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Abstract
Background: Imputation of missing genotypes is becoming a very popular solution for
synchronizing genotype data collected with different microarray platforms but the effect of ethnic
background, subject ascertainment, and amount of missing data on the accuracy of imputation are
not well understood.

Results: We evaluated the accuracy of the program IMPUTE to generate the genotype data of
partially or fully untyped single nucleotide polymorphisms (SNPs). The program uses a model-based
approach to imputation that reconstructs the genotype distribution given a set of referent
haplotypes and the observed data, and uses this distribution to compute the marginal probability
of each missing genotype for each individual subject that is used to impute the missing data. We
assembled genome-wide data from five different studies and three different ethnic groups
comprising Caucasians, African Americans and Asians. We randomly removed genotype data and
then compared the observed genotypes with those generated by IMPUTE. Our analysis shows 97%
median accuracy in Caucasian subjects when less than 10% of the SNPs are untyped and missing
genotypes are accepted regardless of their posterior probability. The median accuracy increases to
99% when we require 0.95 minimum posterior probability for an imputed genotype to be
acceptable. The accuracy decreases to 86% or 94% when subjects are African Americans or Asians.
We propose a strategy to improve the accuracy by leveraging the level of admixture in African
Americans.

Conclusion: Our analysis suggests that IMPUTE is very accurate in samples of Caucasians origin,
it is slightly less accurate in samples of Asians background, but substantially less accurate in samples
of admixed background such as African Americans. Sample size and ascertainment do not seem to
affect the accuracy of imputation.
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Background
Missing genotype data in genetic association studies is a
common problem often caused by poor DNA quality and
inadequate genotype calling algorithms [1], and imputa-
tion has been widely used to infer missing genotype data
[2]. Strategies for imputation that are specific to genetic
data leverage knowledge of linkage disequilibrium (LD)
between single nucleotide polymorphisms (SNP) to
reconstruct haplotypes that are used to inform imputa-
tion. The most popular solution is implemented in fast-
PHASE [3], that uses a Hidden Markov model to describe
the spatial distribution of clusters of haplotypes along a
chromosome and reconstructs individual haplotypes
from unphased genotype data using a Bayesian rule.
Machine learning methods that use k-nearest-neighbor,
classification and regression trees, or Bayesian networks
have also been proposed to impute missing genotype data
in relatively small datasets and were evaluated in [4,5] and
[6]. Sun and Kardia [7] have recently proposed a neural-
network based approach and, although computationally
more efficient, none of these alternative methods was able
to reach the high accuracy of fastPHASE under a variety of
conditions [5,7].

Marchini et al adapted this model from haplotype to gen-
otype data and implemented it in the software IMPUTE
[1]. The algorithm in IMPUTE models the probability of
the vector of genotypes Gi = {Gi1,...,GiL} at the L loci of
subject i, given a set of known haplotypes H, using a Hid-
den Markov model with hidden states that represent pairs
of haplotypes from the set H. The key feature of this
method is the use of the information from all markers in
LD with the SNPs to be imputed in order to infer the miss-
ing genotypes. The set of known haplotypes can be
derived from publicly available data such as that created
by the International HapMap project [8]. The great poten-
tial of this method is to allow investigators to synchronize
genotype data that were typed using different platforms
and several authors have shown that this approach
increases the power of genome-wide association studies
[9].

This strategy is now widely accepted and genome wide
association studies that include in their analysis imputed
genotype data of untyped SNPs are becoming very com-
mon [10-14]. However, the original report [1] presented
results of an evaluation based on control data from the
Welcome Trust Case Control Consortium [10] and
focused mainly on SNPs typed with the Affymetrix 500 K
array in a cohort of Caucasian subjects. Because subject
ascertainment, and differences in the genetic background
of study subjects and in the design of the platforms may
influence the accuracy of the imputation, we decided to
extend the original evaluation to include populations
with different genetic backgrounds and cases of rare dis-
ease.

Methods
We used publicly available genotype data from a US Cau-
casian population of 270 neurologically normal controls
(NNC) used in [15], an African American population of
111 sickle cell anemia patients (SCA) enrolled in the Mul-
ticenter Study of Hydroxyurea [16], a US Caucasian pop-
ulation of 280 centenarians enrolled in the New England
Centenarian Study [17] (NECS), an African American
population of 258 random controls (AA) extracted from
the Illumina genotype control database http://www.illu
mina.com, and a Thai population of 104 β-thalassemia
carriers (THAI). The first data set combines genotype data
from the Illumina Infinium I (human-1) and Infinium II
(humanhap300-duo) platforms. The human-1 array has
assays of almost 110,000 gene-centric SNPs while the
humanhap300-duo array has approximately 317,000
haplotype tagging SNPs that are based on the Phase I of
the International HapMap Project [8]. The two arrays rep-
resent more than 400,000 unique SNPs. All the other data
sets were typed with the Illumina humanCNV 370 array
with approximately 350,000 haplotype tagging SNPs
selected from Phase I and II of the HapMap project.

Beside their availability, the rationale to use these popula-
tions in our evaluation was based on the following obser-
vations. The NNC set represents a "referent" Caucasian
group that should not be enriched with subjects having a
particular disease. We included the NECS set to examine
the accuracy of IMPUTE in a Caucasian population with a
rare trait that is supposed to be regulated by several genes
[18] so that, genetically, these subjects may be substan-
tially different from randomly selected individuals from
North America. Similarly, the AA and SCA sets are two dif-
ferent groups of African Americans: the former consists of
randomly selected subjects with varied levels of genetic
admixture between Africans and Caucasians, while the lat-
ter should comprise subjects who are genetically more
homogeneous because they are all affected with SCA. This
feature should make them closer to Africans [19]. The
THAI set consists of subjects with a genetic background
that should be different from both the Chinese Han and
Japanese panel used in the HapMap project [20]. There-
fore, with the exclusion of the NNC set, all the other
groups have characteristics that could make them substan-
tially distant from the HapMap panel and impact the
accuracy of the imputation.

We used this data to assess the extent of the accuracy
claimed in the original manuscript for increasing propor-
tions of missing data, different sample sizes and SNP
selection. We started our evaluation using the NNC set
(Table 1) that should be the easiest case, and chromo-
some 21 that is tagged by the smallest number of SNPs
(~5900 in the NNC set) compared to the other chromo-
somes, and removed either 100% or 80% of genotype
data in an increasing proportion of randomly selected
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SNPs. Each simulation was repeated 1,000 times, and in
each set we used the program IMPUTE to fill in the miss-
ing genotypes using the haplotypes inferred with the Hap-
Map data from Utah residents with ancestry from
northern and western Europe (CEU) as the reference pop-
ulation. The default parameters of IMPUTE were used. In
each of the 1,000 runs, we computed the proportion of
genotypes that were correctly imputed compared to the
observed ones and to summarize the results we estimated
the final accuracy as the median proportion of correctly

imputed genotypes across different runs. We used the
same procedure to evaluate the accuracy of IMPUTE in the
other datasets and we repeated the analysis using also
chromosome 2 that is tagged by the largest set of SNPs
(~29,800 in the NNC set). We used IMPUTE with and
without splitting this chromosome to 10 Mb chunks.
Results are in Tables 2 and 3. We used reference haplo-
types from the CEU set to impute genotype data in the
NECS, from the Yoruba in Ibadan (YRI) set to impute data
in the SCA and AA sets, and we combined the sets of hap-

Table 1: Summary of the accuracies of IMPUTE using data from chromosome 21 in the NNC set

Accuracy

Missing 0.1% 1% 10% 40% 60%

Complete missing Overall 97.42%
(0.20, 0.93, 0.99, 1)

97.42%
(0.01, 0.93, 0.99, 1)

97.05%
(0.01, 0.92, 0.99, 1)

95.20%
(0.01, 0.88, 0.99, 1)

91.88%
(0.01, 0.82, 0.97, 1)

0.95 P.P. 99.24%
(0.00, 0.98, 1.00, 1)

99.24%
(0.00, 0.98, 1.00, 1)

99.22%
(0.00, 0.98, 1.00, 1)

99.06%
(0.00, 0.98, 1.00, 1)

98.86%
(0.00, 0.97, 1.00, 1)

Percentage 82.30% 82.31% 80.38% 71.16% 59.39%

80% missing Overall 97.24%
(0.28, 0.93, 0.99, 1)

97.70%
(0.01, 0.93, 0.99, 1)

97.24%
(0.01, 0.93, 0.99, 1)

95.39%
(0.01, 0.88, 0.99, 1)

91.71%
(0.00, 0.82, 0.97, 1)

0.95 P.P. 99.38%
(0.00, 0.98, 1.00, 1)

99.42%
(0.00, 0.98, 1.00, 1)

99.27%
(0.00, 0.98, 1.00, 1)

99.04%
(0.00, 0.98, 1.00, 1)

98.95%
(0.00, 0.97, 1.00, 1)

Percentage 81.92% 82.08% 80.53% 71.39% 59.12%

The columns report the accuracy of imputation when different proportions of SNPs ranging from 0.1% to 60% were imputed. The first three rows 
labelled as "Complete missing" summarize the accuracy when the genotype data were completely removed, while the last three rows labelled "80% 
missing" summarize the accuracy when 80% of the genotype data were randomly removed. The row labelled "Overall" reports the median accuracy 
and the minimum, 1st quartile, 3rd quartile, and maximum accuracy value within brackets. The row labelled "0.95.P.P" reports the median accuracy of 
the imputed genotypes when a minimum posterior probability of 0.95 was required for an imputed genotype to be acceptable. The row labelled 
"Percentage" reports the percentage of imputed genotype data that were acceptable by using the minimum posterior probability of 0.95 as a 
requirement.

Table 2: Impact on imputation accuracy of splitting chromosomes into chunks

Accuracy

NNC (split) NNC (non split) SCA (split) SCA (non split)

Complete missing Overall 97.42%
(0.01, 0.93, 0.99, 1)

97.42%
(0.01, 0.93, 0.99, 1)

88.29%
(0.01, 0.79, 0.95, 1)

88.29%
(0.01, 0.79, 0.95, 1)

0.95 P.P. 99.23%
(0, 0.98, 1, 1)

99.23%
(0.00, 0.98, 1.00, 1)

97.30%
(0.00, 0.94, 1.00, 1)

97.30%
(0.00, 0.94, 1.00, 1)

80% missing Overall 97.24%
(0.01, 0.93, 0.99, 1)

97.70%
(0.01, 0.93, 0.99, 1)

88.76%
(0.01, 0.80, 0.96, 1)

88.76%
(0.01, 0.80, 0.96, 1)

0.95 P.P. 99.28%
(0.00, 0.98, 1.00, 1)

99.30%
(0.00, 0.98, 1.00, 1)

97.44%
(0.00, 0.94, 1.00, 1)

97.44%
(0.00, 0.94, 1.00, 1)

No obvious impact of splitting chromosome 2 into small chunks of 10 Mb on imputation accuracy while using the data from the NNC and SCA sets. 
In all tests, 10% of the SNPs on chromosome 2 were randomly selected and their genotype data were either completely removed (Complete 
missing), or only 80% randomly removed (80% missing).
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lotypes from the Japanese in Tokyo, Japan (JPT) and the
Han Chinese in Beijing, China (CHB) to impute the data
in the THAI set. The effective population sizes we used
were: 11418 for CEU, 17469 for YRI and 14269 for CHB/
JPT.

Results and discussion
Table 1 shows the summary statistics of the accuracy of the
method when we impute an increasing proportions of
SNPs in chromosome 21 in the NNC set. The results con-
firm a very good accuracy of the imputation method when
either 100% or 80% of genotypes are missing in up to
40% of the SNPs. In fact, more than 40% of the SNPs have
to be missing to lower the median accuracy to less than
95%. The median accuracy increases to 99% when we
impose a posterior probability greater than 0.95 as the
threshold to accept the imputed genotypes. This increased
accuracy competes with the ability to complete the data as
only 71–82% of imputed genotypes were acceptable. Fig-
ure 1 shows the distribution of imputation accuracy when
100% of genotypes in 1% randomly selected SNPs were
removed in the genotype data of chromosome 21 in the
NNC set. The data are essentially those summarized in
column 2 of Table 1 and show a clear skewness of the
results with a very small number of SNPs that failed to be
imputed correctly while the majority of SNPs was

imputed with large accuracy. We examined 30 SNPs with
very low accuracy and found that most of them are in
recombination hotspots which were estimated from
Phase II Hapmap data.

In addition, Figure 2 shows the accuracy of imputed gen-
otypes (when 1% of the SNPs on Chr21 were randomly
selected and their genotype data were completely
removed in NNC set) as a function of the SNPs minor
allele frequency (MAF) and shows that imputation of
SNPs with smaller MAF appears to be more accurate than
imputation of the SNPs with larger MAF. This is consistent
with our expectation and suggests that imputation of
SNPs with almost uniform allele frequencies may not be
reliable. We also measured the accuracy of the inferred
genotypes as a function of the strength of LD. The plot in
Figure 3 shows that, with the exception of a few SNPs that
may be recombination hotspots, the accuracy is very high
even when the target SNPs are not in strong LD (D' < 0.7)
with other SNPs that are used to reconstruct the imputa-
tion model.

In the evaluation we chose the two proportions of 40%
and 60% SNPS to be fully imputed to create the hypothet-
ical scenario of integrating data from the Affymetrix 500 K
and the Illumina 370 K arrays. The two platforms have

Table 3: Comparison of the accuracies of the imputed genotypes in different populations

Accuracy

Population (sample 
size)

AA (258) SCA (111) THAI (104) NNC (270) NNC (135) NECS (280)

Complet
e missing

Overall 85.66%

(0.26,0.75,0.93,1)

87.39%

(0.02,0.77,0.95,1)

94.23%

(0.01,0.86,0.98,1)

97.05%

(0.01,0.92,0.99,1)

97.06%

(0.02,0.93,0.99,1)

96.43%

(0.01,0.91,0.99,1)

0.95 P.P. 96.70%

(0.00,0.92,0.99,1)

97.22%

(0.00,0.94,1.00,1)

98.06%

(0.00,0.95,1.00,1)

99.22%

(0.00,0.98,1.00,1)

99.24%

(0.00,0.98,1.00,1)

99.15%

(0.00,0.98,1.00,1)

Percentage 59.00% 60.77% 72.56% 80.38% 80.40% 77.43%

80% 
missing

Overall 85.92%

(0.29,0.75,0.93,1)

87.64%

(0.01,0.78,0.94,1)

93.98%

(0.01,0.86,0.98,1)

97.24%

(0.01,0.93,0.99,1)

97.25%

(0.01,0.93,0.99,1)

96.43%

(0.01,0.91,0.99,1)

0.95 P.P. 96.79%

(0.00,0.92,0.99,1)

97.37%

(0.00,0.93,1.00,1)

98.46%

(0.00,0.95,1.00,1)

99.27%

(0.00,0.98,1.00,1)

99.08%

(0.00,0.98,1.00,1)

99.08%

(0.00,0.98,1.00,1)

Percentage 59.03% 61.27% 72.82% 80.53% 80.44% 77.43%

The columns report the accuracy of imputation when 10% of SNPs were imputed. As in Table 1, the first three rows labelled as ''Complete missing'' 
summarize the accuracy when the genotype data were completely removed, while the last three rows labelled ''80% missing'' summarize the 
accuracy when 80% of the genotype data were randomly removed. The row labelled ''Overall'' reports the median accuracy and the minimum, 1st 

quartile, 3rd quartile, and maximum accuracy within brackets. The row labelled ''0.95.P.P'' reports the median accuracy of the imputed genotypes 
when a minimum posterior probability of 0.95 was required for an imputed genotype to be acceptable. The row labelled ''Percentage'' reports the 
percentage of imputed genotype data that were acceptable by using the minimum posterior probability of 0.95 as requirement.
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approximately 53,200 SNPs assayed in common so that
the union of SNPs in the two arrays consists of approxi-
mately 820 K SNPs, and one needs to impute 60% of the
SNP to synchronize Illumina with Affymetrix data
(increase from 370 K to 820 K), and 40% of the SNPs to
synchronize Affymetrix with Illumina data (increase from
500 K to 820 K). We observed a median accuracy of
95.20% when imputing 40% of the SNPs, while the accu-
racy goes down to 91.88% when 60% of the SNPs are to
be fully imputed. The first case (imputation of 40% of the
SNPs) would be close to synchronizing the data generated
from the Affymetrix 500 K with those generated with the
Illumina 370 K array, while the second case would be
close to synchronizing genotype data generated with the
Illumina 370 K array with those generated with the
Affymetrix 500 K platform. The accuracy slightly improves
when at least 20% of the genotype data are known and
this data can be used to build the imputation model. The
median accuracy increases to 99% when we impose a pos-

terior probability greater than 0.95 as the threshold to
accept the imputed genotypes, but this increased accuracy
again competes with the ability to complete the data as
only 70–80% of imputed genotypes are acceptable. This
result would suggests that some caution is needed when
trying to synchronize genotype data collected with the
Illumina 370 K array with those collected with the
Affymetrix 500 K array. However, a serious limitation of
our analysis is that we did not consider the fact that
Affymetrix and Illumina use different methods to select
tagging SNPs and the distribution of SNPs is not uniform
on the chromosomes between these two platforms. There-
fore, more evaluation is needed to really understand the
reliability of synchronizing data from these two plat-
forms.

We did not see significant differences in accuracies
between the simulations conducted with data from chro-
mosomes 2 and 21 (Table 2) and this finding suggests that
chromosome size and the effective number of SNPs do
not interfere with the performance of the method.

Table 3 reports the results of the simulations that we
extended to include populations of different genetic back-
grounds. Because the initial analysis in the NNC set
showed little variations of the accuracy for a wide propor-
tion of SNPs to be imputed, we chose to randomly select

Distribution of imputation accuracies when 1% of the SNPs were randomly selected from chromosome 21 and their gen-otype data completely removed in the NNC setFigure 1
Distribution of imputation accuracies when 1% of the 
SNPs were randomly selected from chromosome 21 
and their genotype data completely removed in the 
NNC set. The results for other proportion of missing SNPs 
are in the supplementary material. In each of the 1,000 simu-
lations we randomly selected 1% of the SNPs to be removed 
from the data and their genotype data to be imputed. The 
chromosome is tagged by approximately 5,900 SNPs, so that 
59 SNPs were removed in each run, and 59,000 SNPs had to 
be imputed across all 1,000 simulations. The x-axis reports 
the accuracy of each of the 59,000 SNPs that were imputed 
in the 1,000 simulations. The y-axis reports the frequency of 
different imputation accuracies.

Accuracies versus minor allele frequency (MAF), when 1% of the SNPs on Chr21 were randomly selected and their geno-type data were completely removed in NNC setFigure 2
Accuracies versus minor allele frequency (MAF), 
when 1% of the SNPs on Chr21 were randomly 
selected and their genotype data were completely 
removed in NNC set. The cluster of 10 points corre-
sponds to SNPs that are in recombination hotspots.
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only 10% of the SNPs in chromosome 21 and either
removed 100% of their genotype data or 80%. Compared
to the results in the NNC set, the accuracies of the imputed
genotypes in the NECS set are slightly lower, while the
accuracies of imputed genotype data in African Americans
and Asians are substantially lower (Table 2). When only
10% SNPs are completely missing, the median accuracy of
IMPUTE is 85.66% in the data from random African
American controls, 87.39% for the SCA set, and 94.23%
for Thai samples. The accuracies increase to 96.70%,
97.22% and 98.06% if we require that the posterior prob-
ability of the imputed genotypes is at least 0.95, but again
this increased precision leaves approximately 20–30% of
missing data. Because both the SCA and THAI sets have a
smaller sample size compared to the NNC set, we also
repeated the simulations in the NNC set using a sample
size comparable to the other ethnic groups to remove pos-
sible sample size effects. The analysis showed no differ-
ence in accuracies thus confirming the conjecture that the
lower precision of IMPUTE in the AA and SCA sets is not
due to the smaller sample size but may be a consequence
of the lower representativeness of the YRI haplotypes. In

addition, we tested the effect of chromosome size in SCA
set by dividing Chr2 to 10 Mb chunks and did not see any
obvious difference in imputation accuracies.

Considering that African Americans are genetically a mix-
ture of Africans and Caucasians, we conducted a principal
component analysis (PCA) with the EIGENSTRAT pro-
gram [21] to assess the degree of stratification between the
samples used for imputation and the four Hapmap popu-
lations [8] (see Figure 4). PCA identifies samples with
common ancestry by examining similarities across a large
set of SNPs and then assigning similar values for continu-
ous axes of variation to those samples with common
ancestry. We found that the Yoruban samples are geneti-
cally closer to the SCA samples (Fst = 0.007) when com-
pared with the AA set (Fst = 0.020). Since the Yoruban
samples served as the reference population for the impu-
tation of both the SCA and AA sets, it is not surprising that
IMPUTE reaches a higher accuracy in the SCA set rather
than in the AA set. This observation agrees with the con-
jecture that African Americans with SCA are less admixed
than general African Americans [22]. The analysis also
suggests a strategy to increase the imputation accuracies of
genotype data from AA samples: one may use the results
of PCA to partition the subjects into two clusters based on
their similarity to the Caucasian and African populations
of the HapMap and then impute the data using as refer-
ence haplotypes those of the closest population. We fol-
lowed this heuristic and split the AA set into two groups
of 35 subjects closest to the CEU cluster and 223 subjects
closest to the Yoruban. As shown in Table 4, comparing to
the original 85.66% accuracy, imputation of genotype
data in those subjects who are close to the Yorubans
reached an accuracy of 87.88% that is consistent with the
results of the SCA set, and the cluster close to the CEU
reached an accuracy of 97.14%.

The computational speed and memory usage of IMPUTE
depend on the sample size and chromosome length. In
our cases, imputing 10% of missing SNPs on a small chro-
mosome (such as chr21) for 270 NNC subjects took ~20
min and ~500 MB RAM. For a larger chromosome (chr2)
and larger sample (such as 1,000 subjects), we had to
divide the chromosomes into small chunks of 10 Mega
bases, otherwise it would exceed the maximum memory
of common computers.

Conclusion
The goal of our evaluation was to assess the effect of eth-
nicity, ascertainment, and different SNP selection on the
accuracy of imputation of unobserved SNPs. Our analysis
suggests that IMPUTE is very accurate in samples of Cau-
casian origin, it is slightly less accurate in samples of Asian
background, but substantially less accurate in samples of

Accuracies of imputed genotypes in 59,000 SNPs (y axis) ver-sus a summary of the LD patterns surrounding them (x axis)Figure 3
Accuracies of imputed genotypes in 59,000 SNPs (y 
axis) versus a summary of the LD patterns surround-
ing them (x axis). The summary of LD is a weighted aver-
age of the pairwise D' between each SNP to be imputed and 
all other SNPs in the same chromosome with weights that 

are calculated as . In the formula, 

di is the physical distance between the SNP to be imputed 
and the ith SNP, in 100 kb, and di' is the estimate of LD 
between the same two SNPs.

wD D dii

n
i’ ’ exp( )= −=∑ 1
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admixed background such as African Americans. The
lower accuracy may be an effect of the choice of reference
populations and the increasing numbers of control sam-
ples that are becoming available to investigators will
allow the development of better reference panels and
improve the results.

We are currently extending our evaluation to include the
program Bim-Bam [9], and MACH 1 http://

www.sph.umich.edu/csg/abecasis/MACH/ that use a sim-
ilar approach to impute and analyze untyped SNPs.
Although we expect the accuracy of imputation to be sim-
ilar, an open question is to compare the procedures
implemented in these different programs to analyze
imputed genotype data. We conducted a very preliminary
analysis to examine whether a naive analysis of imputed
data that ignores the fact that data were imputed inflates
the false positive rate and the results suggest that this pro-

Results for the principal components analysis (PCA) assessing the degree of stratification between the samples used for impu-tation and the four Hapmap populationsFigure 4
Results for the principal components analysis (PCA) assessing the degree of stratification between the samples 
used for imputation and the four Hapmap populations. The two panels plot the top two principal components for CEU 
(Purple), YRI (Red), NNC (Black), NECS (Blue), AA (Orange), SCA (Green). The left panel shows that the African Americans 
(orange) are more admixed as compared to the SCA (green) in the right panel.

Table 4: Accuracy of imputation in samples from African Americans

Accuracy

Missing Random AA (258) AA close to YRI (223) AA close to CEU (35)

Complete missing Overall 85.66%
(0.26, 0.75, 0.93, 1)

87.00%
(0.27, 0.77, 0.94, 1)

97.14%
(0.11, 0.91, 1.00, 1)

0.95 P.P. 96.70%
(0.00, 0.92, 0.99, 1)

96.97%
(0.00, 0.93, 0.99, 1)

100.00%
(0.00, 0.97, 1.00, 1)

80% missing Overall 85.92%
(0.29, 0.75, 0.93, 1)

87.08%
(0.26, 0.77, 0.94, 1)

96.43%
(0.07, 0.89, 1.00, 1)

0.95 P.P. 96.79%
(0.00, 0.92, 0.99, 1)

97.06%
(0.00, 0.93, 0.99, 1)

100.00%
(0.00, 1.00, 1.00, 1)

Impact of splitting samples from African Americans into groups based on their similarity to the Yorubans and Caucasians on the imputation 
accuracy. The 1st column reports imputation accuracy when YRI haplotypes are used on the whole set, the 2nd column reports imputation accuracy 
when YRI haplotypes are used on a cluster of subjects close to YRIs, the 3rd column reports imputation accuracy when CEU haplotypes are used on 
a cluster of subjects close to CEUs.
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cedure does not inflate the false positive rate. However, a
more comprehensive evaluation is needed.

Although our analysis shows that imputation is feasible
even for genome-wide data, an open conjecture is whether
the gain of accuracy of IMPUTE, or of similar programs
such as fastPHASE, compared to faster but slightly less
accurate methods may not be sufficiently large to justify
the computational efforts. Machine learning procedures
such as KNN and general classification models that we
investigated in [4] may require some intelligent search
procedure to be applicable to the size of genome-wide
data sets but, as we discussed in our earlier work, they
have the advantage of using long range LD that can span
different chromosomes. More work is however needed to
make these alternative procedures applicable to genome
wide data.

Supplementary material
Available at: http://155.41.217.225/impute/
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