their rapid turnover. Most of the new miRNA genes were
intergenic rather than intronic, however the novel highly
expressed miR_8 was non-conserved and intronic (see
Additional File 4). This miRNA was found within the cod-
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A) Frequency of miRNAs sequenced. The number of
reads of each miRNA is shown. The contribution of each
miRNA to the total number of reads was variable and a small
number of miRNAs generated approximately half of the total
number of reads. B) Size distribution of sequenced miRNAs.
The length of reads matching the ZF genome ranged from 15
to 25 nucleotides. Most miRNA reads had between 19-22 nt
in length, thus confirming the high quality of the small RNA
libraries used in the pyrosequencing run.

ing region of the ANK1 gene, which codes for an intracel-
lular protein required for biogenesis and maintenance of
membrane domains in both excitable and non-excitable
cells in diverse tissues, namely erythrocyte, kidney, lung
and brain [54]. Some of the novel miRNAs were encoded
by more than one gene. For example, miR_2 was encoded
by 4 different genes and miR_10, miR_12, miR_18 and
miR_22 were encoded by 2 different genes, as determined
by miRDeep.

The expression of a conserved miRNA (miR_4), a non-
conserved miRNA for which the star sequence was also
detected (miR_8) and a non-conserved miRNA for which
the star sequence was not detected (miR_9), was validated
by qRT-PCR (Figure 5B). As above, there was strong corre-
lation between qRT-PCR and 454 pyrosequencing data.
Indeed, miR_8 displayed the highest number of pyrose-
quencing reads and had higher relative abundance in the
qRT-PCR analysis. Also, miR_4 and miR_9 had similar
levels of expression, but lower than miR_8.

Target prediction for novel miRNAs

The miRNA targets can be predicted computationally with
high confidence for conserved miRNAs, but such predic-
tions remain challenging for non-conserved miRNAs due
to restrictions imposed by the search algorithms used in
the target prediction databases [55]. For the non-con-
served miRNAs only the more extensively paired interac-
tions can be predicted with reasonable confidence. In
order to minimize noise (false predictions) in the predic-
tion of targets, stringent criteria similar to those described
by Sunkar and colleagues [11] were used. This was based
on blast searches for antisense hits with less than 6 mis-
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matches, with perfect seed match and thermodynamic sta-
bility using the RNA HYBRID software. Forty two putative
gene targets of the 16 newly identified miRNAs, which
were mainly involved in binding nucleotides, proteins or
ions or had catalytic activity, were identified (see Addi-
tional File 5). The predominant biological functions of
these predicted target genes were cellular processes related
to metabolism and signal transduction and developmen-
tal processes, including embryonic patterning, vasculo-
genesis and neuron differentiation. Most miRNAs with
predicted targets involved in developmental processes
were detected in cDNA libraries prepared from miRNA
samples collected during embryonic development. For
example, miR_7 was detected at 5 dpf, miR_8 was
detected at 72 hpf, 96 hpf and 5 dpf; miR_9 and miR_10
were both detected at 72 hpf and 96 hpf; miR_16 was
detected at 72 hpf and 5 dpf. The MELK gene which is
found in gills and is involved in erythrocyte development
was predicted to be targeted by miRNA_14 raising the
hypothesis that miR_14 could be involved in erythrocyte
development [56]. Other possible targets encoded hypo-
thetical proteins and, for this reason, were not included in
our analysis. This approach was unable to identify candi-
date targets for some of the novel miRNAs, a result that
may be explained by the high stringency of the prediction
algorithm because targets of conserved miR_4 and
miR_11 were also missed. Alternatively, some of these low
abundance non-conserved miRNAs may have appeared
recently and do not yet have targets, or misannotation or
incomplete annotation of the ZF genome may have pre-
vented identification of such targets.

Star sequences of zebrafish microRNAs

Star sequences for 50% of the miRNAs, both known and
novel, were also detected and identified (see Additional
File 2). This corresponded to 102 star sequences comple-
mentary to known miRNAs. Of these, 42 were sequenced
previously [19,20] or registered in miRBase and 5 were
complementary to the novel miRNAs. As expected, the
majority of reads corresponded to annotated miRNAs
rather than to miRNAs*. This was in agreement with the
miRNA biogenesis model and resulted from incorpora-
tion into the RISC complex and protection from degrada-
tion of the strand with lower 5' end thermodynamic
stability [7]. However, in some cases, the number of
miRNA* reads was similar or even higher than that of the
corresponding mature miRNAs (Figure 7). This could be
explained by similar 5' end stability of miRNA and
miRNA* strands and similar incorporation efficiency into
the RISC complex. For example, dre-miR-30e, dre-miR-
199, dre-miR-219 and dre-miR-462 showed similar bias
for both mature and star strands. In the case of dre-miR-
129, dre-miR-140, dre-miR-142a, dre-miR-202, dre-miR-
210 and dre-miR-214, the number of miRNA* reads was
considerably higher than that of mature miRNA reads,
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Figure 3

Statistical analysis of miRNA population. A) A rarefac-
tion curve of the total number of reads generated by pyrose-
quening versus the total number of miRNA species identified
is shown. The steep curve levels off towards an asymptote,
which indicates the point where additional sampling will not
yield new miRNAs. The stable value of 198 miRNAs validated
our sampling methodology. B) Homogeneity of the ZF
miRNA population was assessed using population statistics
and by determining the Chaol diversity estimator. The
Chaol reached a mean stable value of 207, with lower and
upper limits of 200.37 to 229.66, respectively, for a level of
confidence of 95%. The data indicates that the 198 miRNAs
identified by pyrosequencing (173 known plus 25 new) plus
19 missed miRNAs (identified by Sanger sequencing), (total =
217 miRNAs) are near the upper limit of expected ZF miR-
NAs present in the pyrosequencing data set.

suggesting that the miRNA* strand was more stable than
the miRNA strand. Therefore, it is likely that some miR-
NAs* acquired mRNA targets and could also regulate gene
expression in ZF [57]. Quantification of miRNA and
miRNA* expression by qRT-PCR (Figure 5C) confirmed
the higher relative abundance of miR-140* and miR-
142a* and showed that dre-miR-142* was expressed dur-
ing development while its mature miRNA was not
detected. The relative abundance of miR-199* and miR-
199 determined by qRT-PCR further confirmed the pyro-
sequencing data (Figure 5C).

Discussion

To date, 192 ZF miRNAs have been identified using clas-
sical cloning and Sanger sequencing methodologies
[19,20]. In this study, 25 novel miRNAs were added to the
ZF repertoire using massively parallel DNA pyrosequenc-
ing of miRNA cDNA libraries prepared from different time
points of the ZF embryo development and from different
tissues. This methodology retrieved 173 of the 192 known
ZF miRNAs whose expression in different tissues and
developmental stages were validated using Northern blot
analysis and/or in situ hybridizations. This high degree of
data overlapping between cloning/Sanger sequencing and
DNA pyrosequencing, plus the existence of target genes
for the novel miRNAs, validated our approach of miRNA
libraries fractionation and provided strong support for the
authenticity of the newly identified miRNAs. The pyrose-
quencing approach also produced important information
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about the relative abundance of the ZF miRNAs. During
early development (24 hpf), the number of different miR-
NAs was low (13), but expression level was high. The
number of miRNA reads was higher at 72 hpf and in
young adult fish. Among differentiated organs, brain and
eyes showed the highest number of miRNA reads. This
confirmed previous data showing differences in temporal
miRNA expression and raised the hypothesis that many
miRNAs play a role in late development and are required
for organ morphogenesis [20].

Zebrafish microRNAs expression profile

The pyrosequencing data allowed us to build a miRNA
expression profile for developmental differentiation and
for adult fish, based on the normalized number of reads.
Most miRNAs were expressed in more than one tissue
(Figure 4A), others were tissue specific or showed stronger
expression in specific tissues (Figure 4B), while others
were development specific. Dre-miR-135¢ and dre-miR-
25 were highly enriched at 24 hpf, but their relative
expression decreased during embryo development. The
data confirmed previous studies showing that dre-miR-
135 expression is higher in development than in adult fish
[20]. The miR-430 family was also present during devel-
opment and was absent in adult ZF [19,20]. The expres-
sion profile also highlighted results of Giraldez and
colleagues [39] showing that miR-430 is essential for reg-
ulation of morphogenesis during development.

Some miRNAs were expressed ubiquitously. For example,
dre-miR-124 was abundant during both development and
in adult fish, and its expression increased slightly during
late stages of development and in the central nervous sys-
tem (both brain and eyes). This miRNA alone accounted
for ~48% of the pyrosequencing reads, a result that may
be explained, at least in part, by the high copy number of
its gene (6 copies in various chromosomes). At 24 hpf,
when a significant part of the brain development had
already occurred, dre-miR-124 represented 42% of the
miRNA pool and its relative abundance reached 80% at 5
dpf. In the adult tissues, it represented 80% of brain and
54% of eye miRNAs. This is in agreement with previous
studies in ZF and other organisms showing that miR-124
is up-regulated during development of the nervous system
and is the most abundant miRNA in the adult brain
[19,20]. Also, neuronal differentiation is enhanced fol-
lowed transfection of mir-124 in mouse neuronal stem
cells [35]. Taken together, the data suggest that dre-miR-
124 may play an important role in ZF development, neu-
ronal differentiation and in regulation of brain functions
[35,58]. On the other hand, dre-miR-203a and dre-miR-
203b appeared early in development and maintained
high levels of expression in adult fish, in particular in gills
and skin. Indeed, miR-203 is a skin-specific keratinocyte-
derived miRNA involved in keratinocyte differentiation
[59].
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Figure 4

Zebrafish miRNA expression profiles. Development
(A) and mature tissue (B) expression profiles generated by
MeV 4.0 software using normalized reads number of each
miRNA are shown. Some miRNAs were mainly expressed
during development, namely dre-miR-430 family, dre-miR-
I35c and dre-miR-9. The former was absent in the adult fish
while dre-miR-135c and dre-miR-9 had decreased expression
in mature organs with exception of the brain. Conversely,
dre-miR-124, dre-let-7a and dre-mir-2| were ubiquitously
expressed. Dre-miR-499 was heart specific, dre-miR-| and
dre-miR-133a were detected in both muscle and heart and
dre-miR-103 and dre-miR-122 were gut/liver specific.

A subset of miRNAs was expressed in differentiated tissues
only. For example, dre-miR-101a, dre-miR-130b, dre-
miR-130¢, dre-miR-221 and dre-miR-499 were highly
enriched in the heart, in agreement with previous in situ
and Northern blot studies [20]. Dre-miR-1 and dre-miR-
133a were expressed in muscle and heart, where they play
an important regulatory role in other organisms [60,61].
Indeed, deletion of miR-1 altered regulation of cardiogen-
esis, electrical conduction and cell cycle of cardiomyoc-
ites, and miR-133 plus miR-1 regulate cardiac
hypertrophy, as their over expression inhibits it. Interest-
ingly, dre-miR-133b and dre-miR-133c were mainly
detected in muscle and were not present in the heart.
Finally, dre-miR-103 was specific of gut and liver while
dre-miR-122 was liver specific [40,62]. This was not sur-
prising because mir-122 plays important roles in regula-
tion of metabolism and its silencing in high-fat fed mice
resulted in a significant reduction of hepatic steatosis,
decreased cholesterol synthesis and stimulated fatty-acid
oxidation [63].

Expression and putative functions of the novel zebrafish
miRNAs

Of the 25 novel miRNAs identified in this study, 9 belong
to conserved miRNA families (existing in at least one
more organism) according to the conservation criteria
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used in this study, and the others are non-conserved (ZF
specific). Most of the novel miRNAs are encoded by a sin-
gle gene, but 7 are multigenic. In the latter case, miRDeep,
Ensembl and RNAfold analysis showed that different
genes encoding a single miRNA produce identical miRNA
hairpins. Most of the novel miRNAs produced lower
number of reads than the majority of the conserved miR-
NAs. This was not surprising since there is good correla-
tion between miRNA conservation and expression level
[64]. Therefore, the low abundance of the novel miRNAs
identified by pyrosequencing combined with the retrieval
of 90% of the known ZF miRNAs (identified by cloning/
Sanger sequencing) suggests that the vast majority of miR-
NAs present in our samples were retrieved. However, one
cannot exclude the hypothesis that new miRNAs present
in our dataset escaped identification due to the high strin-
gency of the methodology used. Also, it is possible that
other low abundance and highly specific ZF miRNAs may
still be discovered using other deep DNA pyrosequencing
strategies, namely Solexa/Illumina or SOLiD™. Finally,
cDNA libraries from tissues not screened in this study may
still reveal new ZF miRNAs. Recent bioinformatics analy-
sis of the ZF genome identified additional miRNAs [44],
however we were unable to identify reads matching these
putative miRNAs using miRDeep alone or our pipeline
data analysis system. This may be due to their very low
expression level. Again, other massively parallel DNA
pyrosequencing approaches may overcome these limita-
tions and uncover such putative miRNAs [44].

Our bioinformatics approach retrieved 41 candidate tar-
get genes of 15 novel miRNAs. Since we used stringent
search criteria to minimize false positives one cannot
exclude the possibility that some targets were missed.
Despite this, comparative analysis of the targets of the
conserved miR_15, miR_16 and miR_21 with those of
known miRNAs produced significant overlapping, thus
validating our target prediction approach. For example,
miR_16, which belongs to the miR-107 family, has GFM2
and VOX genes as putative targets. The miRBase Targets
Version 5 also retrieved these genes as candidate targets
for dre-miR-107. Similar results were obtained for
miR_21 where RNF11 gene was highlighted as a candidate
target of this novel miRNA of the mir-222 family. This
result is also supported by retrieval of miR-222 in a blast
search for miRNAs that target RNF11.

Most of the predicted targets are involved in cellular and
developmental processes, which is in agreement with
their expression during development. Indeed, the NRP2A
gene, a putative target of miR_8, is involved in the differ-
entiation of the nervous system, neural crest cell migra-
tion [65] and in VEGF-mediated vessel development [66].
This correlates with the expression pattern of this miRNA
at 72 hpf, 96 hpf, 5 dpf and in the adult brain. Also,
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Figure 5

qRT-PCR analysis of miRNA expression. A) Expression
of known miRNAs. Dre-miR-124 expression was higher in
developmental and brain samples. Dre-miR-133 expression
was higher in muscle and dre-miR-430 showed higher
expression in developmental samples. B) Expression of novel
miRNAs. miR_8 expression was higher in differentiated
organs, miR_4 and miR_9 displayed similar expression levels
throughout development and in differentiated organs. C)
Star vs mature miRNA expression. The expression of dre-
miR-140* and dre-miR-199* was similar to that of their
respective mature miRNAs. Dre-miR-142* showed signifi-
cantly higher expression than its mature miRNA, which was
not detected during development. D) 5.8 S and 5.0S RNA
samples. Denaturing 12% acrylamide gel showing the relative
concentration of 5.0S and 5.85 RNA in the samples used in
the qRT-PCR.

miR_9, expressed at 72 hpf and 96 hpf, is predicted to tar-
get the PRDM1 and zgc:85707 genes which play important
roles in embryonic axis specification, embryonic pectoral
fin morphogenesis, regulation of neuron specification,
regulation of signal transduction and multicellular organ-
ism development [67]. The SEC23B and MYST3 genes
which are involved in cartilage development were
retrieved as putative targets of miR_10, which was also
expressed during development. MYST3 (or MOX) regu-
lates HOX expression and segmental identity, including
cartilage patterning [68]. Finally, the gills specific miR_14
is predicted to target the MELK gene, which is also
strongly expressed in the gills and is involved in erythro-
cyte development [56].

Zebrafish microRNA star sequences

Star sequences of miRNAs (miRNA*) are difficult to detect
by conventional methods due to their rapid turnover.
However, high throughput sequencing retrieved many of
them and revealed their relative abundance in different
organisms [19,20,57,64]. Our DNA pyrosequencing
approach identified 107 miRNA* sequences: 42 were
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identified previously by cloning and Sanger sequencing
[19,20], 60 were identified in this pyrosequencing study,
but belong to known miRNAs, and other 5 miRNA*
belong to the novel miRNAs identified in this study. Most
star sequences retrieved fewer reads than the correspond-
ing mature miRNAs which is consistent with the miRNA
biogenesis model and strand selection by RISC. However,
six miRNA* were more abundant than their correspond-
ing mature miRNAs, namely dre-miR-129*, dre-miR-
140*, dre-miR-142a*, dre-miR-202*, dre-miR-210* and
dre-miR-214*. Similar results were observed before for
dre-mir-129*, dre-mir-142a*, dre-mir-142b* and dre-
mir-214* [20]. Dre-miR-30e, dre-miR-199, dre-miR-219
and dre-miR-462 showed similar strand-bias of both
mature and star strands. Since this was also observed in
the chicken embryo for mir-30e and mir-219 [64] and in
Drosophila melanogaster where several miRNA* are present
at physiologically relevant levels and associate with Argo-
naute proteins, it is likely that both strands are loaded into
RISC and may guide target repression. Finally, observed
alterations in the ratio of expression of mature/star mole-
cules suggests that some star molecules are functional and
their activity may vary according to cellular context
[57,64]. Obviously, the biological function of these star
sequences can only be unravelled through experimental
testing, but their high number of reads suggests their
inclusion in future ZF miRNA chips and expression profil-
ing studies.

Conclusion

This study increased the total number of ZF miRNAs from
192 to 217 and showed that miRNA cDNA libraries pre-
pared from different developmental stages and from adult
tissues is an effective methodology for miRNA discovery
using low cost DNA pyrosequencing mini-chips. The
methodology permitted quantitative and qualitative anal-
ysis of miRNA expression throughout the ZF life cycle, as
the miRNA profile was largely in agreement with qRT-PCR
and Sanger sequencing data. Most of the 25 novel miR-
NAs were non-conserved low abundance molecules and
their targets indicated that they might be involved in
developmental processes. Novel miRNA star sequences
were also identified and some of them were more abun-
dant than their corresponding mature miRNAs, suggest-
ing that they may also be loaded into RISC and may be
functional. Future deep sequencing studies may still iden-
tify additional miRNAs in ZF, however such miRNAs may
be expressed at very low levels or in specific physiological
or pathological conditions.

Methods

MicroRNA library construction and sequencing

Small RNA libraries were prepared from different ZF
developmental stages, namely 24 hours post-fertilization
(hpf), 72 hpf, 96 hpf, 5 days post-fertilization (dpf), 45
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Table 4: Novel zebrafish miRNAs. miRNAs identified in this study, their level of conservation and corresponding miRNA families.

miRNA ID miRNA sequence

Conservation

miRNA family miRDeep prediction

Ensembl prediction

miR_1 AACAGTAAGAGTTTATGTGCTG Non-conserved - N No
miR _2 CGGTGCAGGACTCCGCGGCTC Non-conserved - N No
miR _3 AAGTGGCCTCTAAAAGTCTA Non-conserved - N No
miR _4 TAATACTGCCTGGTAATGCCAT Conserved miR-429 S \
miR _5 ATCTCAGGTTCGTCAGCCCATG Conserved miR-1388 v V
miR _6 GGCTTGTTTTAAGTTGCCTGCG Conserved miR-1788 V \
miR _7 TTACAGGCTATGCTAATCTATG Non-conserved - N No
miR _8 AAGGTCCAACCTCACATGTCC Non-conserved - N No
miR _9 TGATTGTTTGTATCAGCTGTGT Non-conserved - N No
miR _10 TAGGGGTATGATTCTCGC Non-conserved - N No
miR _11 TAGGTAGTTTGATGTTGTTGGG Conserved miR-196 S \/
miR _12 CGGCCCGTCCGGTGCGCTCGGAT Non-conserved - N No
miR _13 TCACACCTACAATCCCTGGCA Non-conserved - v No
miR _14 AAAGTGAAAGGTGACTGAGAC Non-conserved - N No
miR _I5 TAGGTAGTTTTATGTTGTTGGG Conserved miR-196 V \/
miR _16 AGCAGCATTGTACAGGGCTTT Conserved miR-107 y \/
miR _17 GTATGTGCCCTTGGACTACATT Conserved miR-455 No \
miR _18 TATGTGTGTATCAATTGTGTGAAA Non-conserved - V No
miR_19 GTAATGCTTCGACTGATTGGTG Non-conserved - N No
miR _20 AGATTGGGGTGAGTTAGGGTG Non-conserved - v No
miR _21 AGCTACATCTGAATACTGGGTCA Conserved miR-222 \ \/
miR _22 CCTCTCTGTGCTGCCATTTGGGAC Non-conserved - N No
miR _23 ATGATTCGACTCATATGGTG Non-conserved - v No
miR _24 AGCTCGTGTCCCAAGGCGCCT Non-conserved - N No
miR_25 TCGTACCGTGAGTAATAGTGCA Conserved miR-126 No \/

The novel miRNAs were numbered sequentially from | to 25.
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Figure 6

RNA secondary structure of the novel miRNAs. The
secondary structures were retrieved by RNAfold, which is
included in the mirDeep software package. Both mature and
star sequences of the novel miRNAs are indicated. The
mature sequence is highlighted in blue and the star sequence
is in orange. The structures were drawn from the 5' end to
the 3' end. The structures of miR_2, miR_5 and miR_8 are
shown to exemplify the protocol used to identify the ZF
miRNAs.

dpf, young adult and from adult brain, eyes, gills, muscle,
heart, skin, fins, and gut/liver (Figure 1). Briefly, 100 ug of
total RNA from each sample was isolated using TRIzol®
and small RNAs were enriched by differential precipita-
tion using polyethylene glycol. Total RNAs were frac-
tioned using 12% denaturing PAGE and small RNAs of
15-30 nt were gel-isolated using Gel Filtration cartridges
from Edge Biosystems. For cDNA synthesis, the small RNA
molecules previously isolated were first ligated to a 3'
adapter (AMP-5'p-5'p/CTGTAGGCACCATCAATdi-
deoxyC- 3') in absence of ATP and gel excised in the range
of 35 and 50 nt. A second ligation was performed with the
5' adapter ("Nelson's linker" 5'ATCGTrArGrGrCrAr-
CrCrUrGrArArA 3'), for 1 hour at 37°C, followed by phe-
nol extraction. First strand ¢cDNA synthesis was then
performed using a specific 3'-primer and Superscript™ III
reverse transcriptase (Invitrogen). RNAseH treated cDNA
was PCR-amplified with adapter specific primers. PCR
products were then run on 10% denaturing PAGE con-
taining 7 M urea and the corresponding band (100 nt)
was eluted from the gel with Probe Elution Buffer from
Ambion, at 37°C overnight. Parallel DNA pyrosequenc-
ing was performed using the Genome Sequencer FLX
(Roche), following established protocols for DNA library
sequencing [42].

Computational analysis of sequencing reads
Base calling and quality trimming of sequence reads was
carried out using the Genome Sequencer FLX software.

http://www.biomedcentral.com/1471-2164/10/195

Raw images were processed to remove background noise
and the data was normalized. TAGs and adapter
sequences of ZF developmental and adult tissues samples
were then identified and trimmed and those reads with
correct TAGs and adapters (> 15 nt) were retrieved for
downstream analysis using the miRDeep software http://

www.mdc-berlin.de/en/research/research teams/

systems biology of gene regulatory elements/projects/
miRDeep/index.html, with a cut-off value of 1. Initially,

miRDeep aligned the sequences against the zebrafish
genome using megaBlast with seed length set at 12, the
traditional blast output, and minimum local identity set
at 100. The blast output was then parsed for miRDeep
uploading and aligned sequences with a maximum of 2
mismatches in the 3' end were retrieved. Reads that
matched more than 10 different genome loci were dis-
carded and only those with one or more alignments were
kept and, using the remaining alignments as guidelines,
the potential precursors were excised from the genome.
The secondary structure of putative precursors was pre-
dicted using RNAfold and signatures were created by
retaining reads that aligned perfectly with those putative
precursors to generate the signature format. Finally, miR-
Deep predicted miRNAs by discarding non-plausible
Dicer products and scoring plausible ones. To assess seed
conservation, plausible Dicer processing sequences were
blasted against a local version of mature miRNAs from
miRBase 12.0 that lacked zebrafish miRNA sequences.
Borderline miRNA candidates were also resolved by deter-
mining their relative stability using Randfold. To distin-
guish between novel and known miRNAs, selected pre-
miRNAs were blasted against Danio rerio stem loop
sequences (miRBase) and those that did not produce any
or produced perfect alignments were scored as novel miR-
NAs. Pairs of signatures and structures were used to esti-
mate the number of false positives by randomly
permutating them, using miRDeep.

To estimate the false negative rate, known mature miRNAs
deposited in miRBase 12.0 were used to carry out a
megaBlast search using our sequencing data set. Perfect
alignments were considered as true positives. This list of
miRNAs was then compared with that of the miRNAs pre-
dicted by miRDeep and the sequences present in the blast
list but absent in the miRDeep list were considered false
negatives. To overcome the inherent lack of sensitivity of
miRDeep, novel transcripts encoding miRNAs predicted
by bioinformatics were retrieved from Ensembl 5.2 using
BioMart and from literature predictions [43]. These
sequences were then used to perform a megaBlast search
against our data with seed length set at 12. The transcripts
with perfect matches and alignment length larger than 18
nucleotides were kept for further processing. These tran-
scripts were then compared with the mature miRNAs
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Zebrafish miRNA star sequences. In some ZF samples,
the number of miRNA* reads was higher than that of mature
miRNA sequences, namely dre-miR-129*, dre-miR-140%, dre-
miR-142a*, dre-miR-202*, dre-miR-210* and dre-miR-214%*.
Dre-miR-142a* had the highest number of sequence reads
(391). Dre-miR-30e, dre-miR-199, dre-miR-219 and dre-miR-
462 showed similar strand-bias towards both mature and
star strands, suggesting that both strands may be incorpo-
rated into the RISC complex.

present in miRBase 12.0 and those that produced imper-
fect alignments or did not produce alignments were con-
sidered new miRNAs.

Reads without matches in the ZF genome (megaBlast)
were  re-aligned using SHRiMP,  http://com
bio.cs.toronto.edu/shrimp/ which handles short reads.
Alignments were carried out using the space seed
011111111000; where 1 is the number of seed matches
per window. Suboptimal alignments were retrieved and
transformed into the blastparsed format for miRDeep
miRNA prediction.

Conservation assessment

Novel microRNAs were considered conserved whenever
they showed > 90% identity for the mature sequence and
> 60% identity for the precursor, as in previous studies
[20,52].

Statistical analysis of miRNA population

A rarefaction analysis of the detected miRNA population
was carried out to assess the representativeness of the
miRNA reads. A rarefaction curve, of the total number of

http://www.biomedcentral.com/1471-2164/10/195

reads obtained vs the total number of miRNA species, was
plotted. The non-parametric richness estimator, Chaol
[49] was determined to predict the total richness of the
miRNA population, as a function of the observed richness
(S,ps), the number of sequences observed only once (sin-
gletons, n;) and the number of sequences observed twice
(doubletons, n,). A file containing the total number of
reads of each miRNA was generated and used as input
data set for the EstimateS8.0 statistical package [48]. Both
the rarefaction curve and the Chaol statistical estimator
were computed using EstimateS8.0.

Zebrafish miRNA expression profile

Read numbers were normalized as described by Chen and
colleagues [19] and a miRNA expression profile, using
identical number of reads for each sample was generated.
The number of reads between samples was normalized as
indicated below:

100x(NRmiRNA )

TNRmiRNAs ¥

Where NRmiRNA,Y is the number of reads of miRNAy (X
= any miRNA) in sample Y, and TNRmiRNAsY is the total
number of miRNAs in sample Y. 1000 is an arbitrary
number of reads. The data was transformed into log2 scale
to build the heat map using the MeV 4.0 software package

http://www.tm4.org/mev.html.

Expression Reads =

MicroRNA expression analysis by quantitative Real-Time
PCR

miRNA expression was quantified using the NCode™
SYBR® Green miRNA RT-PCR Kit (InVitrogen) according
to the manufacturers' instructions. One microgram of
total RNA was used for cDNA synthesis. Reverse transcrip-
tions were carried out in triplicate and analyzed using a
7500 Real-Time PCR System (Applied Biosystems). A dis-
sociation curve was generated at the end of each PCR cycle
to check for single product amplification. Quantification
of target cDNA was determined by converting Ct values to
c¢DNA copy number using the following equation:

NO — (1 + E)(Ct(sc)—ct)’

where Ct(sc) is the Ct expected for a sample containing a
single copy template and E is the PCR efficiency. All Ct
values above 35 were set to 35 and a PCR efficiency of
0.90 and Ct(sc) = 35 were assumed [69].

Target predictions

The 3'UTR sequences of ZF mRNAs were extracted from
Biomart http://www.biomart.org/ and blasted against the
antisense miRNA sequence for the new miRNAs or against
the antisense miRNA* sequence, in the case of the star
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sequences. Sequences with perfect seed match between
nucleotides 2 and 7, and no more than 6 mismatches in
the remaining sequence, were retained for further analy-
sis. Targets were considered positive whenever RNAhybrid
confirmed them thermodynamically. Targets were dis-
carded when RNAhybrid did not retrieve the targets
obtained in the first approach.
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