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Abstract

Background: Angiogenesis correlates with patient survival following acute ischaemic stroke, and
survival of neurons is greatest in tissue undergoing angiogenesis. Angiogenesis is critical for the
development of new microvessels and leads to re-formation of collateral circulation, reperfusion,
enhanced neuronal survival and improved recovery.

Results: Here, we have isolated active (CD105/Flt-1 positive) and inactive (CD105/Flt-1 minus
(n=5) micro-vessel rich-regions from stroke-affected and contralateral tissue of patients using
laser-capture micro-dissection. Areas were compared for pro- and anti-angiogenic gene expression
using targeted TagMan microfluidity cards containing 46 genes and real-time PCR. Further analysis
of key gene de-regulation was performed by immunohistochemistry to define localization and
expression patterns of identified markers and de novo synthesis by human brain microvessel
endothelial cells (HBMEC) was examined following oxygen-glucose deprivation (OGD). Our data
revealed that seven pro-angiogenic genes were notably up-regulated in CD 105 positive microvessel
rich regions. These were, beta-catenin, neural cell adhesion molecule (NRCAM), matrix
metalloproteinase-2 (MMP-2), tissue inhibitor of matrix metalloproteinase-| (TIMP-1), hepatocyte
growth factor-alpha (HGF-alpha), monocyte chemottractant protein-1 (MCP-1) and and Tie-2 as
well as c-kit. Immunohistochemistry demonstrated strong staining of MMP-2, HGF-alpha, MCP-1
and Tie-2 in stroke-associated regions of active remodeling in association with CD105 positive
staining. In vitro, OGD stimulated production of Tie-2, MCP-I and MMP-2 in HBMEC,
demonstrated a de novo response to hypoxia.

Conclusion: In this work we have identified concurrent activation of key angiogenic molecules
associated with endothelial cell migration, differentiation and tube-formation, vessel stabilization
and stem cell homing mechanisms in areas of revascularization. Therapeutic stimulation of these
processes in all areas of damaged tissue might improve morbidity and mortality from stroke.
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Background

Stroke is a leading cause of death and disability in the
Western world. Neuronal survival in peri-infarcted
regions determines the extent of patient recovery [1].
Patients with a higher density of blood vessels have
reduced morbidity and mortality [2]. Restoration of cere-
bral microvascular circulation following angiogenesis/
revascularization in peri-infarcted regions may salvage tis-
sue, enhance neuronal survival and enhance functional
recovery after stroke [3]. Following rat middle cerebral
artery occlusion (MCAO), new blood vessels initiated
through vascular buds, formed regular connections with
intact microvessels within one week of ischaemia, with
patterns similar to those in normal brain [4]. In disease
situations, abnormally behaving cells are surrounded by
heterogeneous tissue elements, and the areas of interest/
diseased cells may constitute less than 5% of the volume
of a sample. Conventional technology have employed
microarrays to identify general changes in gene and pro-
tein regulation in biopsies from normal and abnormal
regions of atherosclerotic plaques [5,3,6] and stroke tissue
[7,8], but have failed to discover cell-specific changes, and
in particular, those associated with angiogenesis. We
hypothesise that within active regions of remodelling,
angiogenic and non-angiogenic areas may co-exist. Laser-
capture microdissection (LCM) can be used to isolate
microvessels in evolving lesions. When combined with
the latest RNA microscale extraction and analysis technol-
ogy, this provides a powerful and sensitive tool for identi-
fication of genetic changes associated with blood vessel
activation.

CD105 is the best known marker of active endothelial
cells (EC) in diseased angiogenic tissues and is of prog-
nostic value and a potential target for anti-angiogenic
therapy in a variety of solid tumours [9-11]. CD105 is
expressed by active EC making it the perfect target for
identification of regions of tissue remodelling after stroke.
The expression of CD105 in brain after stroke has not
been studied, however, CD105 expression was induced by
hypoxia in murine brain microvascular EC via mitogen
activated protein kinase (MAPK) pathways [12] suggest-
ing it is also a marker of active neovessel formation in
ischaemic tissues. Using CD105 and Flt-1 as discriminat-
ing markers of microvessel activation, we aimed to iden-
tify the molecular fingerprint responsible for neovessel
activation and revascularization following stroke.

Results

Areas rich in CD105-positive or CD31-positive/CD105-
negative vessels were chosen for laser-capture as shown in
(Figure 1). The cDNA obtained from 1 ng of total RNA
was pre-amplified using the TagMan Applied Biosystems
PreAmp Master Mix Kit (Figure 2Ai-ii).

http://www.biomedcentral.com/1471-2164/10/113

Pre-amplification of RNA demonstrated equality of
multiplication of key genes

Pre-amplification analysis demonstrated that Flt-1,
CD105 and CD31 amplified to a similar extent and within
acceptable limits with AACt lower than the cut off point of
1.5 and no significant differences between the Cts of any
of the post-amplified genes (Figure 2Ci and 2Cii). Equal-
ity of gene amplification was tested using control (GUS),
and CD31, CD105 and Flt-1.

Selected immuno-positive CD105-positive tissue samples
were enriched with CD105 and Fit-1 gene expression
Confirmation was made that the samples were CD31/
CD105/FIt-1 enriched using TagMan real-time PCR.
Micro-areas chosen by laser-capture on the basis of
CD105/Flt-1 THC demonstrated significant increase in
their gene expression (Figure 2Ciii; Mann Whitney U test;
p = 0.009 and p = 0.047 respectively) and a strong corre-
lation was also seen between CD105/GUS and Flt-1/GUS
in all samples indicating accurate sampling of angiogenic
and non-angiogenic regions (Spearman rank p = 0.03: Fig-
ure 2Civ). No significant difference in expression of CD31
in paired samples was seen (data not shown).

TaqMan microfluidity card comparison of samples
revealed significant differences in expression of key
angiogenic genes correlating with CD 105 and Flt-1 gene
expression

Of the 47 genes tested, 7 pro-angiogenic genes were signif-
icantly up-regulated in CD105/Flt-1 positive vessel con-
taining regions (c-kit, MCP-1, B-catenin, Tie-2, MMP-2,
NRCAM and TIMP-1; Figure 3A and Bi and ii; Tie-2
shown) and a further one with RQ increased to > than 0.5
in 4/5 samples (HGF-a). None of the anti-angiogenic
genes present in the arrays was significantly modified.

Immunohistochemistry confirmed expression of HGF-¢,
MCPI, MMP-2 and Tie-2 in microvessels from stroked
brain regions

HGF-a was expressed strongly in microvessels of varying
size from all active stroke regions after stroke (Figure 4A-
C; Bi-iii). Old infarcted regions with dead cells were not
stained. In contrast, there was no observable expression of
HGF-a in normal looking blood vessels from the contral-
ateral region. Glia and neurons were-unstained however,
occasional inflammatory cells were positively stained in
stroked regions. Many of the HGF-a-positive vessels, par-
ticularly those with malformed/impatent morphology
stained CD105 positive suggesting cellular activation or
angiogenesis was occurring in these areas (Figure 3D).
Tie-2 showed a similar pattern with strong staining in
small and medium sized, blood vessels from peri-inf-
arcted and infarcted regions (Figure 5A-D; Bii shows
higher powered micrographs; x 100). Again, there with no
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Photomicrograph showing CD105-positive microvessels in histological areas chosen for laser-capture micro-
vessels in peri-infarcted brain tissue (i-iii). CD105-positive clusters of blood vessels (inserts-top show the vessels were
also Flt-1-positive. (iv) CD3|-positive area (circled; insert) and (v) this area stained negative for CD105 (circle).

observable staining in sections from normal looking con-
tralateral tissue (A; arrows). D; Tie-2 also co-localised in
CD105-positive immature neo-vessels suggesting an asso-
ciation with angiogenesis. Tie-2 expression was specific
for blood vessels with no staining of glia or inflammatory
cells; however occasional dying neurons from the inf-
arcted core had weak cytoplamic staining. MMP-2 was
strongly expressed in both relative mature and immature
microvessels from stroked regions, particularly in penum-
bral regions undergoing active remodeling (Figure 6Bi-iii
and 6E, showing co-localization with CD105) and also in
cells with the morphological appearance of astrocytes

(Figure 6C) and neurons (Figure 6D). Normal looking
(contralateral tissue was unstained (Figure 6A, arrows).
MCP-1 stained primarily CD105-positive microvessels in
peri-infarcted regions with some positive vessels also in
the infarcted zones (Figure 7Bi-iii and 7C-E). Normal
looking tissue did not stain for MCP-1 (A; arrows point to
blood vessels). Some glia and infiltrating inflammatory
cells were positively stained for MCP-1. In all cases, old
infarcted regions stained negatively for all the antibodies
tested and the majority of staining was seen in active
regions of remodeling and revascularization. A summary
of the findings is given in Table 1.
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A, (i) Area with discreet region of CD105-positive (red;

circle) and CD105-negative (blue: circle) vessels cap-

tured with the laser. (i) RNA extraction from multiple combined laser cut sections showing good RIN and concentration. B,
(i-if) Shows non-significant differences in ACts between pre-amplified genes indicating no bias in gene amplification. (jii) Signifi-
cant increases in gene expression of CD 105 and Flt-1 in the positively selected samples indicated the sampling/IHC was accu-
rate. (iv) Significant correlation between CD 105 and Flt-1 expression in all the tested samples indicated reliability of the

markers to discriminate between active and inactive vessels.

Exposure of HBMEC to OGD in vitro resulted in up
regulation of Tie-2, MCP-1 and MMP-2 protein

When semi-confluent HBMEC were exposed to OGD for
24 h, increased gene expression of Tie-2 (2.5 fold), MCP-
1(11.4 fold) and MMP-2 (2.1 fold) were obtained by real-
time PCR. Values were controlled using the house keeping
gene GUS and a concomitant increase in expression of
HIF-1a (12.4 fold) and Hsp70 (3.3 fold) demonstrated a
strong response to the hypoxic environment (Figure 8A).
All experiments were repeated twice and a representative
example is shown. Immuno-staining showed that an
increase in protein intensity was seen in the cytoplasm of
Pl-positive HBMEC following OGD (24 h) (Figure 8B,
shows MMP-2).

Discussion

Initiation and maintenance of angiogenesis in angiogenic
diseases is a complex process requiring modulation of
numerous pro- and anti-angiogenic molecules operating
through complex intracellular signaling pathways. Identi-
fication of the key instigators of this process will help in
defining future therapies for controlling vascularization.
Here, for the first time to our knowledge, we have isolated
micro-regions of angiogenic and quiescent microvessels
from brain tissue of patients who died from acute ischae-
mic stroke and compared expression of the key angiogenic
genes using real-time PCR and TagMan microfluidity
cards. From nanogram quantities of material, we have
identified up-regulation of 7 genes with key roles in pro-
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Figure 3

A, shows relative expression of de-regulated angiogenic genes in CD105/FIt-1 positive (red) and negative
(blue) samples. Bi and ii, shows regression analysis and significant correlation (Spearman rank) between angiogenic gene
expression and the markers CD105 (i) and Flt-1 (ii) for Tie-2, as an example. Other genes produced similar results.

motion of angiogenesis. Immunohistochemistry demon-
strated a specific association of Tie-2, MCP-1, MMP-2 and
HGF-a in peri-infarcted and infarcted CD105-positive
blood vessels.

Laser-capture microdissection and RNA amplification
technology has allowed the possibility to isolate and
examine specific micro-sized cellular areas from heteroge-
neous tissue components. Previously, Hashimoto et al,
[13], isolated vascular rich areas from synovial tissues and
performed single-real-time PCR analysis on individual
genes following RNA extraction. They demonstrated up-
regulation of VEGF/VEGFR, HIF-1¢, and inhibitor of dif-
ferentiation-2 in blood vessels from inflamed regions of
patients with rheumatoid arthritis. LCM was used to com-

pare blood vessels from glioblastoma multiforme with
those from vessels in normal brain tissue [14]. Pre-ampli-
fication of RNA followed by microarray analysis showed
up-regulation of genes including insulin-like growth fac-
tor binding protein-7 and SPARC. Roy et al, [15], com-
pared global gene expression between blood vessels
isolated by laser-capture from normal skin and identified
de-regulated genes from those within chronic wounded
tissue, utilizing Ulex Europaeus Agglutinin (UEA1) which
binds specifically to EC, to highlight the vessels. We also
found that rapid staining with UEA1 in sterile water did
not degrade the RNA whilst rapid immunostaining
employing buffers did (our unpublished data). To dis-
criminate between active and quiescent vessels, we
labeled serial sections staining in groups of four using
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Table I: Expression of novel angiogenic proteins in active regions of stroked brain tissue

HGF-a
Code In stroke affected areas
Age Sex Survival after stroke (days) Neurones EC Glia Inflamm cells
106-256 77 M 52 - ++++ - +
106-139 84 F 7 - ++++ - +
107-30 68 M 19 - +++ - -
A06-77 75 F 3 - ++ - -
107-15 83 M 7 - +++ - +
106-232 75 M 10 - ++ - -
MMP-2
Code In stroke affected areas
Age  Sex  Survival after stroke (days) Neurones EC Glia Inflamm cells
106-256 77 M 52 + +++ + -
106-139 84 F 7 ++ ++++ +++ -
107-30 68 M 19 ++ +++ ++ -
A06-77 75 F 3 + ++ + -
107-15 83 M 7 ++ ++++ +++ -
106-232 75 M 10 + ++ + -
MCP-1
Code In stroke affected areas
Age Sex Survival after stroke (days) Neurones EC Glia Inflamm cells
106-256 77 M 52 - +++ - +
106-139 84 F 7 - ++++ - ++
107-30 68 M 19 - ++ - +
A06-77 75 F 3 - +++ - ++
107-15 83 M 7 - ++++ - ++-
106-232 75 M 10 - + - +-
Tie-2
Code In stroke affected areas
Age Sex Survival after stroke (days) Neurones EC Glia Inflamm cells
106-256 77 M 52 + +++ - -
106-139 84 F 7 - +++ - -
107-30 68 M 19 ++ +++ - -
A06-77 75 F 3 - ++ - -
107-15 83 M 7 - ++ - -
106-232 75 M 10 + ++++ - -

serial reference staining with anti-CD105, anti-CD31 and
anti-Flt-1 antibodies for vessel identification. We con-
firmed that the areas chosen contained enriched markers
of EC activation using RNA pre-amplification technology
and house keeping controls. This showed that the relative
amplification of genes was similar. One of the main aims
of this work was to identify expression of angiogenic and
anti-angiogenic factors produced in micro-regions of
brain tissue in association with active micro-vessels.
Therefore, in these experiments we carefully dissected
concentrated areas of vessels including closely associated
ECM encompassing any inflammatory components. In
this way, we were able to gain an insight into the microen-
vironment to which the growing vessels were existing.

Expression or synthesis of genes directly by the endothe-
lial cells would feature as the main constituent due to
their high relative concentration (identified by histology
in all samples), however any component consisting of
secreted factors from inflammatory infiltrates would also
be seen giving us an overall view of the composition of
these micro-hotspots.

Real-time PCR analysis of our microfluidity card data
showed significant correlation in expression between de-
regulated angiogenic genes and our markers of EC activa-
tion (CD105 and Flt-1) confirming the validity of our
methodology. MCP-1 was originally identified as an
important chemokine responsible for activation of mac-
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HGF-a expression in stroke tissue: A, tissue from the contralateral hemisphere showed no observable staining
(negatively stained blood vessels are marked with arrows; x 40). B, stroked brain tissue showing many small microves-
sels stained positive for HGF-a. (i; * 40) and (ii and iii) at higher magnification (% 100). C, shows a medium sized microvessel
strongly staining for HGF-al in peri-infarcted tissue (X 100) and Di-iii, double immunoflourescence showing co-localization of
HGF-a (red) and CD105 (green) in peri-infarcted stroke tissue (X 100; sections from 106 15P were used).

rophages and monocytes during inflammation but now is
known to have a direct effect on EC mitogenesis in vitro
and vessel formation in vivo [16,17]. The molecular
mechanisms have not been dissected although Niu et al,
demonstrated up-regulation of MCP-1-induced protein
was necessary for VEGF and HIF-1a induction in HUVEC.
We have shown that MCP-1 is strongly associated with
active microvessels in peri-infarcted regions undergoing
tissue remodeling after stroke.

We also showed a significant increase in Tie-2 expression
in stroked regions. Both angiopoietin 1 and 2 can bind to

the tyrosine kinase receptor Tie-2, which is responsible for
vessel maturation and stability including facilitation of
smooth muscle cell/pericyte attachment and therefore
could be a key promoter of revascularization after stroke
[18]. Simvastatin, used in treatment to lower cholesterol,
is also angiogenic, and studies have shown that treatment
with this drug following MCAO in a rat model, signifi-
cantly increased EC capillary tube-formation dependent
on induction of Tie-2 [19]. Studies using animal models
have suggested that treatment with bone marrow stromal
cells (MSC) after stroke, increases angiogenesis and tissue
reperfusion in association with increased Tie-2 expression
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A, tissue from the normal looking contralateral hemisphere showed no observable staining of Tie-2 (arrows; x
40). B, stroked brain tissue showing many microvessels strongly staining positive for Tie-2 (i; X 40) and (ii and iii) at higher
magnification (X 100; arrows). C, small microvessels from the peri-infarcted zone positive for Tie-2 (x 100). Di-iii, double
immunoflourescence showing co-localization of Tie-2 (red) and CD105 (green) in peri-infarcted stroke tissue (X 100; sections

from 106232 were used).

[20]. The same authors showed that capillary-like struc-
ture formation in mouse brain EC was increased in the
presence of supernatant derived from MSC, whilst knock-
down of Tie-2 inhibited this, suggesting an important role
for Tie-2 in revascularization.

Hemorrhagic incident occurring after cerebral ischemia
may be related to damage of the microvascular basal lam-
ina of the brain, and can aggravate cerebral ischemia. This
may be associated with up-regulation of MMPs and in par-
ticular, MMP-2 [21]. MMP-2 is up-regulated in EC

exposed to inflammatory cytokines such as interleukin-1-
beta and growth factors including nerve growth factor,
where in vivo, it promotes capillary invasion and so is
probably increased in active stroke regions undergoing
remodelling [22,23]. Dong et al, [24], showed that resver-
atrol treatment 24 h-7 days after MCAQO in mice increased
MMP-2 and VEGF expression and concomitantly, the
number of cortical microvessels as well as the neurologi-
cal score, suggesting that MMP-2 has an important role in
modulation of angiogenesis after stroke. This is in agree-
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MMP-2 was expressed strongly in stroked regions: A, tissue from the contralateral hemisphere showed no
observable staining (negatively stained blood vessels are marked with arrows; % 40). B, peri-infarcted stroked brain
tissue showing microvessels stained positive for MMP-2 (I; x 40; arrows) and (ii) at higher magnification (x 100) and (iii) in
stroke/infarcted tissue (X 100; arrows). C, shows positive staining of cells with the morphological appearance of astrocytes/glia
staining for MMP-2 in infarcted tissue (% 100; arrows) and D, cytoplasmic staining of neurones in the same region (% 100;
arrows). Ei-iii, double immunoflourescence showing co-localization of MMP-2 (red) and CD 105 (green) in peri-infarcted stroke

tissue (X 100; arrow; sections from 10715P were used).

ment with our data showing its association with CD105-
positive microvessels in peri-infarcted regions.

We showed that expression of HGF-o was increased in the
small neo-tubular vessels from peri-infarcted regions.
Injection of human HGF gene with a hemagglutinising
virus into rat CSF after MCAO, reduced neurological defi-
cit within 24 hours of treatment and increased the
number of microvessels in stroke-affected tissue [25]. The
same authors showed that HGF-a gene transfer could sig-
nificantly improve recovery of learning and memory con-
comitant with increased angiogenesis and neurite
extension after stroke [26]. Rush et al, [27], demonstrated
that addition of HGF-a to human brain microvessel EC,
stimulated their migration through signalling pathways
involving JNK, ERK and c-Src. This, together with the fact

that HGF/c-met is also a chemoattractant for stroke-mobi-
lized bone-marrow-derived stem cells [28], indicates that
HGF could be a prime target for angiogenic therapy after
stroke. Here, we also showed that HBMEC exposed to
OGD demonstrated up-regulated HIF-1a and Hsp70 con-
comitant with MCP-1/MMP-2 and Tie-2 gene and protein
expression suggesting at least some of the proteins may be
produced by EC de novo after stroke.

For correct angiogenesis and maturation of vessels to take
place, the time of expression and the number and type of
angiogenic molecules effective in the vicinity of the devel-
oping microvessels, may be important, and this may vary
dependent on the surrounding matrix. In our other stud-
ies (submitted elsewhere), we have shown using the same
technology and identical TagMan microarrays that the
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A, tissue from the contralateral hemisphere showed no observable staining of MMP-2 (arrows; X 40). Bi and ii,
stroked brain tissue showing many small microvessels stained positive for MCP-| (x 40; arrows) C and D, show medium sized
microvessels strongly staining for MCP-1; in C the arrow points to a positive vessel next to a negatively stained vessel in the
peri-infarcted region (% 40; arrow) and in D, medium sized positively stained vessel in the infarcted region (% 100; arrow). Ei-iii,
double immunoflourescence showing co-localization of MCP-I (red) and CD105 (green) in peri-infarcted stroke tissue (% 100;

sections from 106232 were used).

hypoxic environment associated with neovesel activation
in carotid neointimal plaques induces expression of an
overlapping, but certainly not identical group of ang-
iogenic factors. In this case Tie-2 was also over-expressed
as seen in this study, whilst the receptor for advanced gly-
cation end-products (RAGE), angiopoietin-1 and Notch-3
were only increased in the plaque vascular bed. Therefore,
the rate at which new microvessels are formed and/or are
able to mature is probably governed by the number and
concentration of relevant factors expressed. This may have
important consequences in relation to attempts to induce
therapeutic angiogenesis for the production of mature

intimal vessels less prone to leakage and rupture, and the
process may be site-specific. Future studies should aim to
examine the effects of modulating these factors in terms of
ratio and concentration with a view to optimising stable
re-vascularization in vivo.

One of the ultimate clinical goals is to enhance and mod-
ulate the body's response to collateral blood vessel forma-
tion to maximise brain tissue reperfusion as rapidly as
possible after stroke. Although we have not studied all the
identified proteins in detail, pilot studies showed that -
catenin (pro-angiogenic and also mobilizes endothelial
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A, Graph showing results from real-time RT-PCR
with HBMEC exposed to 24 h OGD demonstrating a
notable increase in HSP-70 and HIF-10 (control
genes) and concomitantly an increase in expression
of MMP-2, Tie-2 and MCP-I. B, shows immunofloures-
cent staining of HBMEC for MMP-2. Control cells expressed
MMP-2 weakly in peri-nuclear areas whilst HBMEC demon-
strated a large increase in cytoplasmic expression following
OGD (24 h) (x 100; MMP-2 stained green with FITC). All
experiments were carried out twice in duplicate and repre-
sentative pictures are shown.

progenitor cells; [29] and TIMP-1 were also expressed
strongly in stroke-affected microvessels, whilst c-Kit-posi-
tive cells were also present (data not shown).

Some of the limitations of this study include the small
numbers of measured samples which has not allowed us
to relate the findings directly to clinical information and
stroke characteristics such as infarct size, extent of recov-
ery, association with time of survival and survival. More
extended detailed studies using larger patient cohorts
could examine the information gained from this study
and ascertain the importance of these proteins in mediat-
ing tissue reperfusion and any relationship with improve-
ment in patient survival. Similarly, the data we have
provided only allows us to infer what the overall effects of
the presence of mixtures of both pro- and anti-angiogenic
factors on microvessel formation, proliferation and matu-
ration after stroke might be. Future experiments employ-
ing matrigel implant models may be able to determine the

http://www.biomedcentral.com/1471-2164/10/113

effects of introducing a mixture of factors such as those
described in this study and examining in detail the forma-
tion structure and maturation of vessels over time.

Conclusion

We hypothesise that combined processes including matrix
degradation, direct activation of migration and prolifera-
tion of endothelial cells, attraction of bone marrow-
derived stem cells and stabilization of new vessels with
pericytes and smooth muscle cells are all vital compo-
nents of this response, which is maintained many weeks
after stroke in active regions of remodelling and therefore
future therapeutic treatments might involve maximisation
of all of these processes.

Methods

Patients

Tissue samples were collected within 4 hours of death
from the refrigerated bodies of 6 patients who died 3-52
days after stroke following middle cerebral artery occlu-
sion. Clinical details of these patients are supplied (Table
2). Samples were dissected into infarcted (identified with
2, 3, 5-triphenyltetrazolium chloride), peri-infarcted and
normal looking unaffected tissue. Peri-infarcted region
was defined as the area of tissue adjacent to the ischaemic
core exhibiting stroke-related changes including neuronal
apoptosis and angiogenesis and characterised by tissue
oedema and discolouration, morphology of the neurons
and maintenance of structural integrity. Tissue from the
contralateral hemisphere served as a control. Tissue was
frozen in liquid nitrogen, stored at -70°C and a sample
processed for histology and stained with haematoxylin
and eosin to determine tissue morphology. The usefulness
of post-mortem samples in studies involving measure-
ment of RNA and protein expression has been identified
in previous studies [30]. Samples were obtained from the
Cardiovascular Investigation Centre's Tissue Bank, St Pau
Hospital, Barcelona, Spain, and ethical approval for the
work was granted from the University Hospital of Bel-
lvitge. Samples were dissected into 2 mm cross-sectional
pieces and one portion reserved for laser-capture and
microarray analysis and the other was fixed in 10% buff-
ered saline prior to paraffin embedding.

Immunohistochemistry

Frozen sections were labelled to identify EC using anti-
bodies to CD31, and the specific markers of microvessel
angiogenesis Flt-1 (VEGF receptor-1; [31] and CD105 [32]
using standard ABC protocols, DAB colour development
and haematoxylin counterstain. Negative controls replac-
ing the primary antibody with PBS or non-immune serum
demonstrated specificity. Dissected tissue areas were
placed into categories of either; active content of micro-
vessels with many Flt-1 and/or CD105 positive EC or inac-
tive with few vessels expressing these markers.
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Table 2: Clinical details of patients used in this study.

http://www.biomedcentral.com/1471-2164/10/113

Code Size/Locationof Age Sex Vascular risk Immediate Other disease Stroke survival Medications

infarct factors cause of death Statin/Anti-
hypertensives

106-139 R MCA stroke 84 Smoking, HTA, M|,  Large stroke CRF, AD stage Il 5 days Antiplatelets,
atherothrombotic CAD, Stroke, PVD B&B Statins, Rasb
(TACI)*

A06-77 L MCA stroke 75 HTA, DM, CAD,  Acute pulmonary  AD stage IIAB&B 3 days Antiplatelets,
cardioembolic stroke, edema Statins, Rasb
(TACI) valvulopathy,

106-232 L MCA 75 Smoking habit, Respiratory Alcoholic liver 10 days Statin
atherothrombotic alcoholism, infection disease, chronic
stroke (PACI) hypercholesterole obstructive

mia pulmonary disease

106-256 R MCA stroke 77 Smoking habit, Large stroke, Colon 52 days Antiplatelets,
atherothrombotic HTA, DM, atrial Respiratory adenocarcinoma Statins, Rasb
(TACI) fibrillation infection

107-15 L MCA stroke 83 HTA, Respiratory no 7 days Statins, Rasb
atherothrombotic hypercholesterole infection
(TACI) mia, CAD

107-30 R MCA stroke 89 none Acute pulonary no 2| days none

atherothrombotic
(TACI)

edema,
respiratory
infection

Abbreviations: MCA, middle cerebral artery; HTA, hypertension; CRF, chronic renal faliure; DM, diabetes mellitus; CAD, coronary artery
disease; AD, Alzheimer's disease; PVD, peripheral arterial disease; MI, myocardial infarction. B&B is Brack and Brack classification; Rasb, rennin-

angiotensin blockers; *Oxfordshire classification; R, right side; L; left side TACI; Total anterior circulation infarct; PACI; Partial anterior circulation

infarct.

Subsequently, antibodies to proteins related to several of
the novel, identified de-regulated genes from the TagMan
microarrays (MMP-2, Tie-2, MCP-1 and HGF-a) were
used to determine the expression and localization within
normal and stroked brain regions. Co-localization studies
employed subsequent staining with anti-CD105-FITC
(1:50).

LCM

Serial 6 um frozen sections were taken from microvessel-
rich brain samples. Areas were scanned by labelling adja-
cent sections with CD105 and CD31 to estimate regions
containing high concentrations of CD105 positive vessels
(Figure 1) Sections were taken in groups of four. The first
stained for CD105, the second prepared on a matrix
(transparent ethylene-vinyl film) coated slide for laser-
capture and stained only with haematoxylin prior to laser-
capture (to reveal morphology), the third stained with
anti-CD31 and the fourth anti-Flt-1. Photomicrographs of
each stained section were taken and each area analysed by
a pathologist. Areas rich in positive or negative microves-
sels were marked. LCM was performed on the middle sec-
tion using a Robot Microbeam Laser Microscope (P.A.L.M
Microlaser Technologies, Bernried, Germany). The laser
diameter was set to 15 pm and small (<200 uM) CD105+/
- microvessel rich areas were selected with close reference
to the stained serial sections (Figure 2A). Captured areas
were collected on the cap of a microcentrifuge tube and
homogenized in RLT buffer (RNeasy micro-kit, Quiagen).

If the laser did not succeed in releasing the tissue com-
pletely, the resultant marked area was carefully removed
by an experienced dissection microscopist and placed
directly into RLT buffer. At least 5 groups of sections were
treated like this and the laser cut areas pooled to ensure
sufficient numbers of cells were obtained for RNA analy-
sis. Selected microvessels/cells were extracted and RNA
purified using the QIAGEN RNeasy Micro kit (Hilden,
Germany). The quantity and quality of RNA was assessed
using a 2100 Bioanalyser (Agilent Technologies). The
c¢DNA obtained from 1 ng of total RNA was pre-amplified
using the TagMan Applied Biosystems PreAmp Master
Mix Kit and equality of gene amplification tested using
control (GUS), and CD31, CD105 and Flt-1 (Figure 2Ci
and 2Cii). Confirmation was made that the samples were
CD31/CD105/FIt-1 enriched using TagMan real-time
PCR (Figure 2Ciii and 2Civ) showing correlation between
CD105 expression and Flt-1 indicating both were associ-
ated with active samples (Spearman Rank; p = 0.025; Rho
=0.742).

TaqMan arrays

A customised pre-configured 48 TagMan Gene Expression
assay (Applied Biosystems, CA, USA) in a 384-well for-
mat, spotted on a microfluidic card was used (2 replicates
per assay; if the data generated (Cts) differed by greater
than 0.35 SD the result was discarded). Real-time RT-PCR
amplifications were run on an ABI Prism® 7900 Ht
sequence Detection System (Applied Biosystems) with a
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TagMan Low Density Array Upgrade. 5-22 ng of cDNA
was combined with TagMan universal master mix, and
real-time PCR carried out according to the manufacturer's
instructions. Our LDA contained 46 candidate markers
derived from published data on wound recovery, tumour
angiogenesis, angiogenesis in other diseases including
stroke and diabetic retinopathy, and from our own and
other microarray studies on atherosclerosis. [3]; Table 3.
Paired control and CD105 positive samples were chosen
for comparison to eliminate inter-plate variation and each
pair had similar RNA integrity Number and the same
loading cDNA concentration (see statistical analysis for
further information).

OoGD

For OGD experiments, primary HBMEC were seeded on
gelatin-coated glass coverslips. An aqueous solution of
1% porcine skin gelatine, type A (Sigma) was heated at
40°C up to complete dissolution, autoclaved and stored
at 4°C until use. Coating was performed for 1 hour at

Table 3: List of genes selected for use in the LDA.

http://www.biomedcentral.com/1471-2164/10/113

37°C, then gelatine was discarded and the coverslips
washed with PBS. Experiments were performed in an
anoxic chamber at 37°C. Cells in coverslips were main-
tained inside a Petri dish with medium without glucose in
an atmosphere of N, 95%/CO, 5% for 24 h (pilot studies
demonstrated at this time cells showed morphological
evidence of stress, cytoplasmic shrinkage and propidium
iodide uptake (PI) demonstrating DNA damage and
apoptosis. Cultures were stained with propidium iodide
(7.5 pg/ml) for 30 min to identify cell membrane damage,
washed with PBS and fixed with 4% paraformaldehyde.
Nuclei were then stained with bisbenzimide (5 uM) for 30
min. Gene expression was measured in duplicate samples
using Real time PCR and nucleotide sequences obtained
from TagMan (identical to those used in the microarrays)
using the method described above. Immunos-staining
was carried out directly on the coverslips as described
above and using FITC-conjugated secondary antibodies
(1:100). All experiments were performed twice.

Kallistatin Angiopoietin
Transforming growth factor-beta CDI3
Platelet-derived growth factor CD44
Vascular endothelial cell derived growth factor c-Kit

Hepatocyte growth factor

Monocyte chemotactic protein |

Epidermal growth factor

Interleukin-8

Tumour necrosis factor-alpha

Cyclooxygenase-2

Granular colony stimulating factor

Heparin-binding EGF-like growth factor

Hypoxia inducing factor-|

PR39

Thymosin 4

RANTES

Matrix metalloproteinases 1, 2, 3, 9

Thrombospondin |

Receptor for advanced glycation end-products

T-cadherin

Integrin aV

DLL-4

Receptor for hyaluronan-mediated motility

C-reactive protein

Tiel-2

Toll-like receptor 2, and 4

Tissue inhibitor of metalloproteinase-|

Inhibitor of differentiation

Hyaluronidase-|
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Statistical analysis

cDNA samples were paired for TagMan analysis to reduce
inter-plate variation. Samples were chosen based on the
RIN value and the amount of cDNA loaded. If RQ values
between duplicates differed by >0.1 the sample was dis-
carded. Differences in gene expression between individual
pairs were considered if the RQ difference was > 0.5.
When 4 out of 5 samples showed differences statistical
analysis was carried out. Using GUS as a house keeping
control, non-parametric testing was carried out compar-
ing expression between CD105 positive and negative sam-
ples (Mann Whitney U test), and Spearman Rank
correlation of CD105 and Flt-1 expression with the genes
of interest. Genes chosen for further analysis satisfied at
least 2 of the following criteria: 1) 4/5 paired samples had
RQ differences> 0.5; 2) Mann Whitney U test showed a
significant difference between the two sets of 5 samples (p
< 0.05) or 3) Spearman Rank correlation showed a signif-
icant correlation between CD105/Flt-1 expression and
expression of the gene of interest.
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