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Abstract
Background: It has been demonstrated that a reliable and fail-safe sequencing strategy is
mandatory for high-quality analysis of mitochondrial (mt) DNA, as the sequencing and base-calling
process is prone to error. Here, we present a high quality, reliable and easy handling manual
procedure for the sequencing of full mt genomes that is also appropriate for laboratories where
fully automated processes are not available.

Results: We amplified whole mitochondrial genomes as two overlapping PCR-fragments
comprising each about 8500 bases in length. We developed a set of 96 primers that can be applied
to a (manual) 96 well-based technology, which resulted in at least double strand sequence coverage
of the entire coding region (codR).

Conclusion: This elaborated sequencing strategy is straightforward and allows for an
unambiguous sequence analysis and interpretation including sometimes challenging phenomena
such as point and length heteroplasmy that are relevant for the investigation of forensic and clinical
samples.

Background
Investigations of the human mt genome are in the focus
of biological and medical scientific disciplines. Compared
to nuclear DNA (nDNA), mitochondrial DNA (mtDNA)
is more vulnerable to oxidative damage and undergoes a
higher rate of mutation [1]. Because of these features the
analysis of the mt genome has become a proven tool in
population genetics. A multi-copy genome without
recombination which accumulates mutations allows for
the establishment of phylogenetic trees [2]. It was the
information from the highly variable mitochondrial con-
trol region (CR) that lifted the secret of human evolution
starting in Africa about 150000 years ago and gave an

insight in human migration all over the world within the
past 60000 years [3,4]. Sequences of full mt genomes are
necessary to decipher yet not defined haplotypes and
assign them to their phylogeographic environment.

Mitochondrial DNA mutations in the coding region
(codR) have been associated with several pathologies [5]
including cancer [6-9]. During oxidative phosphorylation
(OXPHOS) mitochondria produce reactive oxidative spe-
cies (ROS) that potentially induce DNA mutations. Such
an initial mutation is heteroplasmic with the mutated var-
iant constituting a minority [10]. In the course of several
replications the heteroplasmic mutation may become
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dominant leading to cancer [8]. This theory is based on
the results of several investigations on cancer tissues [11-
18]. Unfortunately, numerous articles addressing that
issue are erroneous as reviewed in [19,20]. On the one
hand it is the lack of phylogenetic knowledge and the
ambiguous mtDNA alignment that led to false conclu-
sions of mtDNA mutations to be tumor-specific rather
than evolutionary caused. On the other hand, laboratory-
, sequencing-, and analysis errors led to wrong base-calls
[21]. Hence, flawed data hamper a precise interpretation
of the conjunction between mtDNA mutations and the
complex process of tumor development.

For forensic as well as for phylogenetic purposes we have
already successfully established evaluated sequencing
strategies that proved to be useful in a number of investi-
gations where precise base-calling was necessary for the
CR [22-26], however such stringency is lacking for the
whole mt genome. The published protocols vary concern-
ing the number and sizes of PCR products, the chemistry
employed, and the number of sequencing primers [27-
31]. One review reports the use of 58 sets of unique
sequencing primers to completely cover the mt genome,
while another protocol provides 77 sequencing primers
for the codR and 7 additional primers for the CR [27].
There, sequencing is performed on 12 amplicons that
cover the whole mt genome in an overlapping manner
[29]. In a recent protocol [28] the amplification of the
entire mt genome was conducted with only two overlap-
ping amplicons, followed by 48 upstream and down-
stream sequencing reactions. Whereas amplicon sizes
must be kept short for forensic samples for reasons of lim-
ited DNA quality and quantity, a reduction of the neces-
sary amplicons is desirable for other applications, where

usually fresh DNA is obtained. This simplifies the labora-
tory work and minimizes potential amplicon mix-up [19].
Independent of the amplification strategy high sequence
quality is required to achieve reliable base-calling.

We addressed this issue by presenting a set of 96 carefully
selected sequencing primers that are embedded in a relia-
ble and fail-safe sequencing strategy. The following crite-
ria were applied to guide the development. (1) Each
nucleotide reported in the consensus sequence should
derive from at least two independent sequencing reactions
using different primers (double strand coverage) to avoid
the reporting of phantom mutations and other ambigu-
ous base-callings. (2) We envision a minimum number of
PCR products to reduce the chance for amplicon mix-up
during the (manual) set-up of sequencing reactions and
(3) we selected primers that produce sequences with an
optimal signal-to-noise ratio to enable unequivocal
assignment of point and length heteroplasmy.

Results
Methodical procedure
The complete mtDNA was amplified using 2 overlapping
fragments each about 8.5 kb in length with primers pub-
lished in [28]. Fragment A ranges within nucleotide posi-
tions 2499 and 10837, fragment B between 10672 and
2669 comprising the CR (Table 1, Figure 1, step3).

The sensitivity of the amplification reaction was elicited
with 1000, 2500, 5000, and 10000 molecules of quanti-
fied mtDNA [32]. PCR yield and specificity were visual-
ized by polyacrylamide gel electrophoresis (Figure 2).
Even though the density of the banding pattern varied sig-
nificantly (depending on the amplified DNA amount),

Overview of the laboratory and analysis procedureFigure 1
Overview of the laboratory and analysis procedure. Tissue and blood samples were extracted using the EZ1 biorobot 
(Qiagen, step 2). Mt genomes were amplified as two overlapping fragments A and B (step 3), which were added to the respec-
tive pre-pipetted sequencing primers (step 4). Cycle sequencing products were analyzed by capillary electrophoresis (3100 
Applied Biosystems, step 4).
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Table 1: List of primers for amplification and full double-stranded sequence coverage of the entire mtDNA codR

Name Sequence 5' Corresponding fragment

PCR FampA AAATCTTACCCCGCCTGTTT A
PCR RampA AATTAGGCTGTGGGTGGTTG A
PCR FampB GCCATACTAGTCTTTGCCGC B
PCR RampB GGCAGGTCAATTTCACTGGT B

1 F1 CCGCTTCTGGCCACAGCACT B
2 F2 GGTTGGTCAATTTCGTGCCAG B
3 R1 ACTTGGGTTAATCGTGTGACC B
4 F3 CATCAAGCACGCAGCAATG B
5 F4 CTCACCACCTCTTGCTCAGC B
6 F5 CTTGACCGCTCTGAGCTAAAC B
7 F6 AAGCTAAGACCCCCGAAACC B
8 F7 AAACCTACCGAGCCTGGTG B
9 F8 GAGGAACAGCTCTTTGGACAC B
10 F9 TCGTCCCAACAATTATATTACTACCA B
11 R2 CTGTTTGTCGTAGGCAGATGG B
12 F10 AACGCCACTTATCCAGTGAACC B
13 F11 GACTCCCTAAAGCCCATGTCG B
14 F12 CATCTGCCTACGACAAACA B
15 F13 ACAGCCATTCTCATCCAAACCC B
16 F14 AACCACGTTCTCCTGATCAAA B
17 R3 GATATCGCCGATACGGTTG B
18 R4 AGCGGATGAGTAAGAAGATTCC B
19 R5 TTGAAGAAGGCGTGGGTACAG B
20 F15 TTCATCCCTGTAGCATTGTTCG B
21 F16 TTGCTCATCAGTTGATGATACG B
22 F17 CACTCTGTTCGCAGCAGTATG B
23 F18 CATCATCGAAACCGCAAAC B
24 F19 TTTCTCCAACATACTCGGATTC B
25 F20 ACAAACAATGGTCAACCAGTAAC B
26 F21 TCCAAAGACAACCATCATTCC B
27 R6 TTATCGGAATGGGAGGTGATTC B
28 F22 TACTCACCAGACGCCTCAACCG B
29 F23 AGTCCCACCCTCACACGATTC B
30 F24 CGCCTACACAATTCTCCGATC B
31 R7 CGGTTGTTGATGGGTGAGTC B
32 F25 AAATGGGCCTGTCCTTGTAG B
33 R8 TCATAAGGGCTATCGTAGTTTTC B
34 F26 GTGGCAAGAAATGGGCTAC B
35 F27 AACATATAACTGAACTCCTCACACC B
36 F28 GCCGCAGTACTCTTAAAACTAGG B
37 F29 AGGACTCAACATACTAGTCACAGC B
38 F30 GCCATACTAGTCTTTGCCGC B
39 R9 GCTGTGTTGGCATCTGCTC B
40 F31 AAAGACCACATCATCGAAACC B
41 F32 CTAACAGGTCAACCTCGCTTCC B
42 F33 CCTTCATAAATTATTCAGCTTCCT B
43 F34 CAATGATATGAAAAACCATCGTT B
44 R10 GGATGGCGGATAGTAAGTTTGT B
45 F35 CAGGGTTGGTCAATTTCGT B
46 F36 AATGGTTTGGCTAAGGTTGT B
47 R11 ACGAACAATGCTACAGGGATG B
48 F37 GGCATTATCCTCCTGCTTGCAACTAT B
49 R12 ATGTCCTGATCCAACATCGAG A
50 R13 AGAAGAGCGATGGTGAGAGC A
51 F38 CGACCTCGATGTTGGATCAGGACA A
52 F39 AGATGGCAGAGCCCGGTAATC A
53 F40 ACTACAACCCTTCGCTGACG A
54 F41 CCCTAGCATTACTTATATGATATGTCTCCATACCCATTACAATCTCC A
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the sequence analysis of all fragments resulted in compa-
rably clear data (Figure 3, right). Also the amount of 1000
mtDNA genomic equivalents (GEs) that roughly corre-
sponds to the mtDNA content of a single lymphocyte
(fresh sample) proved sufficient for reliable results (given
that the mtDNA is intact). PCR products showed light
smear on the polyacrylamide gel (Figure 2), especially
with increasing template amount. However, we did not
observe negative effects on the quality of the sequencing
results (Figure 3). No evidence of contamination was
observed, neither in the non-template controls nor during
evaluation of the individual mtDNA haplotypes. Both
extraction blanks and PCR negative controls were free of
signal. The mtDNA of two tissues (breast and blood) was
extracted, amplified and sequenced from each person at
different times and corresponding haplotypes gave a

match after comparison (the haplotypes did not match
laboratory staff).

Amplicons were purified according to two different proto-
cols. We compared an enzymatic digestion method with a
filtration method (Figure 2). We did not observe signifi-
cant differences with respect to the DNA amount after
purification except for one sample. There, the banding sig-
nal of the ExoSAP-IT purified product was less dense as
compared to the filtrated one. However, despite of the dif-
ferent banding intensities (Figure 2) we did not observe
relevant changes in sequencing quality between the elec-
tropherograms (Figure 3). The filtration method has the
appealing advantage that it is less expensive for PCR prod-
uct purification of few samples present in large volumes
(up to 0.5 ml). One Microcon column is needed for each

55 F42 TCAGGCTTCAACATCGAATACG A
56 F43 CCCATCCTAAAGTAAGGTCAGC A
57 F44 CCCTTTCACTTCTGAGTCCCAG A
58 F45 CACCATCACCCTCCTTAACC A
59 R14 GCTGAGTGAAGCATTGGACTG A
60 F46 TAAGCACCCTAATCAACTGGC A
61 R15 ATAGTGATGCCAGCAGCTAGG A
62 F47 CGCATCTGCTATAGTGGAGG A
63 R16 TTTCATGTGGTGTATGCATCG A
64 F48 GCCATAACCCAATACCAAACG A
65 F49 GAGGCTTCATTCACTGATTTCC A
66 R17 GGGCAGGATAGTTCAGACGG A
67 F50 TTCCCACAACACTTTCTCGGCC A
68 R18 AAGTTAGCTTTACAGTGGGCTCTAG A
69 F51 CGGTCAATGCTCTGAAATCTGTG A
70 F52 CTGTTCGCTTCATTCATTGCC A
71 R19 GTGGCGCTTCCAATTAGGTG A
72 R20 GTGCTTTCTCGTGTTACATCG A
73 R21 GAAAGTTGAGCCAATAATGACG A
74 F53 TTTCACTTCCACTCCATAACGC A
75 F54 CCTGATACTGGCATTTTGTAGATGTGG A
76 F55 ACTACCACAACTCAACGGCTAC A
77 F56 CTAACCGTGCAAAGGTAGCA A
78 F57 GCAATTCCCGGACGTCTAAACCAAA A
79 F58 GCCATAATATGATTTATCTCCACA A
80 F59 AAACCCTCGTTCCACAGAA A
81 F60 GATGAATAATAGCAGTTCTACCGT A
82 F61 CAACGTAAAAATAAAATGACAGTT A
83 F62 ATATGAAAATCACCTCGGAGC A
84 R22 AGTTACAATATGGGAGATTATTCC A
85 F63 CGCAAGTAGGTCTACAAGACG A
86 F64 CTAATCTTCAACTCCTACATACTTCC A
87 R23 ATCTGTTTTTAAGCCTAATGTGG A
88 F65 AAGATTAAGAGAACCAACACCTCT A
89 F66 AACAACCGACTAATCACCACCCAACAATG A
90 F67 TCATCTTCACAATTCTAATTCTACTG A
91 F68 TCGAGTCTCCCTTCACCATT A
92 F69 CGGCTTCGACCCTATATCC A
93 R24 GGTAAAAGGAGGGCAATTTCT A
94 F70 CTACTCTCATAACCCTCAACACC A
95 F71 ATTAAACCAGACCCAGCTACG A
96 F72 AGCATATTTCACCTCCGCTAC A

Table 1: List of primers for amplification and full double-stranded sequence coverage of the entire mtDNA codR (Continued)
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sample irrespective of the DNA volume to be added,
whereas the required amount of ExoSAP-IT is required to
be proportional to the volume of DNA (2 μL per 5 μL
PCR-product).

We established a set of 96 sequencing primers that lead to
full double-sequence coverage of the complete mtDNA
codR (Figure 4). Primer sequences were partly taken from
[29,33] and http://insertion.stanford.edu/primers as well
as designed inhouse [34]. In combination with sequences
obtained from the CR [35] this resulted in high-quality
sequence information for the whole mtDNA genome.
Such a strategy makes sense, as full mt genome sequenc-
ing is usually carried out on selected samples that have
earlier been analyzed within the CR. Sequencing was per-
formed on the basis of the Big Dye Terminator Ready
Reactions Kit protocol (Applied Biosystems, Foster City,
CA). The quality of the primers was generally stable
despite of multiple freezing/thawing cycles of the stock
primer plate. For 6 primers (R4, R7, R18, R20, R21, F14)
out of 96 the signal-to-noise ratio decreased after the fifth
freezing/thawing cycle. An example of the general quality
of the sequences is shown in Figure 5. The sequence is dis-
played by two primers in both directions confirming
point heteroplasmy of the variants A and G at position
2673 within the NADH dehydrogenase (ND2) gene.

Sequence electropherograms did not differ substantially
in terms of the signal-to-noise ratio as well as with respect
to the relative peak heights when comparing the tested
mtDNA template amounts. Although a relative increase of

the fluorescence signal in the raw data was detected (Fig-
ure 3, left), the quality of the sequence electropherograms
were comparable (Figure 3, right). In this study we tested
template mtDNA amounts between 1000 and 10000 GEs
that turned out to cover an appropriate template amount
range for long PCR fragments.

Data analysis and quality assurance
Upon analysis of the raw data the sequences were aligned
and the base-calls reviewed twice by two independent sci-
entists, such as has been found invaluable for CR analysis
[35]. Consensus sequences were aligned and compared to
the revised Cambridge Reference Sequence (rCRS) [36,37]
following nomenclature guidelines for mtDNA typing
[38-40]. In an independent analysis the two consensus
sequences underwent comparison by means of a dedi-
cated in-house software [41,42]. This concept enabled full
electronic data handling minimizing the risk to introduce
clerical errors.

Assignment of the samples to their specific haplogroups
We present the complete mtDNA sequences of 10 clinical
samples from 5 patients with respect to the phylogeny
[43] (Figure 6) [sequences were deposited in GenBank
http://www.ncbi.nlm.nih.gov/Genbank/ with accession
numbers FJ384431–FJ384440]. These patients were clas-
sified as typical West-Eurasian lineages as members of
haplogroups W1d, T2b, V4, H5, and H15b [33,44,45]. As
shown in Figure 6 (highlighted in light grey), the mtDNA
sequences generated from the primary cancerous tissue
and the peripheral blood cells were identical in all 5
patients.

Discussion
We present a reliable laboratory strategy for the amplifica-
tion and sequence analysis of the full mt genome that
meets a high quality demand. The method is conceived
for samples that include an adequate amount and quality
of DNA, such as found in fresh clinical and forensic sam-
ples and can be conducted by any laboratory in the molec-
ular field without the requirement for automated liquid
handling devices. The complexity of the laboratory con-
cept is low, so that handling errors and risk of sample mix-
up and contamination are minimized.

Effects of primer-storage on sequencing quality
It has been shown in this study that the sequence perform-
ance of the majority of primers was not affected by differ-
ent storage conditions. Only 6 primers (R4, R7, R18, R20,
R21, F14) suffered from a treatment of more than 5 freez-
ing/thawing cycles. Temperature changes caused a dimin-
ished function visualized by a disadvantageous signal-to-
noise ratio depicted in the electropherogram. The ability
to correctly identify point heteroplasmy strongly depends
on the quality of the overall signal height and the signal-

PCR products of fragments A and B assessed in a polyacryla-mide gelFigure 2
PCR products of fragments A and B assessed in a 
polyacrylamide gel. (1) Amplification products of unpuri-
fied fragments A and B (each 5000 genomic equivalents). (2) 
Fragment A purified with filter plates (Microcon (Millipore), 
left side) and digestion (ExoSAP-IT USB, right side). PCR 
template amounts were 1000 (lane 1), 2500 (lane 2), 5000 
(lane 3) and 10000 (lane 4) mtDNA genomic equivalents.

Microcon (Millipore) ExoSAP-IT (USB)

A           B

unpurified amplicons

Marker

1 2

1         2         3       4     NTC 1         2         3       4     NTC

purified amplicons
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to-noise ratio. Consequently, an apparent improvement
of the storing conditions would be the generation of stock
plates including less primer volume sufficient for about 5
sequencing reactions. Alternatively, sequencing primers
could be kept in a low tris buffer at 4°C.

Applications in various fields
Recent research has been addressing the role of mitochon-
dria and the mtDNA in aging and cancer as mitochondria
participate in fundamental processes of the cellular
metabolism [46]. The mitochondrial theory of aging
implies that tissue function sustains until the number of
cells declines below a threshold. The time range required
to reach this threshold is related to the rate at which mito-
chondrial and mtDNA damage accumulates. If the mito-
chondrial ROS production rate increases, the rate of cell
loss will also increase, resulting in early tissue failure and
age-related disease.

Not only aging processes but also carcinogenesis have
been linked to mutation based mitochondrial dysfunc-
tion since a general feature of tumor biology is the

impaired energy metabolism [47]. For those investiga-
tions addressing aging and tumor biology, mitochondrial
genes encoded in the nucleus and in the mitochondrial
DNA are being analyzed. Genes encoded in the mitochon-
drial DNA can be systematically targeted with this evalu-
ated sequencing strategy.

Furthermore, it can be helpful for population genetic and
forensic applications where further information to the CR
is required. In the forensic context this is particularly rele-
vant for the few CR haplotypes that are shared more com-
monly within a population. In the West Eurasian
population this is the case for the CR haplotypes 16519C
263G 315.1C and 263G 315.1C, which occur at frequen-
cies of 0.013 and 0.002, respectively [48]. When such hap-
lotypes are observed in a forensic case between suspect
and crime scene samples one needs to consider the possi-
bility that the sequences are identical by state and not by
descent. Especially, as it is known that these haplotypes
occur in more haplogroup backgrounds, such as H1, H2a,
H3, H7, H10, H13a1, HV, R0 and the great bulk of yet
unidentified sub-H lineages [26,49]. To increase the infor-

Sequence analysis of different mtDNA dilutionsFigure 3
Sequence analysis of different mtDNA dilutions. left: raw data and (right) electropherograms of the sequencing reac-
tions: amplification was carried out using 1000, 2500, 5000 and 10000 genome equivalents (GEs) of mtDNA using 2 μL of puri-
fied (Microcon) PCR products for cycle sequencing. Sequence electropherograms of fragment A from position 5798 to 
position 5828 are shown as example. Sequences of amplicons purified with ExoSAP-IT are not displayed as they equal with 
respect to the quality of the purified amplicons using filtration.

1000 GE 

2500 GE 

5000 GE 

10000 GE 

pos 5798 pos 5828

pos 5798 pos 5828

pos 5798 pos 5828

pos 5798 pos 5828

2500 GE 
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mation content of such haplotypes we have earlier intro-
duced a screening method based on single-base-extension
reactions that target informative SNPs (single nucleotide
polymorphism) in the codR [50]. Such screening methods
are a valuable supplement to standard mtDNA sequenc-
ing as they generally increase the discrimination power
and indicate the hg-affiliation of an mtDNA haplotype
[49]. The logical continuation of this strategy would be
the analysis of entire mt genomes in forensic casework for
achieving maximum discrimination power. The current
sequencing technology allows that only for relatively high
sample qualities, but it is a first step towards mt genome
sequencing in forensics.

In the population genetic field an accurate deciphering of
the human mitochondrial phylogeny can only be con-
ducted on the basis of full mt genomes. As a general
approach full genome mtDNA sequencing is carried out
on a defined selection of CR sequences as evidenced by
recent examples [51,52].

Meaning of obtaining high quality sequences
The focus of this strategy lies on applications where secure
base-calling and high quality sequence data are manda-
tory for interpretation. It is well known that mitochon-
drial mutations associated to disease such as
mitochondrial encephalomyopathies occur in heteroplas-
mic status and that the severity and the progression of the
syndrome depend on a threshold above which the mutant
triggers the pathological pathway [53,54]. The contribu-
tion of mtDNA mutations to carcinogenesis underlies the
same assumption. It appears evident that particular mito-
chondrial defects with functional consequences exhibit an
advantage in tumor development only if a certain thresh-

old of mutated mtDNA populations is achieved. All the
more it is important to pinpoint the relative quantity of
these heteroplasmic mutations to estimate functional
consequences of the genes involved. Moreover, good
sequencing quality is the prerequisite to distinguish early
stage point heteroplasmy from signal background which
might be an issue in early stage cancer detection [55].

The occurrence and the frequency of mtDNA control
region (CR) point heteroplasmy is an important issue in
forensic case work [56] as the detection of point hetero-
plasmy, especially at low level, increases the power of dis-
crimination between sequences [57].

Conclusion
The codR sequencing method described herein is an opti-
mized protocol that can also be applied in laboratories
that do not have automated processes available. The over-
all aim, namely the achievement of a secure base-calling
method was accomplished by the assortment of primers
that allow for full double-stranded sequence coverage of
the whole mtDNA genome (in combination with previ-
ously described CR sequencing strategies). Particular care
was taken on the selection of the primers based on low
background signal that is crucial for the unambiguous
assessment of length and point heteroplasmy. Moreover,
we kept the complexity of the laboratory process as low as
possible. This was achieved by a 96- well based pipetting
format for cycle sequencing set-up using only two PCR
amplicons per sample which reduces the chances of con-
tamination, handling error and sample mix-up.

Methods
Samples
A total of 10 biopsy samples were collected from patients
with diagnosed invasive mamma carcinoma at the Clini-
cal Department of Radiology, Innsbruck Medical Univer-
sity. They were immediately transferred into 1.5 mL vials
and extracted or frozen at -20°C and extracted within the
next 7 days. Corresponding blood samples were collected
independently. Peripheral blood samples were either
extracted upon receipt or frozen at -20°C and then proc-
essed within 7 days. There was full consent of the patients
to participate in this study. For the sensitivity study DNA
was extracted from peripheral blood of a healthy volun-
teer of European ancestry with informed consent.

DNA Extraction
The complete workflow is sketched in Figure 1. DNA was
extracted from biopsies and blood via the EZ1 Biorobot
workstation (Qiagen, Hilden, Germany). Extraction was
based on the protocol of the investigator kit (Qiagen) for
extraction of blood and tissue samples, with modifica-
tions as follows: tissue samples (about 0.5 cm × 1 mm)
were digested with 15 μL proteinase K in 290 μL lysis

Alignment of 96 sequence strands covering the mtDNA codRFigure 4
Alignment of 96 sequence strands covering the 
mtDNA codR. Multiple sequence coverage is indicated in 
blue color for regions with sequences of equally oriented 
primers whereas green areas indicate multiple coverage 
derived from forward and reverse sequencing reactions. Ten 
control region sequences [36] were added to the contig to 
complete the full mt genome sequence.

multiple coverage forward and reverse sequencing direction

multiple coverage one sequencing direction
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buffer (included in the kit) up to 4 hours and treated with
the "trace" protocol.

Primer Design
A total of 96 primers were used for singleplex reactions.
Primer sequences were taken from [29,33] and new prim-
ers were designed in this study with PRIMER 3 software
[34]. Possible heteroduplex formations, primer dimers
and hairpin structures were analyzed with OligoAnalyzer
free software: http://eu.idtdna.com/analyzer/Applica
tions/OligoAnalyzer/ (Integrated DNA Technologies, Cor-
alville, IA). Melting temperature of primers was approxi-
mately 50°C and the GC-content was between 40 – 60%.
The settings for the calculations were: Oligo conc. n: 0.25
μM; Na+ conc.: 50 mM.

Amplification and Sequencing
For amplification we used the Advantage GC Genomic LA
Polymerase(Clontech, Bella Avenue Mountain View, Cal-
ifornia) including a small amount of proofreading

enzyme, a hot start antibody and a 3' to 5' proofreading
exonuclease activity. It enables synthesis of PCR products
of 8.5 kb using human genomic DNA templates.

Amplification reaction was carried out on a thermal cycler
(Multicycler PTC240 Tetrad2, Hercules, CA) in a total vol-
ume of 50 μL each fragment (A and B) comprising 2.5 mg/
mL BSA (St. Louis, Missouri), 2.5 mM each dNTP
(Applied Biosystems), 10 mM each primer, 5U LA
Genomic DNA polymerase (Clonetech) 1000 – 10000
mtDNA GEs. Thermal cycling conditions comprised an
initial 3 min denaturation step at 93°C, followed by 93°C
for 15 s, 60°C for 30 s and 68°C for 5 min 14 times pro-
ceeding 27 times with 93°C for 15 s, 55°C for 30 s and
68°C for 9 min increasing for 10 s each cycle. Amplicons
were purified from residual primers and dNTPs enzymat-
ically with ExoSAP-IT (ExoSAP-IT, USB, Cleveland, Ohio)
and comparatively with a filtration method (Microcon
YM-30 Centrifugal Filter Units: Millipore, Billerica, Massa-
chusetts).

Example of a sequence electropherogramFigure 5
Example of a sequence electropherogram. The sequences of forward primer F56 reading 3' of nucleotide position 2579 
and of reverse primer R12 reading 5' of position 3006 embrace point heteroplasmy at nucleotide position 2673 in the ND2 
gene.

point heteroplasmy
G2673R
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From a 1.5 μM stock plate containing all 96 sequencing
primers (Figure 1, step 4), 2 μL were decanted into a new
plate right before each sequencing reaction. Big Dye Ter-
minator mastermix (containing 1 μL BigDye Terminator
v1.1 Cycle Sequencing mix (Applied Biosystems) and 3 μL
BigDye Terminator v1.1 Sequencing Buffer (Applied Bio-
systems)), as well as 2 μL mtDNA Fragments A or B were
aliquoted into the appropriate wells as shown in Figure 1
(step 4). 2 μL distilled water was added to reach a final
volume of 10 μL. Pipetting those small volumes was per-
formed using an 8-channel epMotion workstation
(Eppendorf AG, Hamburg, Germany). Cycle sequencing
was performed (after a first denaturation step of 95°C for
1 min) for 25 cycles of 10 s at 95°C, 5 s at 50°C, and 4
min at 60°C.

Post sequencing cleanup
Sequencing reaction products were purified from residual
dye terminators using Sephadex G-50 Fine (Amersham,
Buckinghamshire, United Kingdom) and Multiscreen fil-
ter plates (Millipore) according to the manufacturer's pro-
tocol. The cycle sequencing products were diluted by
adding 10 μL of distilled water and the dilutions were cen-
trifuged through the filter plate into an optical 96-well
plate for electrophoretic separation. The entire procedure

of diluting cycle sequencing products and transferring the
dilutions onto the Sephadex columns in the filter plate
was again performed by the epMotion workstation. When
spinning cycle sequencing products through the filter
plate, unequal amounts of product may be recovered
throughout the plate. In order to avoid this, the blocks'
orientations in the centrifuge carriage were reversed after
2.5 min and the blocks were spun a second time for 2.5
min to obtain consistent amounts of purified products.
The purified products were finally diluted by adding each
20 μL of distilled water to achieve volumes of 45 μL.

Capillary Electrophoresis
Electrophoretic separation was carried out on an ABI 3100
capillary sequencer (Applied Biosystems) using POP6 and
a 36 cm capillary array. The run module conditions were
as follows: injection time: 22 s, injection voltage: 1 kV, run
voltage: 15 kV, run current: 10 μAmps, run temperature:
55°C.
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