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Abstract
Background: The genus Actinidia (kiwifruit) consists of woody, scrambling vines, native to China, and only
recently propagated as a commercial crop. All species described are dioecious, but the genetic mechanism
for sex-determination is unknown, as is the genetic basis for many of the cluster of characteristics making
up the unique fruit. It is, however, an important crop in the New Zealand economy, and a classical breeding
program would benefit greatly by knowledge of the trait alleles carried by both female and male parents.
The application of marker assisted selection (MAS) in seedling populations would also aid the accurate and
efficient development of novel fruit types for the market.

Results: Gene-rich female, male and consensus linkage maps of the diploid species A. chinensis have been
constructed with 644 microsatellite markers. The maps consist of twenty-nine linkage groups
corresponding to the haploid number n = 29. We found that sex-linked sequence characterized amplified
region (SCAR) markers and the 'Flower-sex' phenotype consistently mapped to a single linkage group, in
a subtelomeric region, in a section of inconsistent marker order. The region also contained markers of
expressed genes, some of unknown function. Recombination, assessed by allelic distribution and marker
order stability, was, in the remainder of the linkage group, in accordance with other linkage groups. Fully
informative markers to other genes in this linkage group identified the comparative linkage group in the
female map, where recombination ratios determining marker order were similar to the autosomes.

Conclusion: We have created genetic linkage maps that define the 29 linkage groups of the haploid
genome, and have revealed the position and extent of the sex-determining locus in A. chinensis. As all
Actinidia species are dioecious, we suggest that the sex-determining loci of other Actinidia species will be
similar to that region defined in our maps. As the extent of the non-recombining region is limited, our
result supports the suggestion that the subtelomeric region of an autosome is in the early stages of
developing the characteristics of a sex chromosome. The maps provide a reference of genetic information
in Actinidia for use in genetic analysis and breeding programs.

Published: 10 March 2009

BMC Genomics 2009, 10:102 doi:10.1186/1471-2164-10-102

Received: 19 September 2008
Accepted: 10 March 2009

This article is available from: http://www.biomedcentral.com/1471-2164/10/102

© 2009 Fraser et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 15
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2164/10/102
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19284545
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Genomics 2009, 10:102 http://www.biomedcentral.com/1471-2164/10/102
Background
New Zealand has a long history of interest in the genus
Actinidia, being the country which commercialized the
fruit of Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Fer-
guson var. deliciosa, as kiwifruit, and which recently
released Actinidia chinensis Planch. var. chinensis
'Hort16A', the gold-fleshed kiwifruit, as an alternative cul-
tivar. While New Zealand was instrumental in bringing
these fruits to commercial attention, the genus is native to
China and neighbouring countries where more than 60
species are known. This germplasm is relatively unex-
plored in terms of horticultural development of new and
novel cultivars and offers a huge range of fruit characters
and 'eating attributes', and plants suited to a wide range of
climatic conditions. The diversity of flavours, fragrances,
colours, and health factors are also of interest in genomic
studies, offering the possibility of defining chemical path-
ways and identifying gene function.

Actinidia species present challenges to research and breed-
ing. All known species in the genus are dioecious. Female
plants bear flowers that are hermaphroditic in appearance
but produce only empty pollen grains, while male plants
have flowers that are unisexual with numerous stamens
surrounding a rudimentary pistil whose growth is sup-
pressed before style elongation or ovule initiation. Full
dioecism is shown by about 4% of seed plants, and a sec-
ond group display a variety of sub-dioecious conditions
[1]. Genetic studies have shown that dioecy has evolved
many times in plants, and have demonstrated a variety of
sex-determining systems [2,3]. In Actinidia, bulk segregant
analysis with random amplified polymorphic DNA
(RAPD) markers supported the hypothesis that sex-deter-
mining genes were localized in a pair of chromosomes
that function like an XX/XY system with male heterog-
amety [4-6]. The small size (<1 μm) of the chromosomes
has made cytological studies difficult with the techniques
available, and sex-determining chromosomes have not
been positively identified. He et al. [7] using an improved
chromosome binding technique, analyzed the karyotypes
of diploid A. chinensis at the primary differentiation stage
and reported that the sex chromosomes could not be
identified from karyotypes of somatic cells. However,
when they examined the pachytene stage of pollen
mother cell meiosis, all 29 pairs of homologous chromo-
somes of pistillate and staminate plants paired tightly,
except for a pair of nucleolar (SAT-) chromosomes in
staminate plants. The two SAT-chromosomes were similar
in length and shape, but in staminate plants the SAT
region, about 15% of the total nucleolar chromosomal
length, did not pair. He et al. [7] suggested the SAT region
of nucleolar chromosomes may be the region of sex deter-
mination. They also suggested that sex chromosomes were
probably at an early stage of differentiation in Actinidia.

The DNA content of the 2C genome of A. chinensis meas-
ured by flow cytometry was reported to be 1.3 – 1.4 pg [8],
which corresponds to about 1.3 × 109 bp per genome. The
genus contains species that form a polyploid series from
diploid to octoploid [9].

As kiwifruit is a relatively new crop, knowledge of its
genetic make-up is limited, so the development of a com-
prehensive genetic map and the use of molecular markers
have the potential to improve efficiency in breeding new
cultivars. A map will also help to simplify genomic studies
to identify and isolate genes. Genetic linkage maps based
on the recombination values of molecular markers have
been constructed in an increasing number of plants
(tomato [10,11], rice [12], barley, [13], lotus [14], Brassica
[15], cotton [16], grape [17]) and are proving valuable
tools for plant breeding. The construction of a genetic
map in an obligate outbreeding species, such as A. chinen-
sis, is more complex than one derived from inbred or
homozygous parents. Maps in outbreeding species have
been developed by utilising the two-way pseudo-testcross
procedure [18,19], where the mapping population is the
F1 progeny of a cross between unrelated, highly hetero-
zygous individuals. Constructing the linkage map is com-
plicated, as the two-way pseudo-test cross may segregate
for up to four alleles at any locus, with one or both parents
heterozygous at any given locus. The linkage phase of the
markers will often be unknown, and can be different for
the two parents, which can lead to inaccuracies in the esti-
mation of recombination frequencies [20,21]. The recom-
bination frequencies can, however, be separately
estimated for each parent so that two maps are developed,
and these maps can be integrated using markers that are
heterozygous in both parents. Two low density linkage
maps have been reported in Actinidia. Testolin et al. [22]
used the progeny of an interspecific cross between A. chin-
ensis and A. callosa to construct, at a LOD score ≥ 2.0, a
female map of 203 loci over 38 linkage groups and a male
map of 143 loci over 30 linkage groups.

While marker systems such as restriction fragment length
polymorphisms (RFLPs), amplified fragment length poly-
morphisms (AFLPs), random amplified polymorphic
DNA (RAPDs), or single nucleotide polymorphisms
(SNPs) have been developed to facilitate genetic mapping
and gene discovery, the marker system of choice in many
plant species is microsatellites (simple sequence repeats
or SSRs). Microsatellites are arrays of short tandem repeat
motifs of 1 to 5 base pairs in length which are character-
ized by their abundance, their distribution in both non-
coding and coding regions of eukaryotic genomes, repro-
ducibility, Mendelian mode of inheritance and co-domi-
nant nature [23]. They are recognised as highly
informative genetic markers because of their inherent var-
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iability. This hypervariability is due to the high mutation
rate within the nucleotide sequences of the microsatel-
lites, and increases with increasing number of tandem
repeats. In humans, heterozygosities generally exceed 0.5
and range as high as 0.9, with as many as 50 alleles per
locus [24], and mutation rates, though variable among
loci, exceed rates for non-microsatellite loci by up to four
orders of magnitude [25,26]. Similar hypervariability
within microsatellite loci has been reported for birds,
insects and plants, and loci may be polymorphic even in
species where low levels of genetic diversity make alter-
nate marker systems less useful [27,28].

The time-consuming and expensive process of developing
enriched genomic libraries and the subsequent sequenc-
ing and seeking of the simple sequence repeats is now
often replaced with data mining of expressed sequence tag
(EST) libraries to give a rapid, efficient and low-cost alter-
native for identifying microsatellites in plant species. Mic-
rosatellites have been found to occur regularly in ESTs
[29]. The frequency of occurrence of microsatellites of
suitable length (20 nucleotides or more) varied in five
cereals examined from 1.5% for maize to 4.7% for rice
[30]. This percentage would be sufficient to yield numer-
ous markers from plant species in which large numbers of
ESTs have been developed. In Actinidia the frequency of
occurrence and level of polymorphism of EST-derived di-
nucleotide microsatellites were sampled and found to be
numerous in both the 5' and 3' ends of the genes repre-
sented, and highly polymorphic (93.5%) in the mapping
population [31].

The construction of a single map for a cross in an out-
breeding species, rather than two separate maps for the
parents, depends on the availability of markers that are
heterozygous in both parents. These markers form allelic
bridges [19]. Dominant markers such as RAPDs or AFLPs
are generally of very limited use in combining parental
maps, therefore, when the homologous linkage groups of
the parents of a mapping population are required to be
integrated, co-dominant markers such as microsatellites
or RFLPs are the markers of choice, and allow the con-

struction of either separate parental maps, or an inte-
grated map for the cross [21].

Here we present comprehensive genetic linkage maps of
female and male informative markers mapped in a cross
in the outbreeding species A. chinensis, and also an inte-
grated map of the cross, achieved through the use of co-
dominant microsatellite markers. The twenty nine linkage
groups are defined, and the position of sex-determining
loci identified. Genetic linkage maps in Actinidia have
been developed to supply markers for breeding novel cul-
tivars, to provide tools for comparative and quantitative
trait mapping, and to investigate the evolution and func-
tion of genetic control mechanisms.

Results
Linkage map construction
We have created three gene-rich genetic maps, female,
male and consensus, identifying the 29 linkage groups of
the haploid genome and incipient X and Y sex chromo-
somes (Figures 1, 2, 3, 4 and 5, Table 1). The female link-
age map constructed at LOD 4 and higher, was composed
of 464 markers clearly defining 29 linkage groups and
covered 2266 cM in the Kosambi function (see Additional
file 1). The male map, composed of 365 markers, was
shorter than the female map at 2078 cM in length (see
Additional file 2). Estimated genome lengths of the
female and male parents, using Method 3 of Chakravarti,
were 3090 and 2782 cM respectively. The method based
on average marker spacing adjustment [32] gave a
genome length of 2562 cM in the female and 2402 cM in
the male.

The same genome lengths with the adjustment for chro-
mosome ends as per Remington et al. were 2820 and 2518
cM. A statistical programme that assumes markers are ran-
domly distributed gave an estimate of intra-marker dis-
tance. Markers were estimated to be within 10 cM of each
other in over 96% and 94% of the female and male
genomes respectively (see Additional file 3). These esti-
mates could be somewhat biased due to the non-random-
ness of marker distribution as noted below. The estimates

Table 1: Mapping characteristics of the male and female maps of A. chinensis.

Map Characteristic Male Female

Total No. of markers 365 464
Total map length (cM) 2078 2266
Range of linkage group length (20, 123) (47, 103)
Average marker interval (cM) 6.18 5.12
Marker interval (LQ, Median, UQ) (1.80, 4.68, 8.66) (1.41, 3.46, 6.94)
Fully informative markers (%) 222 (60.8) 240 (51.8)
Partly informative markers (%) 13 (3.6) 16 (3.4)
Female informative markers (%) - 207 (44.6)
Male informative markers (%) 130 (35.6) -
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Genetic linkage map of Actinidia chinensis (linkage groups 1–6)Figure 1
Genetic linkage map of Actinidia chinensis (linkage groups 1–6). The markers prefixed 'Ke' were from the kiwifruit EST 
database and represent expressed genes. Those prefixed 'udk' were from enriched genomic libraries, while all other prefixes 
relate to the bud libraries, and various markers as described in materials and methods. A number in brackets following a 
marker name indicates that a single primer pair amplified more than one locus. In the consensus map, 29 linkage groups were 
defined.
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Genetic linkage map of Actinidia chinensis (linkage groups 7–12)Figure 2
Genetic linkage map of Actinidia chinensis (linkage groups 7–12). The markers prefixed 'Ke' were from the kiwifruit 
EST database and represent expressed genes. Those prefixed 'udk' were from enriched genomic libraries, while all other pre-
fixes relate to the bud libraries, and various markers as described in materials and methods. A number in brackets following a 
marker name indicates that a single primer pair amplified more than one locus. In the consensus map, 29 linkage groups were 
defined.
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Genetic linkage map of Actinidia chinensis (linkage groups 13–18)Figure 3
Genetic linkage map of Actinidia chinensis (linkage groups 13–18). The markers prefixed 'Ke' were from the kiwifruit 
EST database and represent expressed genes. Those prefixed 'udk' were from enriched genomic libraries, while all other pre-
fixes relate to the bud libraries, and various markers as described in materials and methods. A number in brackets following a 
marker name indicates that a single primer pair amplified more than one locus. In the consensus map, 29 linkage groups were 
defined. Incipient sex chromosomes were identified in Linkage Group 17 where the sex-determining locus was located in the 
subtelomeric region.
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Genetic linkage map of Actinidia chinensis (linkage groups 19–24)Figure 4
Genetic linkage map of Actinidia chinensis (linkage groups 19–24). The markers prefixed 'Ke' were from the kiwifruit 
EST database and represent expressed genes. Those prefixed 'udk' were from enriched genomic libraries, while all other pre-
fixes relate to the bud libraries, and various markers as described in materials and methods. A number in brackets following a 
marker name indicates that a single primer pair amplified more than one locus. In the consensus map, 29 linkage groups were 
defined.
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Genetic linkage map of Actinidia chinensis (linkage groups 25–29)Figure 5
Genetic linkage map of Actinidia chinensis (linkage groups 25–29). The markers prefixed 'Ke' were from the kiwifruit 
EST database and represent expressed genes. Those prefixed 'udk' were from enriched genomic libraries, while all other pre-
fixes relate to the bud libraries, and various markers as described in materials and methods. A number in brackets following a 
marker name indicates that a single primer pair amplified more than one locus. In the consensus map, 29 linkage groups were 
defined.
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were based on the adjusted genome lengths. The same
genome coverage estimates based on the ratio of observed
to estimated genome lengths were 80% and 83% respec-
tively.

In the construction of the male map, Linkage Groups
LG11 and LG17 were formatted in two separate sections.
However, when the consensus map was compiled, the
relatedness of the sections was confirmed through fully
informative markers associating them with the corre-
sponding linkage group in the female map. The consensus
map, of length 2341 cM, and composed of 636 markers,
showed some regions of altered linear order of markers
from the sex-related maps (Figures 1, 2, 3, 4 and 5).

The Chi-square value for goodness-of-fit for the female
map was 46.5 with 28 df. The p-value for a larger Chi-
square value than observed was 0.015 which indicated a
statistically significant departure from a Poisson random
process. Linkage groups 1, 10, 14, 18 and 28 had signifi-
cantly higher number of markers than expected from a
random distribution. Similarly, linkage groups 4, 16 and
26 had significantly fewer. For the male map the Chi-
square value was 36.6 with 28 df and a p-value of 0.128.
When related to randomness of marker distribution, this
value was non-significant.

Marker characteristics
A total of 799 primer pairs defining potential microsatel-
lite markers were trialled for map construction. Polymor-
phism was established between the parents before a
marker was evaluated for segregation across the genotypes
of 272 siblings in the F1 mapping population. A total of
793 SSR markers from the 799 primer pairs tested, the two
sex-linked SCAR markers and eight indel/SNP markers
were considered to be of sufficient quality to use for map
construction. Flower sex phenotype (FlowerSex), with aa
alleles in females and ab alleles in males, was mapped as
a male informative marker. A number of the markers
amplified more than one locus in the mapping popula-
tion and these are identified by a number in brackets (Fig-
ures 1, 2, 3, 4 and 5). Markers that were non-polymorphic
in the parents, or non-segregating in the progeny, together
made up 39% of the discarded potential markers, 18% of
the marker results were difficult to read when one ampli-
fying locus was overlying another and the alleles could
not be unequivocally allocated to an individual locus, and
43% showed low information content, non-conforming
ratios or poor PCR amplification. In some instances the
PCR product was larger than the standard, and unable to
be read. This was due to introns amplified from the
genomic DNA that were not seen in the EST sequences.
The allelic information content of the markers was of four

Table 2: Allelic information content of microsatellite markers in the A. chinensis intraspecific mapping population.

Marker Type Result from Parents Alleles Segregation Phenotypes

Fully informative loci heterozygous ab × cd ac ad bc bd 1:1:1:1 4
in both parents ab × c0 ac a0 bc b0 1:1:1:1 4

a0 × bc ab ac b0 c0 1:1:1:1 4
ab × ac aa ac ba bc 1:1:1:1 4
a0 × b0 ab a0 b0 00 1:1:1:1 4

Partly informative loci heterozygous ab × a0 ab 2a b0 1:2:1 3
in both parents a0 × ab ab 2a b0 1:2:1 3

ab × ab aa 2ab bb 1:2:1 3
a0 × a0 3a 00 3:1 2

Female informative female heterozygous ab × cc ac bc 1:1 2
male homozygous ab × 00 a0 b0 1:1 2

a0 × bb ab b0 1:1 2
ab × aa aa ab 1:1 2
a0 × 00 a0 00 1:1 2

Male informative male heterozygous aa × bc ab ac 1:1 2
female homozygous 00 × ab a0 b0 1:1 2

aa × b0 ab a0 1:1 2
aa × ab aa ab 1:1 2
00 × a0 a0 00 1:1 2

The female alleles were identified first and carried the designation ab if both alleles were visible, the male alleles were cd. Where homology, or null 
alleles restricted naming the female alleles, then the male alleles were identified in alphabetical order. When null alleles were present, they were 
informative in various combinations of alleles as shown, but did reduce the information content of the makers overall.
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types (Table 2). On the consensus map (Figures 1, 2, 3, 4
and 5) fully informative markers segregated 1:1:1:1 and
made up 34% of the markers mapped, female informative
and male informative markers segregating 1:1 were 37%
and 21% respectively, and 8% were only partly informa-
tive segregating 1:2:1 or 3:1. Null alleles featured in all
informative groups. Of the 636 markers in the consensus
map, 587 markers were EST-derived and representative of
expressed genes.

Identification of the X and Y chromosomes in the female 
and male linkage maps
The male-sex-linked marker SmY and the phenotype
'FlowerSex' both mapped to a subtelometic region on
LG17 in the male genetic map. The fully informative
marker udkac096, which mapped in the vicinity of the
two markers, was used to identify the corresponding sex
linkage group in the female map. While the markers over
a large part of the length of these linkage groups were reli-
ably ordered, in a section around the sex markers, some
markers were found to alter order after consecutive runs of
the map. This unreliably ordered portion of the linkage
group contained seven markers including five EST-derived
SSRs indicative of expressed genes (Table 3). Primer pairs
of these five markers amplified products from both X and
Y chromosomes, suggesting conservation of DNA
sequence at primer sites on X and Y chromosomes.

Genes mapped to the sex chromosomes
Seventeen markers that mapped to the linkage group con-
taining the sex-determining locus were derived from SSRs
associated with ESTs and therefore could be matched to
expressed genes. BLAST searches of the GenBANK data-

base were used to try and identify potential functions for
these ESTs (Table 3). Nine ESTs showed homology to
sequences of known function. However, with the excep-
tion of Ke587 and Ke470, with homology to transcription
factors, the function of these ESTs appeared unlikely to
influence flower sex. The seven remaining genes were all
listed in the 'unknown function' category.

Discussion
Genetic linkage maps
Gene-rich genetic maps of the Actinidia chinensis female
and male genomes, together with a consensus map of the
two genomes, have been constructed. EST-derived micro-
satellites proved to be extremely polymorphic and a high
proportion were mapped (Table 1). The loci were widely
distributed over the 29 linkage groups we have identified.
Some linkage groups carried fewer markers than others
(Figures 1, 2, 3, 4 and 5) and this may be a reflection of
the number of genes contained on a particular linkage
group, or may be due to sampling bias in the ESTs selected
for mapping. We sampled expressed genes that will be
found in euchromatic rather than heterochromatic
regions of the genome, not all tissues of the plant were
represented, for example, there were no root libraries sam-
pled, and we only selected ESTs that contained a large
microsatellite in the transcribed sequence. While our sam-
pling methods will have influenced the non-randomness
of the markers on our genetic map, the abundance and
relative distribution of microsatellites between tran-
scribed and non-transcribed regions of the genome has
been reviewed [33,34], and has been reported to be non-
random. Morgante et al. [34] report that microsatellite fre-
quency was higher in transcribed regions, particularly in
the untranslated portions, than in genomic DNA, and sug-
gest that most microsatellites are found in regions pre-dat-
ing the genome expansion in many plants.

Many of the EST-derived primer pairs amplified more
than one locus. The loci from a single primer pair could
be on separate linkage groups, at a distance from one
another on the same linkage group, or, with the resolving
power of JoinMap software, unable to be separated on the
map. Various authors [7,22,35,36], have considered the
possibility that diploid A. chinensis is a paleopolyploid,
and some evidence they present would support this view.
The haploid number of 29 is high, and would suggest that
polyploidization may have occurred more than once, and
may also have involved hybridization. Alternatively,
duplication of a DNA segment may have occurred. This
duplication event may have been physically separated by
cross-over events or inversions, or tandem repeats may
still be in evidence and markers that were unable to be
separated could reflect this condition. As one of the prim-
ers of a pair was located within the translated portion of
the EST to facilitate marker transfer to other species, it is
reasonable to suggest that the genes were either dupli-

Table 3: Markers associated with the incipient sex-determining 
chromosomes in A. chinensis.

Marker Possible gene family

Ke511 Unknown
Ke225 Unknown
udkac096 Dihydroorotate dehydrogenase oxidase
Ke289 Unknown
Ke144 Unknown
Ke587 Zinc finger (C2H2 type) transcription factor family
Ke713 Branching gene
Ke805 Unknown
Ke630 Transducin family protein (WD-40 repeat family protein)
Ac652 Unknown
Ke216 Long-chain acyl-coA synthetase family
Ke492 Abscisic acid-responsive HVA22 family protein
Ke302 Fatty acid omega hydroxylase family
Ke851 Senescence inducible chloroplast stay-green protein
Ke237 Unknown
Ke398 Elongation factor family
Ke465 Unknown
Ke470 Homeobox transcription factor family

The genes associated with individual markers were suggested to 
belong to certain gene families through BLAST searches.
Page 10 of 15
(page number not for citation purposes)



BMC Genomics 2009, 10:102 http://www.biomedcentral.com/1471-2164/10/102
cated, or members of a gene family with strong sequence
homology in the transcribed region. However, a random
priming event cannot be ruled out entirely.

Theoretical putative sex chromosomes
In the genus Actinidia all known species are dioecious, so
it is reasonable to suggest that dioecy preceded speciation.
For the sexes to remain separate over the period of differ-
entiation to speciation, the genes responsible for the male
and female characteristics would need to be tightly linked
on the two haplotypes of one chromosome, and suppres-
sion of recombination would be essential to prevent the
recurrence of hermaphroditism. It is not known how
many genes are responsible for sex determination. In Acti-
nidia we believe there must be at least two genes involved
in the development of dioecy. One possible model that
has been proposed has a dominant allele for pistil sup-
pression closely linked to a dominant allele for pollen
development on the putative Y chromosome, while the
equivalent differential segment on the X chromosome has
two alleles that function as recessives, one allowing pistil
development and one leading to programmed pollen
death [4,37].

The genetic structure of the sex-determining region in the
genus Actinidia has not previously been described. The
chromosomes of Actinidia are small and of a fairly uni-
form size, and no definite sex chromosomes have been
identified, though He et al. [7] described physical charac-
teristics of a theoretical Y chromosome based on cytolog-
ical studies. The genetic structure of LG 17 would also
suggest that, in the male genotype, in a subtelomeric
region of the chromosome, recombination was sup-
pressed and marker order was difficult to establish. Lack
of recombination is typical of a sex-determining region, so
our data support the observation of He et al. [7].

There is evidence that sex chromosomes originate from
autosomes [38-40], and it is thought that translocation of
genetic material to sex chromosomes has occurred [41]. A
mutation that produced female or male sterility could, in
theory, be found in any part of the chromosome. How-
ever, for full dioecy to develop, more than one mutation
would need to have occurred, and the sexual differences
would need to be fixed in the genome for gender-specific
chromosomes to result. Suppression of recombination in
the region of the mutations, allowing multiple loci to
remain linked, would be required. Such regions of sup-
pressed recombination are known, especially in the hete-
rochromatic regions of the chromosomes such as the
pericentromeric and subtelomeric regions of autosomes
[10,42]. Pericentromeric locations have been identified as
incipient sex-determining loci in asparagus, Asparagus
officinalis L. [43,44], and papaya, Carica papaya [45], both
species showing severe suppression of recombination
around the sex-determining locus. Again, the recently

reported incipient sex chromosomes in the genus Populus
showed recombination suppression in the vicinity of the
gender-linked locus. In Populus, like Actinidia chinensis, the
sex-determining region was identified in the subtelomeric
portion of a single chromosome pair [46]. In the sex-
determining locus of Actinidia several genes were associ-
ated with the sex-linked SmX and SmY markers and the
phenotype 'FlowerSex'. The suppression of recombination
around the sex-determining locus prevents recombina-
tion mapping from determining the accurate linear order-
ing of these genes, and the estimation of their distances
from each other.

The genes of unknown function in the sex-determining
locus may be similar to unidentified genes in other genera,
or they may be specific to floral development in Actinidia.
The markers have been used to identify bacterial artificial
chromosomes (BACs) specific to the region and this is the
first step in isolating and characterizing genes of the sex
chromosomes in this genus. In addition, the gene-rich link-
age map we have constructed will be a valuable resource for
quantitative trait loci (QTL) analyses to identify markers
related to traits of importance in breeding new and novel
kiwifruits for the markets of the world. It will also consider-
ably advance the development of a physical map for map-
based cloning of genes for characterization.

Conclusion
We have described the genetic structure of all 29 linkage
groups corresponding to n = 29 in a diploid species of the
genus Actinidia. Map construction has been robust at
LODs between 4 and 10. As the majority of the markers
represent expressed genes, we anticipate that this resource
will be useful in understanding genetic diversity in the
genus. We have also identified, through sex-linked mark-
ers, putative X and Y chromosomes. These would appear
to be in the early stages of evolution, as the subtelomeric
sex-determining locus occupies only a small portion of
the chromosome, as assessed through evidence of non-
recombination, while the remainder of the chromosomes
have the character of autosomes.

Methods
Plant material and DNA extraction
An intraspecific mapping population of 272 plants was
created in the diploid species A. chinensis. Seedlings were
screened with the sex marker SmY [5], to ensure equal
numbers of female and male plants were propagated. The
parents were chosen for their geographic separation in
China, the female parent originating from seed from
Henan province, Central China, and the male parent from
a seed accession from Guangxi province, South China,
and for the diversity of fruiting characters which they
exhibited, those of the male being inferred from the
attributes of female siblings. The mapping population was
grown in the Plant and Food research orchard in Te Puke,
Page 11 of 15
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Bay of Plenty, New Zealand. At budbreak, leaf tissue was
taken from each genotype, held at 4° for 24 h, then stored
at -80° until required. Seedlings were screened by flow
cytometry to ascertain ploidy, and fingerprinted, using a
kit of seven previously identified variable microsatellites
which occurred in the parents. Only seedlings with the
expected genotypes were included in the mapping analy-
sis, all rogue plants were removed. DNA was extracted
from young leaf tissue of both parental genotypes and
every individual in the mapping population. A sample
was ground to powder in liquid nitrogen before being
processed through a DNeasy Plant Mini Kit (Qiagen™)
according to the manufacturer's instructions. The final
eluate was 200 μl in volume. 5 μl of a one in ten dilution
of this eluate was used in each PCR reaction.

Microsatellite identification and primer design
Microsatellites (SSRs) suitable for use as markers were
obtained from three sources. The first source was cDNA
libraries constructed at Plant and Food Research from flo-
ral tissues of A. chinensis. The libraries were constructed in
the pSport 1 (Not 1-Sal 1) vector and transformed into
MAX Efficiency DH5α™ Competent Cells (Life Technolo-
gies). Clones were screened for the presence of microsatel-
lite repeats by plaque hybridisation with short (16 bp),
32P-labelled probes and positive clones were identified.
The second source of SSRs was two genomic libraries
enriched either in (AC/GT)n or (AG/CT)n microsatellite
repeats respectively which were constructed at the Univer-
sity of Udine, Italy [35], in Lambda Zap II vector (Strata-
gene). Transformation into XL1-Blue MRF Escherichia coli
cells was followed by efficient excision of the plasmid
from the Lambda Zap vector by the use of ExAssist® inter-
ference-resistant helper phage with SOLR™ cells (Strata-
gene). DNA from positive clones from both cDNA and
genomic libraries was prepared, sequenced, and microsat-
ellites identified. The third source of SSRs was from Plant
and Food Research EST databases of A. chinensis and A.
deliciosa sequences [31,47]. Microsatellites from the EST
libraries were identified in silico as described in Fraser et al.
[31]. Sequence data from this article have been deposited
in the GenBank Data Libraries under accession nos.
FG396279–FG528563.

Primer pairs were designed for non-duplicated sequences
using the software programme Primer3 (©1996, 1997,
1998 [48]). Primer pair sequences were chosen which
gave a theoretical PCR product size between 200 and 450
bp, with an annealing temperature between 55° and 60°,
and with a GC content of approximately 50%. One of the
primers of each pair was located before the microsatellite
in the transcribed region, and the other was designed
within the translated portion of the EST to facilitate
marker transfer to other species. The primer pairs were
synthesised and fluorescently-labelled (Dye Sets DS-31 or
DS-34) by Applied Biosystems, Australia.

When a microsatellite was not found in the EST database,
insertions and deletions (indels) and single nucleotide
polymorphisms (SNPs) that were present were used to
map particular genes of interest.

Polymerase chain reaction and electrophoresis
Primer pairs were screened for PCR amplification and
length polymorphism with DNA samples of both parents
of the mapping population, and the 272 progeny. A reac-
tion mix of 15 μl containing 1 × PCR buffer (20 mM Tris-
HCl, 50 mM KCl), MgCl2 5 mM (the buffer and MgCl2
were those supplied with the polymerase), 0.2 mM each
of dNTPs, 4.5 pmol of each primer, and 1.25 units of Plat-
inum Taq polymerase (Invitrogen), was prepared for each
DNA sample. About 12.5 ng of genomic DNA was added
in 5 μl to bring the total PCR volume to 20 μl. PCRs were
performed in a Techne™ TC-412 thermal cycler with a sin-
gle cycle of 94° for 3 min preceding 35 cycles of denatur-
ing at 94° for 30 sec, annealing for 30 sec, and elongation
at 72° for 1 min. PCR reactions were carried out individ-
ually before three colour multiplexes of products labelled
with 6FAM, TET or HEX (Filter Set C), or 6FAM, VIC or
NED (Filter Set D) were prepared for analysis. The allelic
content of each genotype was determined by either gel
electrophoresis in an ABI PRISM 377 DNA Sequencer (Fil-
ter Set C, TAMRA™ size standard), and analyzed with
GeneScan Analysis and Genotyper software (Applied Bio-
systems), or capillary electrophoresis in an ABI Prism®

3100 Genetic Analyzer (Filter Set D, ROX™ size standard),
and analyzed with GeneMapper™ Software Version 3.0
(Applied Biosystems). All markers were scored by at least
two people independently for verification.

Data analysis and map construction
Chi-square tests of goodness-of-fit to expected segregation
ratios of 1:1:1:1, 1:2:1, 3:1 or 1:1 were carried out for all
markers segregating in the F1 progeny. The two sex-linked
SCAR markers SmX and SmY previously developed in A.
chinensis [5], were scored in the same fashion. The sex of
the flowers of all genotypes in the mapping population
was scored, and this phenotype was mapped as the 'Flow-
erSex' locus. Female, male and consensus linkage maps
were constructed for the F1 progeny using JoinMap® 3.0
[49]. For grouping of marker loci Joinmap uses a mini-
mum LOD score only. A range of LOD scores, 4 – 10, were
used so that linkage groups that were consistent across the
range could be identified. In JoinMap, linkage is consid-
ered transitive, i.e. if A is linked to B which is linked to C,
then A, B and C are linked. This gives one grouping of
markers for each of the given threshold values. JoinMap
uses only two-point (pairwise) analysis for ordering of
markers. There are other software packages that use multi-
point likelihood methods. One such package OutMap
[50], which is also designed for out-crossing species, was
used to validate a sample linkage group for consistency in
marker order and distances. For ordering of markers
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within a linkage group, JoinMap uses a sequential build-
up starting with the most informative, and 'rippling' for
local optima. Map distances are estimated by minimising
the sum of weighted (LOD scores as weights), squared dif-
ference of observed and expected pairwise distances [51].

The observed total map length was calculated simply as
the sum of map distances of the terminal markers of each
linkage group. Several methods were then used to provide
estimates of the total genetic length of the genome. Firstly,
the genome length was estimated using Method 3 of
Chakravarti et al. [52], which is a modification of the
method-of-moments estimator proposed by Hulbert et al.
[53]. This method estimates the genome length by multi-
plying, the ratio of total marker pairs to the number of
marker pairs that equals or exceeds a specified LOD
threshold value, by the map distance corresponding to the
largest observed recombination fraction among the latter
marker pairs. A threshold LOD value of 7 and the
Kosambi genetic distance were used [54]. The second
method used was an adjustment to the Hulbert's method
proposed by Remington et al. [32] to correct for the
upward bias due to ends of linkage groups. The adjust-
ment is given as

where n is the total number of markers, k is the number of
marker pairs having a LOD equal to, or greater than, the
specified threshold value, d is the map distance corre-
sponding to the above LOD threshold and C is the hap-
loid chromosome number. A third method used
estimated individual linkage group length as the observed
length plus twice the average marker spacing. This is based
on the assumption that marker position is uniformly dis-
tributed, and the expected distance from a terminal
marker to chromosome end is then equal to the average
marker spacing [32]. Adding these individual linkage
group lengths gave an estimate of the total genome length.

Genome coverage was estimated first as the proportion of
observed total map length to the estimated genome
length. A second method used the following equation
proposed by Lange and Boehnke [55], which makes the
assumption markers are randomly distributed throughout
the genome

c = 1 - e-2dn/L

where c is the proportion of genome within d cM of a
marker, n and L are the number of markers and the esti-
mated genome length.

Distribution of markers among linkage groups was
assessed by comparing observed marker numbers in link-
age groups with expectations under a random Poisson
process. The expected number of markers for linkage
group i under the null hypothesis is given by the Poisson
parameter i = nLi/∑ Li, where Lis are lengths estimated by
the third method described above. A chi-square value for
goodness-of-fit was computed as ∑ [(Oi - Ei)2/Ei], where O
and E are the observed and expected values, and the cor-
responding degrees of freedom is equal to one less than
the number of linkage groups.
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