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Abstract
Background: Quantitative reaction norm theory proposes that genotype-by-environment interaction (GxE)
results from inter-individual differences of expression in adaptive suites of genes in distinct environments.
However, environmental norms for actual gene suites are poorly documented. In this study, we investigated the
effects of GxE interactions on levels of gene transcription and growth by documenting the impact of rearing
environment (freshwater vs. saltwater), sex and genotypic (low vs. high estimated breeding value EBV) effects on
the transcription level of insulin-like growth factor (IGF-1) and growth hormone receptor (GHR) in brook charr
(Salvelinus fontinalis).

Results: Males grew faster than females (μ� = 1.20 ± 0.07 g·d-1, μ� = 1.46 ± 0.06 g·d-1) and high-EBV fish faster
than low-EBV fish (μLOW = 0.97 ± 0.05 g·d-1, μHIGH = 1.58 ± 0.07 g·d-1; p < 0.05). However, growth was markedly
lower in saltwater-reared fish than freshwater sibs (μFW = 1.52 ± 0.07 g·d-1, μSW = 1.15 ± 0.06 g·d-1), yet GHR
mRNA transcription level was significantly higher in saltwater than in freshwater (μSW = 0.85 ± 0.05, μFW = 0.61
± 0.05). The ratio of actual growth to units in assayed mRNA ('individual transcript efficiency', iTE; g·d-1·u-1) also
differed among EBV groups (μLOW = 2.0 ± 0.24 g·d-1·u-1; μHIGH = 3.7 ± 0.24 g·d-1·u-1) and environments (μSW = 2.0
± 0.25 g·d-1·u-1; μFW = 3.7 ± 0.25 g·d-1·u-1) for GHR. Males had a lower iTE for GHR than females (μ� = 2.4 ±
0.29 g·d-1·u-1; μ� = 3.1 ± 0.23 g·d-1·u-1). There was no difference in IGF-1 transcription level between
environments (p > 0.7) or EBV groups (p > 0.15) but the level of IGF-1 was four times higher in males than females
(μ� = 2.4 ± 0.11, μ� = 0.58 ± 0.09; p < 0.0001). We detected significant sexual differences in iTE (μ� = 1.3 ±
0.59 g·d-1·u-1; μ� = 3.9 ± 0.47 g·d-1·u-1), salinities (μSW = 2.3 ± 0.52 g·d-1·u-1; μFW = 3.7 ± 0.53 g·d-1·u-1) and EBV-
groups (μLOW = 2.4 ± 0.49 g·d-1·u-1; μHIGH = 3.8 ± 0.49 g·d-1·u-1). Interaction between EBV-group and environment
was detected for both GHR (p = 0.027) and IGF-1 (p = 0.019), and for iTE in the two genes (p < 0.0001; p < 0.05,
respectively), where increased divergence in levels of GHR and IGF-1 transcription occurred among EBV-groups
in the saltwater environment.

Conclusion: Our results show that both environment and sex have major impacts on the expression of mRNA
for two key genes involved in the physiological pathway for growth. We also demonstrate for the first time, at
least in fish, genotype-by-environment interaction at the level of individual gene transcription. This work
contributes significantly to ongoing efforts towards documenting environmentally and sexually induced variance
of gene activity and understanding the resulting phenotypes.

Published: 21 December 2007

BMC Genetics 2007, 8:87 doi:10.1186/1471-2156-8-87

Received: 24 July 2007
Accepted: 21 December 2007

This article is available from: http://www.biomedcentral.com/1471-2156/8/87

© 2007 Côté et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18154679
http://www.biomedcentral.com/1471-2156/8/87
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Genetics 2007, 8:87 http://www.biomedcentral.com/1471-2156/8/87
Background
An increasing number of studies has documented differ-
ential expression of genes induced by environmental
change (gene expression plasticity) [1-4]. However, only a
handful of them have applied a quantitative genetic
framework to document how this phenomenon differs
between distinct genotypes, that is genotype-by-environ-
ment interaction (GxE) [5,6]. As a fundamental quantita-
tive or qualitative change in gene activity, the
physiological genetic basis of GxE interaction to environ-
mental change should be discernable at the molecular
level among animals with similar genetic background
exposed to different environments [7]. Precise quantifica-
tion of intracellular processes at the level of individual
genes could provide a new insight into events occurring
between the gene and the appearance of the trait. Such
associations should be particularly effective for genes in
physiological pathways known to affect particular pheno-
types.

Brook charr (Salvelinus fontinalis; Osteichthyes: Salmoni-
dae) life history ranges in habitat from permanent resi-
dency in streams or lakes to anadromous incursions [8],
where individuals make summer migrations into interme-
diate-salinity estuaries and coastal marine waters [9,10].
Despite potential tradeoffs with survival [11], annual salt-
water migration is considered advantageous because it
provides access to superior food resources compared to
the freshwater environment, translating into higher final
weight-at-age (>4 kg) at the end of the saltwater period
and greater longevity (8+ years) compared to freshwater
residents (<1 kg and 3–4 years) [9,10]. There is evidence
of genetic differentiation between the resident and anadr-
omous life history types, both at the population level
[12,13], and as distinct quantitative genetic units within
the same population [14]. Exposure to the saline environ-
ment should, therefore, involve differentiation in the
activity of genes in the growth pathway.

As in mammals, growth hormone (GH) and insulin-like
growth factor (IGF) are two major molecular targets in the
potential endocrine regulation of growth in teleost fishes
[15-18]. GH is a pluripotent hormone produced by the
pituitary gland in teleosts, and acts by binding to a single-
transmembrane receptor, the GH receptor (GHR). Ligand
binding induces receptor dimerization producing an
active trimeric complex [19]. This active complex stimu-
lates the transcription and production of insulin-like
growth factor 1 (IGF-1), a hormone which plays a central
role by mediating the growth-promoting actions of pitui-
tary growth hormone [20] (Fig. 1). The direct versus indi-
rect nature of GH action remains to be clarified, but GH
appears to act both locally at the target tissue level to stim-
ulate the autocrine/paracrine action of IGF-1, as well as on
the liver to increase plasma IGF-1 levels [21]. Expression

of both IGF-1 and growth hormone receptor (GHR)
mRNA are detected in multiple fish tissues, but expression
appears to be greatest in the liver [22]. The impact of envi-
ronment on expression level of GH/IGF-1 pathway genes
is well documented in fish. For instance, work in rainbow
trout (Oncorhynchus mykiss) [23,24] showed that higher
water temperature increases the level IGF-1 and GHR
mRNA in liver tissues. Other work on rainbow trout [25]
and coho salmon (O. kisutch) [26] also demonstrated that
the feeding period is associated with increased IGF-1
mRNA expression in muscle and liver, respectively. In sev-
eral fish species, tissue levels of IGF-1 mRNA positively
correlate with body growth rate [19,20,27,28]. Similarly,
work with coho salmon [20] and gilthead sea bream (Spa-
rus aurata) [29] indicated that the level of hepatic GHR
was related to growth performance. However, investment
in somatic growth carries inherent metabolic costs and
may be limited by energy investment towards mainte-
nance, reproduction and activity, including differential
osmoregulation costs between freshwater and saltwater
environments [30]. Besides environment and genotypic
effects, gene expression may also be influenced by sex.
Indeed, differences between sexes in gene activity in the
GH/IGF-1 axis have been documented [31-33] and associ-
ated with physiological systems (i.e. cortisol receptor, tila-
pia, [50]). Moreover, it has also been demonstrated that
males and females may vary in their transcriptional
response to different environmental conditions [34-36].

In this study, we used a quantitative genetic approach to
investigate the effects of GxE interactions on levels of gene
expression and growth by documenting the impact of
rearing environment (freshwater vs. saltwater), sex and
genotypic effects on the transcription level of insulin-like

GH/IGF-1 axisFigure 1
GH/IGF-1 axis. Illustration of the endocrine axis controlling 
growth in teleost fish. Multiple hormonal and nutritional fac-
tors may stimulate (+) the production and/or modify (+/-) 
the activity of IGF-1. Negative feedback (-) by IGF-1 inhibits 
growth hormone secretion by the pituitary.
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growth factor (IGF-1) and growth hormone receptor
(GHR) in brook charr. We also predicted that i) differ-
ences in transcription level for IGF-1 and GHR should
positively correlate with differences in growth, and ii) the
production of IGF-1 and GHR should differ between
sexes.

Results
Freshwater and saltwater growth
We observed marked differences in growth between prog-
eny from the same families in the two salinity conditions
(0‰ and 20‰) (Table 1, Figure 2a, see also Table 2 for
details on each family). Freshwater-reared individuals
grew almost 30% faster than their saltwater-reared full-
sibs at the same feeding regime (μFW = 1.52 ± 0.0689 g·d-

1; μSW = 1.15 ± 0.0572 g·d-1). Males had a significantly
higher growth rate than females in both environments
(μmale = 1.46 ± 0.0597 g·d-1, μfemale = 1.20 ± 0.0666 g·d-

1). HIGH-EBV families also exhibited higher growth (μ =
1.58 ± 0.0663 g·d-1) relative to those of the LOW-EBV
group (μ = 0.970 ± 0.0537 g·d-1). There was also evidence
of GxE interactions in the form of variable growth
responses between families belonging to different EBV
groups in different environments, as detailed below
(Table 1).

Sex, family and environmental effects on level of gene 
transcription
GHR level of gene transcription of individuals in the
HIGH-EBV group was significantly less (μ = 0.620 ±
0.0819) than that observed in the LOW-EBV group (μ =
0.839 ± 0.0855) (Table 3, Figure 2b; see also Table 4).
However, the level of GHR transcription was also signifi-
cantly higher for fish reared in saltwater (μ = 0.848 ±
0.0460) than their full-sibs reared in freshwater (μ = 0.611
± 0.0510; p < 0.05), despite the fact that growth in saltwa-
ter was slower. There were also marked effects of sex on
gene transcription for GHR. GHR expression was almost
twice as high in males (μ� = 0.907 ± 0.0537) than
females (μ� = 0.551 ± 0.0485; p < 0.05). Similarly, IGF-1
transcription level was almost four times higher in males

(μ� = 2.38 ± 0.114) than in females (μ� = 0.583 ±
0.0910). There was no evidence of environmental effects,
or impact of genotypic value, on the expression of IGF-1
(Table 3, Figure 2c).

Individual transcript efficiency (iTE)
We detected highly significant differences in growth rela-
tive to GHR expression among environments with sub-
stantially lower gains per unit GHR investment (iTEGHR)
in fish reared in saltwater (μiTE = 2.00 ± 0.246 g·d-1·u-1)
compared to their freshwater-reared sibs (μiTE = 3.71 ±
0.253 g·d-1·u-1) (Table 5, Figure 2d; see also Table 6).
Females had significantly higher iTEGHR (μiTE = 3.12 ±
0.229 g·d-1·u-1) than males (μiTE = 2.362 ± 0.286 g·d-1·u-

1). Differences among EBV groups for iTEGHR were also
highly significant where the LOW-EBV group (μiTE = 1.97
± 0.241 g·d-1·u-1) showed a much lower effective growth
per unit GHR production than the HIGH-EBV group (μiTE
= 3.73 ± 0.239 g·d-1·u-1). Also, there was evidence of
interaction between EBV group and environment for
iTEGHR (see below; Table 5).

Similar to findings for GHR, fish in saltwater had signifi-
cantly lower growth per unit IGF-1 mRNA (μiTE = 2.34 ±
0.516 g·d-1·u-1) than full-sibs reared in freshwater (μiTE =
3.67 ± 0.530 g·d-1·u-1 Table 5 and Figure 2e). Like GHR
also, females had significantly higher iTE (μ� = 3.88 ±
0.471 g·d-1·u-1) than males (μ� = 1.28 ± 0.588 g·d-1·u-

1) (Table 5). Likewise, growth per unit IGF-1 was higher in
HIGH-EBV (μiTE = 3.78 ± 0.488 g·d-1·u-1) than in LOW-
EBV (μiTE = 2.35 ± 0.491 g·d-1·u-1) group. We also
detected evidence of GxE for iTEIGF-1 (see below; Figure
2e).

Genotype-by-environment interaction
We detected significant gene-by-environment interaction,
supported by non-parallel reaction norms (Figure 2), for
absolute growth (Table 1), level of gene transcription, as
well as individual transcript efficiency for both GHR and
IGF-1 genes (Table 3, Table 5). Also, genotype-by-envi-
ronment interaction within each sex was observed for
both GHR and IGF-1, whereby LOW-EBV males produced
almost 50% more GHR in saltwater compared to a 20%
increase for the HIGH-EBV males. Similarly, LOW-EBV
females produced 70% more GHR in saltwater compared
to a 20% increase for the HIGH-EBV females (Figure 2b).
All EBV groups, however, experienced a net increase in
GHR on exposure to saltwater. A similar but reversed asso-
ciation was seen for IGF-1: divergence in transcription
level between EBV groups was highest in saltwater and
HIGH-EBV individuals produced higher levels of IGF-1
(Figure 2c). In this case, however, both males and females
of the LOW-EBV group experienced a net decrease in IGF-
1 production.

Table 1: Results of the mixed-model maximum likelihood 
analysis of variance for factors explaining absolute growth (g·d-

1).

Absolute growth

Source of variation d.f F P

Intercept 143 718.239 <.0001*
Environment 1 22.552 <.0001*
EBV group 1 51.569 0.002*
Sex 1 9.757 0.002*
EBV group × environment 2 19.945 <.0001*

Asterisks indicate significant effects (α = 0.05).
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Net changes in individual weight per unit GHR produc-
tion (iTE) were approximately parallel among the four
sex-EBV groups, although changes in iTEGHR among envi-
ronments were marked (Figure 2d). The iTEIGF-1 reaction
norms into saltwater were more convergent, so that males
and females in the LOW- and HIGH-EBV groups were
more similar than in freshwater. Differences in iTE
between freshwater and saltwater were more pronounced
for HIGH-EBV than LOW-EBV fish, and the increased dif-
ference between EBV groups in saltwater was about 30%
for females and > 50% for males (Figure 2e).

Discussion
The aim of this study was to determine the impact of inter-
actions between environments, sexes and genetic values
(EBV) on the transcription level of two key genes in the
GH/IGF-1 axis and their association with growth in brook
charr. Our results provided evidence of GxE interactions
for individual gene transcription, as well as pronounced
sex effects. We observed that freshwater-reared individuals
grew almost 30% faster than saltwater-reared full-sibs
under the same feeding regime. A first explanation for
such differences could be intolerance of moderate salinity
by the Rupert R. charr population, either as a failure of
saltwater acclimation, or because of inappropriate genetic
architecture for saltwater tolerance. Studies on Atlantic
salmon (Salmo salar) [37] and kokanee (O. nerka) [38]

showed that physiological shifts from non-anadromy to
anadromy are possible for populations confined to fresh-
water for thousands of generations. There is also a well
documented case of the adoption of anadromy in a pop-
ulation of introduced freshwater rainbow trout (O.
mykiss) [39]. Therefore, we expected a priori that similar
plasticity would apply to brook charr from the Rupert R.
In contrast, our results suggest that the capacity for
osmoregulatory efficiency in saltwater may not be ubiqui-
tous among resident populations of salmonid species,
and that this capacity may have been partially lost in the
Rupert R. brook charr population. Secondly, we cannot
completely refute the possibility that Rupert R. brook
charr grew more slowly in the saltwater environment
because of the ration used in this study (0.8% body
weight/d). A more extensive range of feeding regimes was
not feasible due to space constraints. Consequently, a sin-
gle standardized commercial ration level was chosen for
ensuring equal feeding opportunity to all members of the
same tank/treatment group, and to avoid confounding
effects of growth with excess feed availability. Thus, while
this study revealed important sexual, genetic and environ-
mental effects on the activity and efficiency of the
genomic transcripts for the same diet, poor mechanical
physiological ability might be compensated for through
increased consumption rate. This, however, remains to be
experimentally tested. We also observed that females had

Table 2: Absolute growth for male and female of HIGH- and LOW-EBV families reared in freshwater and saltwater environments.

Absolute growth (g·d-1)

Freshwater Saltwater

Family Female Male Female Male

LOW-EBV-1 0.832 ± 0.127 1.518 ± 0.323 0.870 ± 0.187 0.843 ± 0.162
LOW-EBV-13 1.130 ± 0.152 1.517 ± 0.187 0.806 ± 0.138 0.855 ± 0.264
LOW-EBV-20 1.491 ± 0.457 1.291 ± 0.227 0.729 ± 0.162 0.961 ± 0.187
HIGH-EBV-7 1.361 ± 0.205 1.784 ± 0.145 1.244 ± 0.173 1.291 ± 0.187
HIGH-EBV-15 1.712 ± 0.132 2.325 ± 0.264 1.395 ± 0.145 1.901 ± 0.229
HIGH-EBV-24 1.856 ± 0.152 1.096 ± 0.229 1.520 ± 0.264 1.750 ± 0.264

Values are LS means ± SE. LS means were estimated as linear predictors based on the most parsimonious model. Standard errors for each estimate 
were determined from a bootstrap distribution (1,000 iterations) of model predictions.

Table 3: Results of the maximum likelihood analysis of variance in mixed models for factors explaining gene expression.

GHR IGF-1

Source of variation d.f. F P d.f. F P

Intercept 145 388.001 <.0001* 145 299.664 <.0001*
Environment 1 12.005 0.001* 1 0.093 0.761
EBV group 1 7.170 0.055* 1 2.444 0.193
Sex 1 13.603 0.001* 1 134.533 <.0001*
EBV group × environment 2 3.689 0.027* 2 4.066 0.019*

Asterisks indicate significant effects (α = 0.05).
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Reaction norm for growth, gene expression and individual transcript efficienciesFigure 2
Reaction norm for growth, gene expression and individual transcript efficiencies. Predicted linear means for a) 
absolute growth, b) relative expression of GHR, c) relative expression of IGF-1 and d, e) individual transcript efficiencies (iTE) 
for GHR and IGF-1 of males and females of HIGH- and LOW-EBV group reared in freshwater and saltwater (20 ppt) environ-
ments. Gene-by-environment interaction between EBVgroup-by-environment for growth and iTEGHR is not clearly illustrated 
by non-parallel reaction norms because the difference in EBV group within each environment was small, albeit statistically sig-
nificant.
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lower overall growth than males, but no evidence of sex-
by-environment interaction for growth specifically. The
higher overall growth for males compared to females
could be the result of differences in bioenergetic costs
associated with sexual maturation. Given that our sam-
pling was conducted during late summer and early fall,
the period immediately preceding spawning, it is plausi-
ble that females were allocating proportionally more
energy to gonadal tissues, and less to skeletal growth, than
males [40-42].

Many studies have documented the effects of the environ-
ment on levels of gene expression [23,24,43,44]. Our
results add to these studies by revealing differential gene
expression under distinct environments in the brook
charr. However, they refuted our working hypothesis since
we observed that fish reared in saltwater expressed more
GHR mRNA, despite the fact that they had a slower
growth rate than fish reared in freshwater. As a conse-
quence, effective growth relative to transcript production
– individual transcript efficiency (iTE) – was also consid-
erably higher in freshwater-reared individuals than their
saltwater-reared siblings for both genes. At any given
point during their development, organisms must invest
energy into basal and active metabolism, reproduction,

catabolic processes and stress resistance. Our findings sug-
gest that the relative investment to produce the same
amount of tissue in saltwater-reared brook charr is consid-
erably higher than in the freshwater environment, partic-
ularly so for GHR. This suggests either an environmental
inhibition of molecular elements of growth below GHR
and/or a failure of control in the production of GHR and/
or precursors to it in saltwater. The direct ratio of growth
with gene production on the g-per-unit mRNA scale
implicit in the iTE index assumes proportionality and uni-
formity in pathways of the GH/IGF-1 system candidate
genes themselves and in the surrounding metabolic sys-
tems along the translational and transcriptional axes. As
such, the ratio is analogous to a single-gene assay just
above the level of candidate gene analysis, or of a single-
QTL effect on phenotypic variance observed in contrasting
environments which partitions phenotypic variance into
locus-specific effects without knowledge of all physiolog-
ical processes occurring between genetic and phenotypic
expression. While our family-replicated design should
have sufficiently accounted for most sources of back-
ground variance, we cannot exclude the possibility that
full-sib means were partially mediated by dominant
genetic effects which may partially bias estimates of addi-
tive variance [45,46]. Future studies should emphasize a

Table 4: Gene expression of GHR and IGF-1 genes for male and female of HIGH- and LOW-EBV families reared in freshwater and 
saltwater environments.

GHR IGF-1

Freshwater Saltwater Freshwater Saltwater

Family Female Male Female Male Female Male Female Male

LOW-EBV-1 0.687 ± 0.102 1.310 ± 0.260 0.893 ± 0.150 1.09 ± 0.130 0.651 ± 0.217 1.821 ± 0.554 0.557 ± 0.320 1.440 ± 0.277
LOW-EBV-13 0.400 ± 0.123 0.626 ± 0.150 0.697 ± 0.106 1.83 ± 0.213 0.419 ± 0.260 2.611 ± 0.320 0.365 ± 0.226 2.291 ± 0.452
LOW-EBV-20 0.205 ± 0.260 0.679 ± 0.184 0.636 ± 0.130 1.02 ± 0.150 0.196 ± 0.554 2.140 ± 0.391 0.338 ± 0.277 2.530 ± 0.320
HIGH-EBV-7 0.500 ± 0.165 0.579 ± 0.116 0.679 ± 0.139 0.506 ± 0.150 0.489 ± 0.350 2.503 ± 0.248 1.990 ± 0.296 1.784 ± 0.320
HIGH-EBV-15 0.322 ± 0.106 0.549 ± 0.213 0.664 ± 0.116 1.18 ± 0.184 0.495 ± 0.226 2.472 ± 0.452 0.649 ± 0.248 3.362 ± 0.391
HIGH-EBV-24 0.612 ± 0.122 0.861 ± 0.213 0.320 ± 0.184 0.659 ± 0.213 0.577 ± 0.261 2.980 ± 0.452 0.273 ± 0.391 2.670 ± 0.452

Values are LS means ± SE. LS means were estimated as linear predictors based on the most parsimonious model. Standard errors for each estimate 
were determined from a bootstrap distribution (1,000 iterations) of model predictions.

Table 5: Results of the maximum likelihood analysis of variance in mixed models for factors explaining individual transcript efficiency 
(iTE).

iTE_GHR iTE_IGF-1

Source of variation d.f. F P d.f. F P

Intercept 146 246.948 <.0001* 146 29.991 <.0001*
Environment 1 60.215 <.0001* 1 6.096 0.014*
EBV group 1 27.786 0.006* 1 5.599 0.077
Sex 1 3.991 0.048* 1 8.699 0.004*
EBV group × environment 2 17.484 <.0001* 2 3.060 0.050*

Asterisks indicate significant effects (α = 0.05).
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more complete analysis with a full range of physiological
products of the growth pathway and associated members.
However, the genes analyzed here are ubiquitous in the
process of growth, and represent relevant candidates for
the description of this pathway.

Partial discrepancies between the transcription level of
genes associated with GH/IGF-1 and growth rate may
have several physiological explanations. The GH/IGF-1
system has long been recognized as an important partici-
pant in the osmoregulatory physiology of fishes, at least
for euryhaline species [21,22]. The absence of differences
for the transcription level of liver mRNA IGF-1 between
salt and freshwater has previously been observed in rain-
bow trout, for which an abrupt transfer to 80% seawater
resulted in increased IGF-1 mRNA levels in gills and kid-
neys, but not in the liver [47]. In contrast, and similar to
our observations for GHR, Sakamoto and Hirano [48]
showed that rainbow trout acclimated to seawater experi-
enced an initial decrease in liver GHR followed by a signif-
icant increase after four days. Thus, our results, and those
of Sakamoto and Hirano [48], indicate the likelihood of
at least partial mediation by the liver in seawater adapta-
tion. Unlike Sakamoto and Hirano [48], however, we did
not evaluate the level of active GHR in the membrane, but
rather estimated the number of copies of the gene prod-
uct. This suggests that the density of the receptor at the cell
surface may depend not only on the rate of gene expres-
sion and the stability of the GHR mRNA, but also on the
removal of the protein [21].

We also detected a sex effect on gene activity in which the
expression of IGF-1 and GHR was significantly higher for
brook charr males. Differences between sex in IGF and
GH production have also been reported in other species,
such as chickens [49,50], and pigs [31], where males typ-
ically have higher production rates than females, as in this
study. Similarly, these authors observed that male growth

per GHR production was actually lower than that of
females, which also corroborates our results. Sex steroid
hormones may influence the GH/IGF-1 axis. Riley et al.
[33] found that in sexually dimorphic tilapia, injection of
17β-estradiol into males resulted in a GH/IGF-1 profile
more closely resembling that of female fish (namely a
lower plasma level of IGF-1 and higher plasma levels of
GH), whereas administering di-hydrotestosterone to
females elicited a serum GH/IGF-1 profile resembling that
of males. From these observations [33,51], Wood et al.
[22] suggested cross-involvement between sex steroid hor-
mones and the GH/IGF-1 axis, possibly at the level of
hepatic GHR. GH resistance induced by sex steroids may,
thus, contribute to the developmental switch between
somatic and reproductive development associated with
sexual maturation in fishes.

Genotypic effect on gene expression, measured as the dif-
ference between EBV groups, was observed for both GHR
and IGF-1. This corroborates previous observations (e.g.
Drosophila melanogaster, [52]; Fundulus heteroclitus, [53])
that the genotype has a significant impact on variation in
gene expression between individuals within population.
To our knowledge, however, our study represents one of
very few reports of a GxE interaction for levels of gene
expression [5,6], whereby the effect of genotypic value on
gene expression changed in relation to environmental
condition. As such, non-parallel reaction norms for
expression of GHR and IGF-1 genes indicate genetic vari-
ance in reaction norm for growth at the level of individual
genes in the GH/IGF-1 axis as a function of the environ-
ment. Given its link with fitness, genetic variation for
growth could be maintained by a form of balancing selec-
tion: the presence of GxE interaction for individual genes
of the GH/IGF-1 axis can change the genetic target for
selection because different genotypes may produce opti-
mal phenotypes under different environmental condi-
tions. Both mutations and environmental shock during

Table 6: Individual transcript efficiency (iTE) of GHR and IGF-1 for male and female of HIGH- and LOW-EBV families reared in 
freshwater and saltwater environments.

iTE_GHR iTE_IGF-1

Freshwater Saltwater Freshwater Saltwater

Family Female Male Female Male Female Male Female Male

LOW-EBV-1 2.509 ± 0.545 1.162 ± 1.39 1.210 ± 0.802 0.804 ± 0.695 3.364 ± 1.112 0.831 ± 2.854 2.620 ± 1.648 0.665 ± 1.427
LOW-EBV-13 3.451 ± 0.655 2.963 ± 0.802 1.380 ± 0.593 0.740 ± 1.135 4.285 ± 1.345 0.588 ± 1.648 2.924 ± 1.217 0.510 ± 2.330
LOW-EBV-20 4.522 ± 1.390 1.891 ± 0.983 1.441 ± 0.695 0.988 ± 0.802 4.194 ± 2.854 0.676 ± 2.018 3.190 ± 1.427 0.379 ± 1.648
HIGH-EBV-7 3.983 ± 0.879 4.272 ± 0.622 2.212 ± 0.743 4.000 ± 0.802 4.880 ± 1.805 4.955 ± 1.276 1.631 ± 1.525 3.920 ± 1.648
HIGH-EBV-15 6.122 ± 0.567 4.823 ± 1.140 2.802 ± 0.622 1.860 ± 0.983 6.310 ± 1.165 0.960 ± 2.330 3.661 ± 1.276 0.574 ± 2.018
HIGH-EBV-24 4.471 ± 0.655 2.032 ± 1.140 3.391 ± 0.983 2.831 ± 1.135 5.365 ± 1.345 0.557 ± 2.330 4.120 ± 2.018 0.701 ± 2.323

Values are LS means ± SE. LS means were estimated as linear predictors based on the most parsimonious model. Standard errors for each estimate 
were determined from a bootstrap distribution (1,000 iterations) of model predictions.
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developmental processes [54,55], as well as quantitative
genetic variance for environmental reaction, have been
proposed for explaining phenotypically plastic responses
to different environments [56,57].

Conclusion
In summary, we documented that both environment and
sex had major impacts on the expression of mRNA for two
key genes, GHR and IGF, involved in the physiological
pathway for growth. We also demonstrated for the first
time, at least in fish, genotype-by-environment interac-
tion at the level of individual gene transcription. As such,
this work contributes significantly to ongoing efforts
towards documenting environmentally and sexually
induced variance of gene activity, and to understand the
resulting phenotypes. However, to achieve a more com-
plete understanding of the molecular architecture respon-
sible for the variation of a quantitative trait such as
growth, future research should quantify both gene expres-
sion and the resultant proteins implicated in the physio-
logical pathway underlying the trait. The continued
increase in the use of methods such as RT-qPCR and
microarrays in different fields of biology and physiology
should greatly improve our understanding of the func-
tional and evolutionary significance of variation in gene
expression.

Methods
Husbandry and strain history
In 2001, 20 mixed half-sib families were generated at the
Laboratoire Régional des Sciences Aquatiques (LARSA,
Université Laval, QC, Canada) from 15 sires and 10 dams
(Table 7) originating from a strain of brook charr derived
from the Rupert River which drains into the James-Hud-
son Bay in northwestern Québec. Individuals, marked by
external T-tags (Floy Inc., Seattle, Washington, USA), were
randomly divided and assigned to one of two re-circula-
tion units, each composed of three 3,000 L tanks. All fish
were maintained at 10°C and 90% oxygen saturation, and
on external photoperiod (50°C25'N, 73°53'W, Québec,
CA). Fish were fed 0.8% of their body weight (commercial
feed pellets, Corey Feed Mills, Inc., NB) throughout the
experiment. At the end of June 2004 (2+ age class), salin-
ity was increased in one of the units (20‰) (SW; n = 415)
while being maintained at freshwater (≈0‰) (FW; n =
433) in the other for a period of five months. This salinity
is typical of conditions commonly encountered by brook
charr in estuarine and coastal marine waters.

Growth measurements and tissue sampling
Absolute growth (GA = ((W2-W1)/d), where W1 and W2
represent weight for the two successive samplings and d
represents the interval in days [10] were calculated for the
entire population for the period of July to October. In
November 2004, 6 – 15 fish were selected at random

within each half-sib family (see below) in the freshwater
and saltwater treatments. Fish were killed by rapid decap-
itation and ≈200 mg of liver tissue was removed and
immediately frozen in liquid nitrogen for subsequent
analysis of gene expression by reversed transcribed quan-
titative PCR (RT-qPCR). Individuals were sexed by exami-
nation of the gonads at euthanization.

Quantitative genetic modeling
We used a reduced animal model [58-61] for the estima-
tion of additive quantitative genetic variance (σ2a) and
best linear unbiased predictions (BLUP; [58]) of breeding
value (estimated breeding value; EBV) for absolute growth
for all individuals (Perry et al., unpublished). Parent-off-
spring relationship and growth rate (as a single-vector
phenotype) were coded using PEST [62] for REML in
VCE5.1 [61] with the iteration of analytical gradients [60]
in the animal model

y = Xβ + Za + e

where y is the phenotypic vector for growth rate, X is the
design matrix (n × p) of fixed effects, β the fixed effects
coefficient vector (p × 1), Z is the incidence/relationship
matrix (n × q) of genetic effects, a is the vector (u × 1) for
additive genetic effects and e is random error. The above
REML model was fit separately for each treatment. Rearing
tank and group intercept within treatment tank were fit as
fixed effects, and animal was the sole random effect. Two
groups of three full-sib families having the most extreme

Table 7: Sample information.

Dam EBV Sire EBV Family n EBV Group

126 -0.253 196 -0.205 1 102 LOW
126 -0.253 100 -0.042 2 52
126 -0.253 162 -0.204 3 78
193 0.029 162 -0.204 4 88
193 0.029 100 -0.042 5 90
193 0.029 138 -0.178 6 82
252 0.184 88 0.276 7 90 HIGH
252 0.184 249 0.313 8 84
252 0.184 196 -0.205 9 79
252 0.184 138 -0.178 10 13
217 -0.262 250 -0.262 13 102 LOW
242 0.218 84 0.185 15 93 HIGH
251 0.159 177 0.081 16 44
231 -0.049 114 -0.049 17 93
38 -0.188 247 -0.197 20 27 LOW
38 -0.188 148 0.185 21 134
38 -0.188 177 0.081 22 127
94 0.212 148 0.185 24 88 HIGH
135 -0.048 177 0.081 26 55
135 -0.048 235 0.030 27 84

Rupert strain pedigree, estimated breeding value (EBV) for each dam 
and sire, number of individuals and family selected in reference to 
HIGH- and LOW EBV group (in bold characters).
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mean EBV for growth were selected to represent the
'HIGH' and 'LOW' growth categories, respectively (see
Appendix 1)

Total RNA extraction and reverse transcription
Total RNA was extracted from approximately 25 mg of
liver tissue using a Qiazol isolation reagent (RNeasy 96
Universal Tissue, Qiagen), following the manufacturer's
instructions. RNA concentrations were determined by
spectrophotometry (GeneQuant, Pharmacia). Following
DNAse treatment to remove residual genomic DNA, 10 μg
total RNA was used in a 100 μl reaction to obtain first-
strand cDNA by reverse transcriptase reaction (cDNA
Archive Kit, Applied Biosystems).

Oligonucleotide design and RT-qPCR analysis of gene 
expression
The mRNA sequences for IGF-1 and GHR were not availa-
ble for brook charr in EMBL nor NCBI GeneBank [63].
Consequently, we used the mRNA IGF-1 sequence from
chum salmon (O. keta) (Acc. No. AF063216) and the
mRNA GHR sequence from coho salmon (O. kisutch)
(Acc. No. AF403539) to design non-specific primers. We
used these primer pairs to amplify and sequence a region
(≈200 bp) of brook charr IGF-1 and GHR mRNA. Gene
specific primers and probes were designed from this
sequence using Primer Express® software (Table 8). Prim-
ers were tested using conventional PCR and tested by
amplifying a single band of approximately 90 bp. Primer
concentrations were optimized following the manufac-
turer's instructions (ABI PRISM ®7000 Sequence Detection
System (SDS), Applied Biosystems). Relative quantifica-
tion of gene expression was achieved by concurrent ampli-
fication of the eukaryotic 18S rRNA endogenous control
(Applied Biosystems).

Each reaction (25 μl) was run in triplicate and contained
5 μl of cDNA (diluted 1: 10 for target genes and 1: 100 for
18S rRNA gene), 12.5 μl Taqman Universal PCR master
mix (Applied Biosystem), and 0.9 μM F/R primers. The
thermocycling profile used was the default from the sds
2.0 software (50°C for 2 min, 95°C for 10 min, followed
by 40 cycles of 95°C for 15 s and 60°C for 1 min). For
each primer and probe set, two negative controls were also
amplified: non-reverse transcribed total RNA treated with
DNase (as a control for contamination by genomic DNA)

and a template negative sample, to control for any con-
tamination of the reagents. Amplification efficiencies for
all primer/probe sets were calculated following the manu-
facturer's instructions, and all values proved to be suffi-
cient to allow direct comparison of amplification plots
according to the ΔΔCt method (see Sequence Detection
Systems Quantitative Assay Design and Optimization,
Applied Biosystems).

Statistical modeling
All data were modeled under a linear mixed-effects frame-
work (S-Plus 6.1; Insightful Corporation), in which each
family was nested as a random factor within their respec-
tive EBV group (HIGH/LOW). Thus, the underlying covar-
iance structure inherent within the data set due to non-
replicable nesting of one grouping factor within another
was accounted for as random variation between EBV
group and among families within each EBV group. Effects
of rearing environment (saltwater (SW) vs. freshwater
(FW)) and sex (male vs. female), and their interactions
with genotypic value (HIGH vs. LOW EBV) were modeled
as fixed-effects, with parameters estimated by maximum
likelihood. Although this analysis captures interaction
effects with EBV group, the significance of the main effect
of genotypic value cannot directly be estimated from the
model due to insufficient (0) degrees of freedom associ-
ated with the nesting factor (EBV group). Consequently,
the EBV group effect was estimated separately using a lin-
ear mixed effects model incorporating random variation
among families and fixed-effect differences between EBV
groups. Underlying assumptions of normality and homo-
geneity of variance were evaluated with diagnostic plots.
In one case (growth relative to GHR expression; see subse-
quent section), heteroscedasticity of within group errors
was incorporated into the model via separate variance
estimators for each grouping stratum.

Model selection followed a backwards step-wise proce-
dure. A maximal model incorporating all simple and
interaction terms was initially defined, of the form

yijk = (β0 + bi + bij) + β1E + β2S + β3GxE +
β4GxS + β5ExS + β6GxExS + εijk

where yijk is mRNA expression (GHR or IGF-1) or indi-
vidual absolute growth for the kth individual from the ith

Table 8: Primers and probes used in RT-qPCR assays of gene expression.

Target gene Primer Set (5'→3') Probe (5'→3')

IGF-1 Forward: CAGGCATCCAGATTGTGCAA CAGCCATTACTCTCTG
Reverse: ACCATGTTCTGAGAATTCCTGTGTT

GHR Forward: CCCACTGCCCCCTGTATCT ACCATGGTGGAAGGAG
Reverse: CTTCAGAAGGAGGCTGTTTTGC
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family of the kth EBV group, betas (β) corresponding to
fixed-effects coefficients for the terms environment (E),
sex (S) and EBV group (G), herein also representative of
genotypic effects, bi and bij represent random effects vec-
tors describing variation around the model intercepts (i.e.
whole-experimental mean) attributable to the ith family
nested within the kth EBV group, and εijk is random error.
The significance of each term (i.e. model coefficient) was
evaluated by conditional F-tests (Table 9, 10, 11). Progres-
sively simpler models were subsequently defined by
removing non-significant terms from precedent models
beginning with interaction effects. Nested models were
then evaluated using likelihood ratio tests to select the
most parsimonious model. The reported p-values corre-
spond to results of the likelihood ratio tests wherein a
value greater than the nominal level of significance (α =
0.05) indicates that removal of the model term does not
increase model deviance significantly [64]. In the event
that term removal resulted in a likelihood ratio test
approaching a marginal level of significance (0.05 ≤ p ≤
0.10), final model selection was made through use of the
Akaike Information Criterion. Finally, group means were

estimated as linear predictors based on the most parsimo-
nious model. Standard errors for each estimate were deter-
mined from a bootstrap distribution (1,000 iterations) of
model predictions.

Individual transcript efficiency (iTE)
Given the direct role of both IGF-1 and GHR in the phys-
iological process of vertebrate growth [16,18-
20,27,29,51], the effect of environmental modification on
their ultimate phenotypic expression might be most effec-
tively surveyed from the direct ratio of gram-to-gain for
inferred mRNA production to phenotype. Such an analy-
sis would reflect that of a simple single-QTL design or can-
didate gene analysis without control for physiological/
genomic background. Here, mRNA production was inher-
ently evaluated relative to that of an endogenous control
molecule (eukaryotic 18S rRNA; see above), which at the
least controls for gross effects of general physiological
background. Thus, in order to evaluate relative association
between mRNA production and phenotype, we propose
to measure a ratio termed 'individual transcript efficiency'
(iTE). This iTE ratio represents the effective growth per

Table 10: Model selection for gene expression using a backwards step-wise procedure.

GHR IGF-1

Model Log likelihood Test P Log likelihood Test P

Gene ~Env + Sex + EBV·Env + EBV·Sex +Env·Sex +EBV·Env·Sex (1) -82.617 -198.918
~Env + Sex + EBV·Env + EBV·Sex +Env·Sex (2) -83.111 1 vs. 2 0.320 -199.142 1 vs. 2 0.502
~Env + Sex + EBV·Env + EBV·Sex (3) -83.460 2 vs. 3 0.403 -199.170 2 vs. 3 0.815
~Env + Sex + EBV·Env (4) -84.513 3 vs. 4 0.147 -200.233 3 vs. 4 0.145
~Env + Sex (5) -87.055 4 vs. 5 0.079 -203.634 4 vs. 5 0.033

Progressively simpler models are subsequently defined by removing terms from previous models beginning with interaction effects (e.g. 1 vs. 2). 
Nested models were tested evaluated using likelihood ratio tests to select the most parsimonious model. The reported p-values correspond to 
results of the likelihood ratio tests wherein a value greater than the nominal level of significance indicates that removal of the model term does not 
increase model deviance significantly. The final, parsimonious model that was selected is indicated in bold characters (Env = environment, EBV = 
EBV group). In the case of GHR, removal of the EBVxEnv term (model 5) resulted in a marginally non-significant likelihood ratio test. However, the 
interaction term was retained in the final model (model 4 AIC = 185.02), given that its exclusion resulted in a greater penalised likelihood score 
(model 5 AIC = 186.11).

Table 9: Model selection for absolute growth using a backwards step-wise procedure.

Absolute growth

Model Log likelihood Test P

Growth ~Env + Sex + EBV·Env + EBV·Sex +Env·Sex +EBV·Env·Sex (1) -107.460
~Env + Sex + EBV·Env + EBV·Sex +Env·Sex (2) -108.443 1 vs. 2 0.169
~Env + Sex + EBV·Env + EBV·Sex (3) -108.499 2 vs. 3 0.737
~Env + Sex + EBV·Env (4) -108.607 3 vs. 4 0.643
~Env + Sex (5) -112.465 4 vs. 5 0.021

Progressively simpler models are subsequently defined by removing terms from previous models beginning with interaction effects (e.g. 1 vs. 2). 
Nested models were tested evaluated using likelihood ratio tests to select the most parsimonious model. The reported p-values correspond to 
results of the likelihood ratio tests wherein a value greater than the nominal level of significance (α = 0.05) indicates that removal of the model term 
does not increase model deviance significantly. The final, parsimonious model that was selected is indicated in bold characters (Env = environment, 
EBV = EBV group).
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unit of mRNA production (GA/X in g·d-1·u-1, where GA
is the absolute growth and X is the production in units of
IGF-1 or GHR (units is arbitrary, herein the value repre-
senting the fold difference between a given gene and indi-
vidual control). We tested iTE for GHR and IGF-1 using
the same general model (see above under Statistical mod-
eling) to evaluate effects associated with integral genetic
value (families from either HIGH or LOW growth cate-
gory), saline environment (FW/SW), sex and GxE interac-
tion on the relative genomic efficiency for each gene, i.e.
the dependence of their specific capacity to produce phe-
notype depending on environmental and genetic group
effects.
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