- @
BMC Genomlcs BioM\ed Central

Research article

Expression profile and transcription factor binding site exploration
of imprinted genes in human and mouse

Christine Steinhoff*!, Martina Paulsen?, Szymon Kielbasa!, Jorn Walter2 and
Martin Vingron!

Address: 'Department of Computational Biology, Max Planck Institute for Molecular Genetics (MPIMG), Thnestr 63-73, 14195 Berlin, Germany
and 2Biosciences, Genetics/Epigenetics, University Saarbriicken, 66041 Saarbriicken, Germany

Email: Christine Steinhoff* - steinhof@molgen.mpg.de; Martina Paulsen - m.paulsen@mx.uni-saarland.de;
Szymon Kielbasa - szymon.kielbasa@molgen.mpg.de; Jorn Walter - j.walter@mx.uni-saarland.de;
Martin Vingron - martin.vingron@molgen.mpg.de

* Corresponding author

Published: 31 March 2009 Received: 23 August 2008
BMC Genomics 2009, 10:144  doi:10.1186/1471-2164-10-144 Accepted: 31 March 2009
This article is available from: http://www.biomedcentral.com/1471-2164/10/144

© 2009 Steinhoff et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: In mammals, imprinted genes are regulated by an epigenetic mechanism that results
in parental origin-specific expression. Though allele-specific regulation of imprinted genes has been
studied for several individual genes in detail, little is known about their overall tissue-specific
expression patterns and interspecies conservation of expression.

Results: We performed a computational analysis of microarray expression data of imprinted genes
in human and mouse placentae and in a variety of adult tissues. For mouse, early embryonic stages
were also included. The analysis reveals that imprinted genes are expressed in a broad spectrum
of tissues for both species. Overall, the relative tissue-specific expression levels of orthologous
imprinted genes in human and mouse are not highly correlated. However, in both species
distinctive expression profiles are found in tissues of the endocrine pathways such as adrenal gland,
pituitary, pancreas as well as placenta. In mouse, the placental and embryonic expression patterns
of imprinted genes are highly similar. Transcription factor binding site (TFBS) prediction reveals
correlation of tissue-specific expression patterns and the presence of distinct TFBS signatures in
the upstream region of human imprinted genes.

Conclusion: Imprinted genes are broadly expressed pre- and postnatally and do not exhibit a
distinct overall expression pattern when compared to non-imprinted genes. The relative
expression of most orthologous gene pairs varies significantly between human and mouse
suggesting rapid species-specific changes in gene regulation. Distinct expression profiles of
imprinted genes are confined to certain human and mouse hormone producing tissues, and
placentae. In contrast to the overall variability, distinct expression profiles and enriched TFBS
signatures are found in human and mouse endocrine tissues and placentae. This points towards an
important role played by imprinted gene regulation in these tissues.
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Background

Most genes in the mammalian genome are expressed from
both parental alleles. Imprinted genes represent a minor-
ity of genes, which are transcribed from only one allele.
While the molecular mechanisms underlying imprinting
control have some commonalities, their individual
expression control and expression patterns appear to vary
in a developmental and tissue specific manner. A system-
atic investigation of their expression profiles may help to
better understand the biological function and regulation
of imprinted genes.

To date, approximately 100 genes with evidence for
imprinting effects in either human or mouse are described
[1]. Based on recent predictions, the number of mamma-
lian imprinted genes may range between 100 and 600
genes [1-4], i.e. a substantial number of imprinted genes
are already identified.

The imprinted expression of genes appears to be a rather
conserved phenomenon in mammals [3]; i.e., genes that
are found to be imprinted in one species are most likely
imprinted in the other. This tenet, however, is not always
fixed, as has been shown for the two orthologous man
and mouse genes L3MBTL and L3mbtl. These genes each
encode a polycomb protein. In human, the gene is fre-
quently absent in patients with myeloid malignancies.
Human L3MBTL has been shown to be paternally
expressed due to monoallelic methylation [5,6] whereas
mouse L3mbtl is not imprinted nor are its CpG islands dif-
ferentially methylated [5].

Orthologous genes that are imprinted in human and
mouse are most likely either maternally or paternally
expressed in both organisms. Rarely, genes are oppositely
imprinted such as the ZIM2/Zim2 genes: human ZIM2 is
paternally expressed while mouse Zim2 is maternally
expressed [7]. This phenomenon might be explained by
the fact that the human ZIM2 gene shares 5' exons and a
promoter with the likewise paternally expressed PEG3
gene, while mouse Zim2 appears not to do so [7].

Imprinted genes have been hypothesized to play a major
role in the regulation of embryonic growth [8-10], to con-
trol placental function and to modulate the transport of
nutrients from mother to embryo [11]. Indeed, a number
of imprinted genes, such as Ascl2, Phlda2, Pegl10, are indis-
pensable for proper placental morphology and function
while others are involved in nutrient supply regulation
[11-14]. Additionally, there is strong evidence that
imprinted genes control neurological development and
function as well as energy homeostasis in postnatal stages
of development and the adult [9,15,16].
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Based on these various observations it seems likely that
imprinted genes are tightly regulated in a developmental
and tissue specific manner. While tissue specific expres-
sion profiles have been examined for some selected genes,
no study on the entire class of imprinted genes has been
performed so far. Furthermore little is known about the
expression status in adult tissues compared to embryonic
states.

In this study we performed a computational expression
analysis of human and mouse imprinted genes in a variety
of non-cancerous tissues using a set of existing systematic
transcriptional profiling data [17]. In particular, we (1)
compared the profiles of individual genes across tissues,
(2) analysed the correlations of expression patterns in
human and mouse, and (3) explored the role of predicted
transcription factor binding sites in correlation to tissue
specific expression. Our data provide new insights into
the range and extend of expression, the tissue specific
function and the regulation of imprinted genes in two
mammalian species.

Results

Sets of imprinted genes selected for analysis

The Imprinted Gene Catalogue (IGC) [1,18] reports
imprinted genes in various species, including human and
mouse. We gathered information from the IGC on 62
genes for which solid experimental data on allele-specific
expression was available [see Additional file 1] (see Meth-
ods for definition of exclusion criteria). Among these 62
genes, only 30 had been analysed in human as well as in
mouse revealing that 26 of these are imprinted in both
species. For one of these genes the status was only con-
firmed in human, for 3 genes only in mouse. Thus, of the
genes analysed in both species 87% showed conservation
of imprinting. For the additional 23 imprinted genes the
imprinting status had only been analysed in mouse, and
for additional 9 genes only in human.

Tissue-specific expression patterns of imprinted genes
Using a publicly available gene expression dataset derived
from microarray hybridisations we wanted to find out if
imprinted genes form a subset of genes expressed in a par-
ticular fashion in human and mouse.

The raw microarray data were preprocessed and normal-
ized as described in the Methods section. We confined the
analysis to genes that were present on the respective
expression arrays (GNFIM for mouse and HG-U133A for
human) and which exhibited a confirmed imprinting sta-
tus [see Additional file 1] in at least one species. For
human, 29 imprinted genes met such criteria (of 35 genes
with a confirmed imprinting status), and in mouse 43 (of
52 with a confirmed imprinting status). This list also
includes genes reported to be imprinted in certain tissues
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only but not in others. As information on tissue specific
imprinting is only available for some but not all
imprinted genes the consideration of tissue-specific
imprinting is not feasible for an unsupervised genome-
wide approach. The array data did not allow distinguish-
ing expression of the parental alleles. Our analysis could
therefore only address the overall expression level. In the
analysis of human gene expression we included 21 post-
natal tissues and placental tissue. For the mouse, data sets
for oocyte, fertilised egg and five embryonic stages were
included. Unfortunately, such data was not available for
the human.
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We first analysed the expression profiles of human and
mouse separately. The aim was to identify tissues that dif-
fer considerably from other samples in terms of their
expression profiles of imprinted genes. We performed
biclustering (euclidean distance and average linkage). The
resulting biclustered expression matrices from separate
human and mouse expression analyses are shown in fig-
ure la and 1b.

For human, placenta forms a clearly separate branch (1st
split) in the clustered tree of tissues (Figure 1a). In the 2nd
split pancreas branches off (high influence of insulin), fol-
lowed by a 3t split branch formed by pituitary, ovary, and
adrenal gland. In the clustered tree of imprinted genes,
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Relative normalized expression levels of imprinted genes in human and mouse. The figure summarizes the average
(of normalized expression levels) of gene specific probes (annotated with the same gene name after normalization) of repeated
array experiments. (a) A heatmap plot of biclustering (euclidean distance, average linkage) of human imprinted genes expres-

sion levels is shown. The third split within the genes tree is marked with a red cross. (b) A heatmap plot of biclustering (eucli-
dean distance, average linkage) of mouse imprinted genes expression levels is shown. The third splits within the genes trees are

marked by red crosses.
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GNAS clusters apart after the 1stsplit followed by DLK1 in
the 2nd gplit. The expression of both genes differs signifi-
cantly from the other genes in all tissues (p value < 10-12
for all tissues). While GNAS was highly expressed in all tis-
sues, DLK1 is significantly over-expressed in placenta,
adrenal gland, ovary and pituitary and the high expression
is relevant for the clustering of these tissues (see above).
Regarding the 3t split, the remaining imprinted genes
branch into two large clusters (Figure 1a). The first group,
consisting of INS, KCNQI1, SLC22A18, NDN, NNAT,
SNRPN, PEG10, CDKN1C, MEST, ATP10A, GRB10, IGF2,
SGCE, PEG3, ZIM2, comprises genes expressed at largely
median level. Among those INS stands out, that is remark-
ably over-expressed only in pancreas, the major insulin
producing organ of the body. IGF2, PEG10 and CDKN1C
are strongly (over)-expressed in placenta. The second clus-
ter consists of PHLDA2, PLAGL1, PPP1R9A, DIRAS3,
L3MBTL, WT1, HYMAI, DLX5, MKRN3, TP73, UBE3A,
MAGEL2 with all genes showing a relative under-expres-
sion with respect to the tissue expression median.
PHLDAZ2 and PLAGL]1 are clearly downregulated in almost
all tissues but strongly over-expressed in placenta. The
genes that contributed most to the specific expression pat-
tern of placenta and pancreas were those that were either
strongly up or downregulated compared to their expres-
sion in other tissues. The placental expression pattern was
dominated by DLK1, PHLDA2, CDKN1C, MEST, PEG10
and IGF2. For pancreas, INS, DLK1, SNRPN, MEST
KCNQ1 and HYMAI were the most prominent genes.
Finally, for the 3 split, a cluster which consisted of adre-
nal gland, ovary and pituitary, we applied random forest
analysis to determine which genes contributed most to
the formation of that cluster. These were DLKI (mean
standard error - MSE: 5.36%), PPP1R9A (4.61%), HYMAI
(3.45%), PEG3 (2.3%), MEST (2.13%), ATP10A (2.09%),
ZIM2 (1.99%). Applying a random forest analysis to the
same tissues in mouse identifies Dikl (4.84%), Sgce
(4.79%), Kengl (2.11%), Phlda2 (1.91%), Gtl2 (1.76%),
Inpp5f (1.41%), Usp29 (1.41%) as major contributors.

In mouse tissues the clustering has some similarities to
human but also clearly distinct features. Pituitary and
brain tissues branch off together at the 1st split. This
branching is predominantly caused by seven genes which
we identified applying a random forest analysis as: GtI2
(7.42%), Rasgrfl (6.79%), Napll5 (6.57%), Impact
(6.06%), Inpp5f (4.78%), Mirg (4.27%), Rian (4.08%).
Applying a random forest analysis to the same brain tis-
sues in human results in the following genes: PEG3
(7.44%), PEGI10 (7.07%), ZIM2 (6.34%), SNRPN
(5.49%), NNAT (5.12%), SLC22A18 (3.44%), PPP1R9A
(2.81%). In the 2nd split embryonic tissues separate from
the adult ones (Figure 1b). The highest scoring genes for
this cluster in a random forest analysis were: Igf2
(11.03%), HI19 (10.50%), Grbl0 (7.96%), Cdknlc

http://www.biomedcentral.com/1471-2164/10/144

(7.34%), Slc38a4 (4.79%), Plagll (2.96%), Peg3 (2.63%).
Most notably Igf2, H19, and Cdknlc that dominate this
branch lie in the BWS region and, together with Phlda2,
are all highly expressed in embryonic tissues (Figure 2b).
When omitting these four genes, from the clustering anal-
ysis the specific branching and clustering of embryonic
stages is lost (data not shown). Among the postnatal tis-
sues, adrenal gland splits off in 37 branch (as in 2nd split
in the human).

The clustering of imprinted genes in the mouse shows that
a series of genes play a role for the branching into embry-
onic and brain specific clusters at the 1st/2nd split. Aside
from the predominant expression profile of H19 (1stsplit,
H19 is not represented on the human array), the remain-
ing genes split into 2 clusters (2 split). One is the group
characterised by moderate to high expression which splits
into two clusters (31 split), where the cluster of Gtl2,
Inpp5f, Nap1l5, Ndn, Nnat, Dik1, Peg3, Grb10 and Plagll
shows high expression in brain tissues. The second group
is characterised by moderate to low expression and falls
into two clusters according to the 2nd split. Of these, the
cluster of Slc38a4, Pegl2 and Ziml shows mainly low
expression throughout the tissues.

Additional clustering (data not shown) by combination
of Euclidean and Manhattan distances, respectively, was
generated with either complete or average linkage. For
mouse, the structures of the obtained trees were very sim-
ilar to the ones shown in figure 1. The human clustering
was found to be less stable (particularly applying Manhat-
tan distance). However, placenta always separated in the
first splits and in most analyses, pancreas separated in the
2nd whereas adrenal gland and pituitary as well as amy-
gdala and hypothalamus separated in the 2nd or 314,

Imprinted genes do not show prominent overexpression in

distinct tissues

We next analysed whether imprinted genes on average are
more strongly expressed in certain tissues compared to the
non-imprinted genes present on the arrays (Figure 2a and
2b). For the analysis we sampled groups of non-imprinted
genes (same number of genes as the examined imprinted
gene group) 1000 times and compared their relative
expression levels to the average expression of imprinted
genes. These analyses were performed separately for each
tissue. For human, the median expression levels of
imprinted and non-imprinted genes were not significantly
different (after multiple testing adjustment, i.e. Hochberg
adjustment, p values ~ 0.64). In mouse, hypothalamus
showed a slightly increased median expression compared
to other tissues (p = 0.05).

We also compared the distribution of expression levels of

imprinted and non-imprinted genes across tissues. Testing
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Figure 2

Boxplots of relative expression levels. As described in figure |, normalized expression levels of imprinted genes in human
() and mouse (b) are shown in boxplots. The x-axis displays the different tissues, and the y-axis indicates relative normalized
expression levels. The horizontal bar in each box is the median of all relative expression levels of imprinted genes in human (a)
and mouse (b), while the upper and lower boundaries of the box mark the first and third quantile. Whiskers show 1.5 times
the box range, whereas circles denote values of data points that lie beyond the extremes of the whiskers (outlier). The respec-
tive gene names of outliers are displayed.
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included either all non-imprinted genes on the array or
randomly sampled sets. In both cases we observe similar
distributions of standard deviations of expression levels
across tissues between imprinted and non-imprinted
genes (background) on the array [see Additional file 2].
Testing against randomly sampled gene sets the distribu-
tions of human and mouse standard deviations did not
differ significantly from genomic background. Thus, the
overall variability across tissues in relative expression of
individual imprinted genes is not remarkably high with a
few exceptions such as DLK1 and INS in human and H19
and Ins2 in mouse.

As a sum, imprinted genes show a median expression
across tissues similar to non-imprinted genes. Except for a
slight tendency in mouse hypothalamus, imprinted genes
do not show a particular tissue-specific enrichment com-
pared to the genome-wide average in either adult tissues
or mouse embryonic tissues. In addition, imprinted genes
did not show reduced or increased variability in tissue-
specific expression levels. This suggests that on average
imprinted genes tend neither to be expressed at almost
constant levels in all tissues (like house keeping genes)
nor to be only expressed in very few tissues.

We next tested whether any two tissues differ significantly.
Adjusting for multiple testing in human tissues, no tissue
pair reaches significance. In mouse, 60 tissue pairs out of
406 show a p value < 0.01. By chance we would expect 4
pairs with a p value of less than 0.01. Thus we observe
approximately a 15 fold increase. Furthermore, pairwise
comparison of embryonic tissues (fertilized egg, embry-
onic stages 6.5 - 10.5) with adult tissues resulted in 36
pairs with p value < 0.01 (out of 126). Hypothalamus is
the tissue with the highest median expression level and
shows significant over-expression in comparison to 14 tis-
sues (out of 28 pairs). The detailed matrix is given in an
additional table [see Additional file 3].

The biclustered expression matrices (Figure 1a and 1b)
illustrate that several imprinted genes have conspicuous
expression behaviour across tissues. H19 is such an outlier
gene which in mouse is highly expressed at all embryonic
stages and in skeletal muscle. Others, such as GNAS/Gnas,
are strongly expressed in many tissues of one but not the
other species pointing towards more general expression
differences between human and mouse at this locus.
Finally, in some tissues individual outliers show extensive
differences in the relative expression between both spe-
cies. An example is Cdknlc, which is highly expressed in
adrenalgland in the mouse but only moderately in human
(Figure 1), although the general correlation between
CDKN1C and Cdknlc across all tissues is rather high (see
below).

http://www.biomedcentral.com/1471-2164/10/144

Overall, we observe that in pairwise comparisons
imprinted genes are more highly expressed in mouse
embryo than in adult tissues, especially bonemarrow,
heart, lung, lymphnode, pancreas, prostate, salivarygland,
testis, thymus, thyroid. The highest expression levels are
observed for genes in the BWS region, namely H19,
Cdknlc, Phlda2 and Igf2. These genes dominate the biclus-
tering of embryonic and placental samples in figure 1b
whereas other genes behave rather inconspicuously at
embryonic stages.

We also calculated the pairwise Pearson correlation coef-
ficients for genes within particular imprinted regions, i.e.
regions which at least contained three verified imprinted
genes annotated to the same chromosomal band. The
analysis shows that expression profiles show no more
similarity among imprinted genes of a common cluster/
chromosomal band than genes that reside in different
regions (data not shown).

Already the biclustered expression matrices (Figures 1a
and 1b) indicated that maternally and paternally
imprinted genes, respectively, do not cluster together
according to their tissue specific expression profiles. Cal-
culation of Pearson correlation supports this notion
showing that the parental origin of expression has no
influence on tissue-specific expression profiles (data not
shown). Still, overall, paternally expressed genes tend to
be more highly expressed than maternal genes (for
human p = 0.02, for mouse p = 0.04, t-test).

Orthologous imprinted genes in man and mouse exhibit
relaxed correlation of tissue specific expression

We next investigated whether tissue-specific expression is
correlated for orthologous imprinted genes in human and
mouse (Figure 3a). Overall, orthologous gene pairs
showed higher correlation than non-orthologous pairs
(diagonal entries: median = 0.561; std (standard devia-
tion) = 0.376; off diagonal entries: median = 0.093; std =
0.344). This difference is significant (Kolmogorov Smir-
nov test, p = 0.006; Wilcoxon test, p = 0.0006). Genes with
the highest correlation values were: INS/Ins2 (pc (Pearson
correlation) = 0.989); CDKNI1C/Cdknlc (pc = 0.861);
IGF2/Igf2 (pc = 0.810); PEG3/Peg3 (pc = 0.774), and
DLK1/DIk1 (pc = 0.798). No correlation - i.e., a Pearson
correlation of approximately zero - was observed for:
PP1R9A/Ppplr9a, GRB10/Grb10, KCNQI1/Kcngl, and
MKRN3/Mkrn3. In general, for imprinted orthologous
gene pairs the correlation (pc = 0.56) across tissues is
higher than genewise correlation of non imprinted
orthologs (median pc = 0.20, 1000 times sampled sets of
19 genes). The values for gene pairs derived from the
genomic background are in agreement with published
results derived using slightly different methods [19].
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Figure 3

Correlation of orthologous gene expression in human and mouse. (a) Pearson correlation of normalized tissue-spe-
cific expression levels of orthologous imprinted genes in human and mouse. The figure shows Pearson correlation coefficients
as 2 dimensional heatmaps of orthologous imprinted genes in human (vertical) and mouse (horizontal). The color coded scale
is shown as a bar on top of the figure. Pearson correlation coefficients of orthologous gene pairs are marked on the dashed red
diagonal line, and the respective values are given in the table aside. The correlations were calculated on normalized and aver-
aged expression data of annotated genes (Figure | and Materials and Methods). (b) Pearson correlation of orthologous gene
expression in human and mouse tissues. A set of 19 orthologous genes that were present on the human expression array as
well as the mouse expression array was sampled 1000 times. Pearson correlation coefficients for each set in all tissues were
calculated. The boxplot displays the resulting Pearson correlation coefficients as follows. The x-axis displays the different tis-
sues, the y-axis lists the Pearson correlation coefficients. The horizontal bar in each box gives the median PCC of the sampled
orthologous genes, while the upper and lower boundaries of the box mark the first and third quartiles. Whiskers show 1.5
times the box range. Red squares mark the PCC of imprinted orthologous genes.
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In addition, we analysed if analogous tissues show similar
expression profiles of orthologous imprinted genes in
human and mouse. Out of a set of 8980 available orthol-
ogous genes we randomly sampled 1000 times genes of
the same size as the imprinted gene set. For a given tissue
we determined Pearson correlation coefficients compar-
ing the relative expression profiles in human and mouse
for each set of sampled genes. Thus, we derived 1000 Pear-
son correlation coefficients for the sampled gene sets and
one for the imprinted gene set for each of the 22 tissues.

For 18 of 22 tissues, the correlation of expression of
imprinted genes is in the 25% to 75% interquartile range
(IQR) of randomly sampled orthologous genes (Figure 3b
and [see Additional file 4]). In trachea, imprinted genes
correlated slightly worse (median 0.388 for the random
gene set and 0.142 for imprinted genes). In adrenal gland,
pancreas, and pituitary, the correlation was stronger than
in the set of random genes [see Additional file 4].
Although the correlation coefficient of placenta was
between the 15t and 3rd quartiles (placenta differs from
other tissues in its expression patterns of imprinted
genes), it shows a clear tendency towards higher correla-
tion in imprinted genes than in randomly sampled sets. In
summary, the correlation values of human and mouse
orthologous imprinted genes are not very different from
those of randomly sampled non-imprinted orthologous
genes (Figure 3b). In a few endocrine tissues we observe a
strong expression correlation for orthologous imprinted
genes. This finding is in line with previous individual
expression reports on a few candidates in human and
mouse [19,20].

A few genes dominate expression profiles in distinct tissues
Using correspondence analysis, we next examined the rel-
ative contribution of individual genes to tissue specific
expression profiles in human and mouse. Briefly, we
applied a two way table (in our case relative expression
values of 19 genes in 22 tissues each in human and
mouse) correspondence analysis for describing/uncover-
ing correspondence between rows (here genes) and col-
umns (here tissues). Originally, the method was described
by Berzerci [21]. For this, a high dimensional space of data
points (genes, tissues) is constructed, such that the dimen-
sions capture the variance explained by the given data in
increasing order. Rotating the high dimensional data, they
are projected onto a 2 dimensional planar in a way that
maximal variance can be seen according to the first and
second axis. In our application, this allows for studying
associations between genes and tissues as shown in a two
dimensional display (Figure 4). Objects (genes, tissues)
with similar correlations are clustered together resulting
in small angles, whereas dissimilar objects are separated
from each other (large angle, e.g. different quadrants), fur-
thermore, the larger the vector length the higher the infor-
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mation content. In figure 4, each point, i.e. tissue (red
triangle) or gene (black dot), marks the direction and dis-
tance of a vector originating from the centroid. The
appearance of vectors in the same quadrants and a closer
angle distance between vectors reflects their relative asso-
ciation. While correspondence analysis allows us to visu-
alize associations in complex matrices, it should be noted
that there is no threshold to decide whether an association
is strong or weak, the vectors describe relative associa-
tions, i.e. stronger or weaker than another.

Examples for such associations are mouse pituitary and
human placenta which are associated with DLK1/Dik1
and PEG3/Peg3 in the second quadrant. Further examples
are (1) mouse placenta and PLAGLI1/Plagll, (2) mouse
pituitary, human placenta and PEG3/Peg3, and (3) human
adrenal gland, pituitary, ovary and NNAT/Nnat, NDN/
Ndn.

Overall, however, the correspondence analysis (Figure 4)
revealed highest variance between human and mouse tis-
sues, with only human placenta being an exception (sep-
arated by the first component, which accounts for
41.89%). Thus, almost all human and mouse tissues were
clearly separated (explained inertia of the first 5 compo-
nents are: 41.89%, 19.59%, 10.74%, 9.55%, and 4.02%,
respectively). A strong association was seen between
GNAS and all human tissues except for pancreas, adrenal
gland, ovary, pituitary, and placenta. INS/Ins2 showed a
strong association with mouse pancreas but less so with
human pancreas, while SLC22A18 showed a stronger
association with human pancreas. DIkl was associated
with mouse pituitary (Figure 4).

Distinct sets of transcription factor binding sites correlate
to tissue-specific expression patterns of imprinted genes
Next, we questioned whether tissue-specific expression of
imprinted genes is regulated by a well defined set of tran-
scription factors. Addressing a possible connection
between tissue-specific imprinted gene expression and
predicted transcription factor binding sites (TFBS), we
again applied a correspondence analysis. We computed a
matrix of predicted TFBSs (based on a TRANSFAC pattern)
in the upstream region of the respective genes (scored by
p values). By multiplying this score matrix with the matrix
of relative expression strength of the respective genes we
derived a score matrix that relates human tissues and TFBS
enrichment based on the studied set of imprinted genes.
For visualization we performed a correspondence analysis

(Figure 5).

The analysis reveals that imprinted genes expressed in
human placenta are more frequently associated with
binding sites for XPF1, NFKappaB50, ER, MTF1, SF1, GLI,
TEF, DR4, MEF3 and CP2. In fact, XPF1, TEF, MTF1, SF1,
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Figure 4

Correspondence analysis of combined matrices of relative gene expression of orthologous imprinted genes.
Human and mouse imprinted gene expression for all tissues was analysed using correspondence analysis. In this figure, the first
and second components are shown. Gene names are indicated, the respective vector end points marked with black spots.
Localization of tissues is marked with red triangles and the names are given aside. Explained inertia of the first two components

is: 41.89% and 19.59%, resp.

GLI, MEF3 and CP2 were also present on the expression
array and we found XPF1, MTF1, SF1, GLI and CP2 to be
upregulated (defined as higher-than-median expression
plus 1 SD) in human placenta (Figure 5b). We further
extracted human placenta-expressed genes from the
expression dataset and explored whether the same group
of transcription factors binding sites were enriched. In
fact, all TFBSs except for XPF1 and MEF3 showed signifi-
cant enrichment. NFKappaB50 had a p-value of 4.3*10-44,
TEF 7.3*10%%, DR4 4.1*107, ER 0.002, MTF1 9.9*10-57,
SF1 1.2*10°!!, GLI 5.9*1020 and CP2 4.4* 104! while
XPF1 and MEF3 had a p-value of 0.4. After adjustment for
elevated GC content of the upstream regions of imprinted
genes, binding sites for NFKappaB50, TEF, MTF1, SF1 and

CP2 still showed clear enrichment, while binding sites for
DR4, ER, and GLI showed no enrichment. In summary,
NFKappaB50, TEF, MTF1, SF1 and CP2 displayed pla-
centa-specific TFBS enrichment. Binding sites for XPF1
were significantly enriched in the upstream regions of
imprinted genes but not in those of placenta-expressed
genes, with or without GC content adjustment.

In mouse, the same TFBSs were significantly enriched as in
the human set, namely for NFKappaB50, TEF, MTF1, SF1
and CP2 (even after adjustment for elevated GC content).
In addition, DR4 and GLI binding sites also showed sig-
nificant enrichment. Overall, the results were comparable
between human and mouse imprinted genes.
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Figure 5 (see previous page)

Correspondence analysis of relative expression and transcription factor binding sites of human orthologous
imprintedgenes. (a) Human orthologous imprinted gene expression for all tissues as well as p-values for the 107 most prev-
alent TFBSs were analysed by multiplying the respective matrices. In this figure, the first (x axis) and second (y axis) compo-
nents of correspondence analysis are shown. TFBS names are indicated by black spots, tissues in red triangles. (b) Zoom in the
3rd quadrant of figure 5a. Placenta tissue is highlighted in red. A red dashed line marks the vector that defines the location of
human placenta tissue in the correspondence plot. TFBS that show the smallest angle, i.e. highest association to human pla-
centa were investigated for their relative expression in human placenta. A red arrow marks up-, downregulation compared to
cellular background, equality signs stands for approximately expressed as cellular background and nr stands for not repre-
sented on the array. (c) Zoom for the 2" quadrant of figure 5 a. Pituitary, ovary and adrenal gland tissues are highlighted in red.
A red dashed line marks the vector that defines the location of the three human tissues in the correspondence plot. TFBS that
show the smallest angle, i.e. highest association to the three tissues were investigated for their relative expression in the same
tissue. Caption is the same as in figure 5 b but for MRF2 the upregulation arrow and a star stands for the observation that
MRF2 was found strongly upregulated in pituitary and ovary tissue but showed only slight upregulation in adrenal gland tissue.

Prominent examples of tissues specific TFBS associations
in imprinted genes can also be observed for adrenal gland,
pituitary and ovary (2nd quadrant in Figure 5a, and Figure
5c). As for the clustering of human imprinted genes
expression, (Figure 1a) the multiplied dataset consisting
of TFBS enrichment and expression displays a very pro-
nounced cluster of pituitary, adrenal gland and ovary. The
strongest associations to these tissues as can be directly
read from figure 5c are HEN1, LXRR4, MRF2, CEBP, RP58,
HEB and XVENT1 binding sites. While XVENT1 is not rep-
resented on the array, HEN1, MRF2 and CEBP show a very
pronounced upregulation in ovary and pituitary (at least
two fold upregulation compared to the cellular back-
ground). For adrenal gland these are HEN1 and CEBP
while MRF?2 is at least 1.4 fold upregulated.

Discussion

A general observation of our analysis is that imprinted
genes are expressed in a broad range of adult tissues and
placenta in human and mouse. For most tissues, the cor-
relation of expression patterns of imprinted genes in
human and mouse is not pronounced and does not differ
from that of other randomly selected orthologous genes.
Furthermore, the organization of imprinted genes into
genomic clusters does not coincide with coordinated tis-
sue-specific gene expression patterns within these
genomic regions. Besides the overall "inconspicuous”
expression behaviour of imprinted genes we observe par-
ticular expression patterns of subsets of imprinted genes
in certain human and mouse tissues. Tissues with distinct
expression profiles such as placenta, adrenal gland, ovary
and pituitary show a remarkable correlative association
with distinct TFBSs in the promoter regions of imprinted
genes. As very little is known about transcription factors
that regulate imprinted genes the identified associated fac-
tors are good candidates for experimental studies on tis-
sue-specific regulation of imprinted genes. In addition,
various imprinted zinc finger protein genes have been
identified that may act as transcription factors. Among

these is PLAGLI1/Plagll that is strongly associated with
murine placenta and apparently possesses the potential to
regulate Igf2 and H19 [22], and also PEG3/Peg3 that is
associated with mouse pituitary and human placenta.

In line with the parental conflict hypothesis [23], embry-
onic development and placental phenotypes are associ-
ated with imprinting mutations and imprinted gene
expression [24-26]. We observe that imprinted genes do
not show a generally stronger correlation of tissue-specific
expression patterns in human and mouse and hence are
unlikely to form a "uniform class" of genes whose func-
tions are restricted to the same tissues and (embryonic)
stages in both species. It will be interesting to extend
detailed tissue specific comparisons to mouse/human
embryonic stages to find out if distinctive tissue specific
patterning is observed during prenatal development. So
far our analysis (confined to total embryo and placenta
expression) indeed suggests that the overall expression of
imprinted genes in embryo and placenta is distinct from
adult tissues. However, this distinction results from an
exceptional expression of a rather small group of
imprinted genes, with most being located in the BWS
region.

One major observation of our analysis is that species spe-
cific subsets of imprinted genes form groups with pro-
nounced expression correlation in adrenal gland,
pancreas, and pituitary in human and mouse. In the cor-
respondence analysis plots, these three organs and also
placenta separate from the vast majority of tissues. All four
organs (adrenal gland, pancreas, pituitary, placenta) play
prominent roles in the energy metabolism of mammals:
the placenta acts as the key organ in nutrient transfer
between mother and embryo, and the adrenal gland, pan-
creas, and pituitary secrete factors, such as insulin and
hormones, that play major roles in carbohydrate metabo-
lism [16]. Thus, coordinated imprinted gene expression in
these organs may be of importance for balanced physio-
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logical pathways in energy supply. This supports the
parental conflict hypothesis to some extent, which pro-
poses imprinted genes as regulators of growth and mater-
nal nutrient supply. Interestingly, we observe a trend
towards higher expression levels of paternally expressed
genes. It will be interesting to find out if these genes are
particularly involved in regulating nutrient demand or
other discussed functions of these endocrine tissues, such
as stress response, salt and fluid balance.

Several imprinting syndromes suggest that (some)
imprinted genes fulfil important neuronal functions and
hence may be particularly expressed in certain neuronal
tissues [27]. Although hypothalamus, amygdala and cere-
bellum cluster apart from other tissues in mouse (biclus-
tering analysis), they do not separate from other tissues in
human. Also, the correspondence analysis separates brain
tissues only marginally from other tissues in mouse.
Hence, at least for human and mouse, particular brain-tis-
sue specific expression profiles are likely to be species spe-
cific. In the human, the lack of particular profiles in
certain brain tissues (such as hypothalamus, cerebellum,
amygdala) may even indicate that here imprinted control
might be confined to only a few genes such as NDN and
SNRPN. However such extreme interpretations have to be
taken with great caution given the fact that some genes
such as GNAS or DLK1 show a strong and broadly
extended expression pattern in most human tissues
including brain.

Conclusion

In summary, imprinted genes are expressed in a broad
range of tissues in the adult of human and mouse. Accord-
ing to their overall expression pattern they do not form a
particular class of autosomally expressed genes. However,
subsets of imprinted genes are strongly expressed in the
pituitary, adrenal gland, pancreas and placenta. Hence
particular expression patterns are found in tissues regulat-
ing hormonal and nutritional homoeostasis in both
human and mouse. Such correlated expression and the
enrichment of tissue specific TFBSs suggest mechanisms
of co-regulation of selected imprinted genes in organs/tis-
sues controlling hormonal pathways and growth physiol-
ogy in both species.

Methods

Gene Selection

Imprinted genes of human and mouse were downloaded
from the Imprinted Genes Catalogue (IGC, 11/2007)
[18]. For some of these genes, there were conflicting
reports about their imprinting status. A number of these
genes were biased towards the maternal allele only in pla-
centa. Because this organ is composed of maternal and
embryonic tissue, it is difficult to distinguish whether
maternal expression of genes is caused by expression in
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the maternal sections or by imprinted expression. There-
fore, we neglected from the analyses genes for which con-
flicting data have been reported, as well as genes for which
the only evidence for possible imprinting effects is an
expression bias toward the maternal allele in placenta.
Furthermore, antisense transcripts were excluded from
analysis since their genomic organisation is often insuffi-
ciently defined and are often not easy to be distinguished
from sense transcripts, especially in hybridisation experi-
ments. Small RNAs such as microRNAs and snoRNAs
were also removed from the analyses since they are often
part of longer transcripts. The resulting, manually curated
list of 62 imprinted genes is given in an additional file [see
Additional file 1]. Corresponding Ensembl Identifier,
potential HG-U133A Identifier, GNFIM Identifier, and
Gene Symbols were determined based on the Gene
Names given in the IGC list using Ensembl BioMart http:/
/www.ensembl.org. 11 genes were found only in one spe-
cies; i.e., we failed to identify an ortholog of sufficient
identity in the other species. In total, the list encompasses
36 human and 52 murine imprinted genes.

When examining imprinted gene expression in each spe-
cies separately (human and mouse), we only used genes
that had a confirmed imprinting status (i.e., those that are
marked with a tick in an additional table [see Additional
file 1]) that were present on the respective expression
array (that is, GNFIM for mouse and HG-U133A for
human). For human, there were 29 imprinted genes, and
43 for mouse. For human-mouse comparison, we used
those orthologous genes (see below) that (a) were present
on both arrays and (b) showed verified imprinting status
in human and mouse. In total, we analysed 19 genes. For
our correlation analysis, the Pearson correlation coeffi-
cients were calculated.

Expression analysis

For gene expression analysis, we used the expression data
reported by Su and colleagues [17]. This data has been
studied with various foci several times and proven its
validity for addressing expression related studies. Never-
theless, to our knowledge it has not been studied in the
context of imprinting so far. The human sample dataset
was based on the commercially available HG-U133A
array; for mouse samples, a custom-designed array was
used. Raw data were downloaded and subjected to pre-
processing as follows: raw probe-set intensities were nor-
malized using the calibration and variance stabilization
method (vsn) [28]. Using this procedure, the variance of
normalized probe intensities was approximately inde-
pendent of their expected absolute expression levels.

For each experiment, it was assumed that the majority of
gene expression was not differential with regard to all
other experiments on the same array type. Parameters for
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the vsn model were estimated for a random subset of 50%
of the probes and then used to transform the entire array.
Probe-set intensities of each probe set were summarized
by applying the median polish method [29] after normal-
ization. Herein, for each probe-set, a robust additive
model was fitted across the arrays. For further analysis,
only those experiments that were annotated with the fol-
lowing tissue names for both human and mouse expres-
sion experiments were considered: adrenal gland,
amygdala, bone marrow, cerebellum, heart, hypothala-
mus, kidney, liver, lung, lymph node, ovary, pancreas,
pituitary, placenta, prostate, salivary gland, skeletal mus-
cle, testis, thymus, thyroid, trachea, and uterus. For mouse
we additionally studied embryonic stages 6.5, 7.5, 8.5,
9.5, 10.5, fertilized egg and oocyte. These stages were not
available for human.

Because absolute expression levels were not appropriate
for comparison between species, even after normaliza-
tion, we used relative expression values with respect to the
genome-wide profile of the same cell type in each species;
i.e, we subtracted the cell type-specific background
expression from each normalized (transformed scale)
gene expression value. Repeated measurements were aver-
aged. We called the resulting expression values 'normal-
ized expression levels' or to be more precise 'normalized
relative expression levels'. We also checked whether rela-
tive expression and absolute expression differ strongly
which is not the case (data not shown).

Visualization of expression profiles and statistical analyses
Biclustering and generation of heatmaps as shown in fig-
ure 1 and visualization of Pearson correlation of human/
mouse relative expression as shown in figure 3a were done
using TM4 [30]. For biclustering, Euclidean distance and
average linkage were chosen. We confirmed that top splits
remained approximately the same when changing the dis-
tance and clustering method. Therefore we restricted the
analysis shown here to Euclidean distance and average
linkage. All further calculations and statistical analyses
were performed using the statistical language R [31] and
packages from Bioconductor [32]. Correspondence analy-
sis was calculated using the package "ca" [33]. For classifi-
cation of genes that define subclusters of tissues (i.e. brain
and embryonic tissues) we applied random forest tests
[34] and used the package "randomForest". Further statis-
tical tests were conducted using the Base package.

Definition of orthologous genes

Using Ensembl BioMatrt, all orthologous genes in human
and mouse that were (a) annotated with orthology type
"one2one" and (b) present on the HG-U133A Affymetrix
chip and on the GNF1M chip were determined. Probe-sets
that were annotated to these genes were identified, in total
8980 genes. Of these, the gene sets that had the same size
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as the orthologous imprinted genes were randomly sam-
pled 1000 times.

Definition of upstream regions and sequence retrieval, and
examination and identification of transcription factor
binding sites

The transcription factor binding sites (TFBSs) were pre-
dicted using the method developed by Rahmann and col-
leagues [35]. We used Transfac 9.4 database to obtain
position specific scoring matrices (PSSMs) preferentially
recognized by transcription factors. In order to reduce the
amount of false or overlapping predictions we narrowed
the whole PSSM set to 125 non-redundant, high-quality,
vertebrate matrices.

As putative promoters we defined the sequences located
from 2000 bp upstream to 2000 bp downstream around
ENSEMBL predicted transcription start sites (TSSs) of
genes (according to ENSEMBL database, version 42). We
scanned each of the putative promoters for nucleotide
patterns matching the PSSMs. A match was accepted when
the similarity score was above a threshold score defined as
obtaining one single false positive prediction per 500 nt
with a probability of 0.01 (see [35] for details). The above
criterion yielded 175 TFBSs for 19 studied human
imprinted genes. The p-values corresponding to these pre-
dicted TFBSs were then used as input for the correspond-
ence analysis as described above.
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Additional material

Additional file 1

Genomic localization, imprinting status, availability of expression
data of 62 imprinted genes from Imprinted Genes Catalogue (IGC). ¢
gene names of imprinted genes in human and mouse (in brackets). b
genomic localization of imprinted genes in human and mouse (in brack-
ets). ¢ imprinting status: tick = imprinting status confirmed, ? = question-
able imprinting status, N = not imprinted, NO = no orthologous, AS =
antisense. 4 Expressed allele: M = maternal, P = paternal, P/M = opposite
imprinting status in human and mouse, i.e. COPG2/Copg?2 in human
has been reported to be paternally expressed but this finding is disputed,
while it is maternally expressed in mouse. ZIM2/Zim?2 is paternally
expressed in human while maternally in mouse. For GRB10/Grb10 the
imprinting status is dependent on the isoform. ¢ Imprinting status in
human and mouse: tick = respective gene imprinted in human and mouse.
8 Gene is represented on the expression array studied in this paper
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-144-S2 xls]

Additional file 2

Distribution of standard deviation across tissues. The left figure dis-
plays the distribution for human data whereas the right one shows mouse
data. The background distribution, consisting of all genes present on the
array but imprinted genes of standard deviation for each gene across tis-
sues is marked in black. The standard deviation of imprinted genes is dis-
played as red histograms.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-144-S1.pdf]

Additional file 3

Pairwise comparison of mouse tissues. Here we report the p values
resulting from two sample t-test of each pair of mouse tissues. For this
based on the relative expression levels of imprinted genes studied in mouse
we calculated for each two tissues the p value of student's t test.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-144-S3 xls]

Additional file 4

Comparison of tissue-specific expression of randomly sampled and
imprinted orthologous genes. The median, mean, 15t and 3" quartile of
1000 times randomly sampled non imprinted orthologous genes for each
tissue are shown in columns 2-5. In column 6 the Pearson correlation
coefficient comparing randomly sampled genes with imprinted genes rela-
tive expression is displayed, column 7 gives the respective quartile accord-
ing to the randomly sampled distribution and column 8 indicates with a
star the cases, where the Pearson correlation exceeds the 15t or 3™ quartile.
a median, mean, 1st quartile and 2nd quartile Pearson correlation expres-
sion of 1000 times random sampling of non imprinted orthologous genes
in each tissue. b Pearson correlation of imprinted genes expression com-
paring human and mouse in each tissue.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-144-S4 xls]
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