B Mc G e“etics BioM\ellgCentral

Research article

Comparison of artificial neural network analysis with other
multimarker methods for detecting genetic association
David Curtis*

Address: Academic Centre for Psychiatry, St Bartholomew's and Royal London School of Medicine and Dentistry, Royal London Hospital,
Whitechapel, London E1 1BB, UK

Email: David Curtis* - david.curtis@qmul.ac.uk
* Corresponding author

Published: 18 July 2007 Received: 21 February 2007
BMC Genetics 2007, 8:49  doi:10.1186/1471-2156-8-49 Accepted: 18 July 2007
This article is available from: http://www.biomedcentral.com/1471-2156/8/49

© 2007 Curtis; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Debate remains as to the optimal method for utilising genotype data obtained from
multiple markers in case-control association studies. | and colleagues have previously described a
method of association analysis using artificial neural networks (ANNSs), whose performance
compared favourably to single-marker methods. Here, the perfomance of ANN analysis is
compared with other multi-marker methods, comprising different haplotype-based analyses and
locus-based analyses.

Results: Of several methods studied and applied to simulated SNP datasets, heterogeneity testing
of estimated haplotype frequencies using asymptotic p values rather than permutation testing had
the lowest power of the methods studied and ANN analysis had the highest power. The difference
in power to detect association between these two methods was statistically significant (p = 0.001)
but other comparisons between methods were not significant. The raw t statistic obtained from
ANN analysis correlated highly with the empirical statistical significance obtained from permutation
testing of the ANN results and with the p value obtained from the heterogeneity test.

Conclusion: Although ANN analysis was more powerful than the standard haplotype-based test
it is unlikely to be taken up widely. The permutation testing necessary to obtain a valid p value
makes it slow to perform and it is not underpinned by a theoretical model relating marker
genotypes to disease phenotype. Nevertheless, the superior performance of this method does
imply that the widely-used haplotype-based methods for detecting association with multiple
markers are not optimal and efforts could be made to improve upon them. The fact that the t
statistic obtained from ANN analysis is highly correlated with the statistical significance does
suggest a possibility to use ANN analysis in situations where large numbers of markers have been
genotyped, since the t value could be used as a proxy for the p value in preliminary analyses.

Background of markers jointly rather than considering each marker
As discussed recently [1], when genetic markers are used  individually. However uncertainty remains as to the best
to attempt to detect association with a disease phenotype = method for carrying out such a multimarker analysis.
there are grounds for expecting that, in some circum-  Probably the most commonly used approach at present is
stances at least, power will be gained by analysing groups  to carry out haplotype-based analyses, in which haplo-
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types are estimated from phase-unknown genotypes and
then the estimated haplotype frequencies in case and con-
trol groups are compared, for example using the GENE-
COUNTING program [2,3]. From a theoretical point of
view this approach may not be optimal for a number of
reasons. Typically one will use a likelihood ratio test for
heterogeneity of haplotype frequencies and this will have
a number of degrees of freedom equal to one less than the
number of haplotypes estimated to be present, typically
2m if there are m biallelic markers [4]. Using this many
degrees of freedom may result in a conservative test. This
problem can partly be addressed by permutation-testing
to assess statistical significance but it is still clear that the
approach is not optimal. For example, suppose there is a
3-marker haplotype associated with disease but one car-
ries out the test including an additional 2 markers which
are not associated. Within the 32 possible 5-marker hap-
lotypes there will be 4 which contain the associated 3-
marker haplotype but these 4 haplotypes will not be
treated as in any way "similar" to each other and the signal
from them may well be drowned out by the noise from
the other markers. Rather than test for heterogeneity of
haplotype frequencies between cases and controls one
may seek to model the effects of haplotypes on risk of
affection. This different, albeit related, approach is imple-
mented in the UNPHASED program and involves estimat-
ing haplotype frequencies and then carrying out logistic
regression analysis with the individual haplotypes mod-
elled to confer different risks of affection [5,6].

An alternative approach to utilising multimarker data is to
model the effect of each marker separately, generally pro-
ducing tests with fewer degrees of freedom. A previous
investigation [7] compared such locus scoring tests to
haplotype scoring tests and found that former were more
powerful. In our own investigations [1], we compared a
locus-based test implementing logistic regression with a
haplotype-based heterogeneity test and found that they
had similar power to detect a single pathogenic mutation.
The UNPHASED program incorporates an option to treat
alleles, rather than haplotypes, as risk factors, resulting in
a similar method of analysis [6]. There are theoretical rea-
sons to expect that haplotype-based methods might be
relatively more powerful if more than one mutation were
present. This is because different haplotypes might be in
linkage disequilibrium (LD) with different mutations and
distortions in their freqeuencies might be easier to detect
than effects on the allele frequencies of individual mark-
ers. In this situation one might expect that locus scoring
tests would lose power through their failure to consider
haplotypic effects.

I and colleagues have proposed an alternative method for
analysing multimarker data using artificial neural net-
works (ANNs) [8,9]. ANNSs are designed to detect patterns
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in input data which may match to output data even if the
nature of such patterns is not known a priori. By training
an ANN to match multimarker genotypes to disease phe-
notype the hope is that it may be able to detect association
which may be based on one marker or several, full haplo-
types or partial ones and one or more different haplo-
types. We showed that this method can be more powerful
than tests based on single markers but it has not previ-
ously been compared it with other multimarker
approaches.

Here, I investigate the relative power of haplotype analy-
sis, logistic regression, UNPHASED analyses and ANN
analysis using real genotype data to provide information
on SNP allele frequencies and LD relationships such as
would be found in case-control association studies.

Results

The main results obtained from this investigation are dis-
played in Table 1. A number of observations are worthy of
note.

Firstly, in terms of absolute power we can see that for sam-
ples consisting of a few hundred cases and controls asso-
ciation may well not be detected even using closely spaced
SNPs. Of course, the ability to detect association is cru-
cially dependent on sample size and disease model as well
as LD relationships between polymorphisms. The disease
models used here incorporate relative risks of 2 or 3 and
with these sample sizes power to detect association at p <
0.01 ranges from 29% to 68%.

For the haplotype-based test, with the exception of a cou-
ple of datasets in which power was equal, permutation
testing was always more powerful than referring to the
asymptotic chi-squared distribution, in most cases to only
a small degree although in one case with a power differ-
ence as high as 6%. By this we mean that the permutation
test more often produced a p value of 0.01 or less. The
minimum empirical p value that can be estimated with
999 permutations is 0.001 and the asymptotic test often
produced a much lower value than this, meaning that the
average p value for the asymptotic test was more highly
significant. Nevertheless, in terms of ability to reach the
threshold set a priori permutation testing was more pow-
erful. This indicates that using the asymptotic distribution
does produce a test which is somewhat conservative.

The power was very similar for the permutation-based test
of heterogeneity of haplotype frequencies, the logistic
regression test for effects of individual loci and both the
haplotype-based and allele-based analyses implemented
in UNPHASED. In fact, the power of the haplotype-based
analysis used by UNPHASED was consistently higher than
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Table I: Relative power of heterogeneity tests, logistic regression, UNPHASED analyses and ANN analysis to detect association at p <

0.01 in a case control study using different disease models

Chromosome  Penetrance values  Power of Power of heterogeneity ~ Power of logistic Power of Power of Power of
heterogeneity test of  test using permutation regression analysis  UNPHASED analysis  UNPHASED ANN analysis
haplotype frequencies  testing using haplotype analysis using allele

effects effects
7 0.01, 0.02, 0.02 0.48 0.50 0.50 0.54 0.48 0.52
7 0.01, 0.03, 0.03 0.58 0.60 0.61 0.60 0.59 0.68
17 0.01, 0.02, 0.02 0.29 0.30 0.31 0.31 0.29 0.34
17 0.01, 0.03, 0.03 0.36 0.37 0.36 0.37 0.36 0.44
7 0.01,0.01, 0.02 0.37 0.43 0.38 0.42 0.40 0.46
7 0.01,0.01, 0.03 0.48 0.48 0.48 0.52 0.51 0.60
17 0.01,0.01, 0.02 0.31 0.33 0.34 0.37 0.35 0.34
17 0.01,0.01, 0.03 0.54 0.54 0.57 0.58 0.58 0.58
All combined 0.42 0.44 0.44 0.45 0.44 0.48

that of the allele-based analysis but only to a small extent,
amounting on average to a difference of only 1%.

The ANN analysis tended to have a higher power than
other methods, albeit not consistently so in that for a cou-
ple of models the haplotype-based analysis implemented
in UNPHASED had higher power. Across all models, the
difference in power between ANN analysis and the heter-
ogeneity test of haplotype frequencies based on asymp-
totic p values was statistically significant (chi-squared =
104, 1 df, p = 0.0012). However, other comparisons
between tests were not statistically significant. The power
advantage of the ANN analysis over the heterogeneity test
of haplotype frequencies was higher for the models in
which the relative risk was set to 3 rather than 2 (p = 0.03)
and for those using the more closely spaced markers (p =
0.01) but there was no overall difference in power
between dominant and recessive models.

There was a fairly strong correlation between the p values
obtained from the ANN analysis and those obtained from
the heterogeneity test of haplotype frequencies (R = 0.71).
There was also a high correlation between the ¢ statistic
obtained from ANN analysis and the empirical p value (R
=0.91), suggesting that the t statistic could be utilised as a
preliminary indicator for genetic association without the
necessity to carry out permutation testing. In support of
this notion, this ¢ statistic also demonstrated high correla-
tion (R = 0.86) with the p values obtained from the heter-
ogeneity test of haplotype frequencies.

Discussion

We must reiterate that the results we have obtained are
contingent on utilising particular disease models and
sample sizes, though the SNP data we have used do reflect
real data in terms of marker informativeness, spacing and
LD relationships. That said, there do seem to be some
interesting implications. Haplotype-based analysis is cur-
rently the most widely used method and can probably be
fairly regarded as standard. However under the conditions

of this investigation it is shown to be by no means the
most powerful method and is out-performed by logistic
regression, UNPHASED and ANN analysis. When the
asymptotic p value is used for the haplotype analysis, as in
practice would usually be the case for an initial screen,
ANN analysis has a power advantage which would have
practical implications in the real world. When one consid-
ers the vast resources which can go into performing a case-
control association study it would be disastrous for an
association to be missed through utilising a test which was
several percentage points less powerful than another.

Quantifying relative power by assessing the proportion of
times each method of analysis yields a particular target p
value might imply that one was taking a very simplistic
view of how genetic investigations were carried out. This
would be that a set of markers were genotyped and then
analysed using only one method of analysis in groups
containing a number of markers which had been specified
in advance. Regions containing a group which reached the
target p value would then be subjected to intensive study
in an effort to identify variants directly influencing risk of
affection while other regions would be ignored. In prac-
tice the situation would likely be far more complicated. A
variety of methods of analysis might be used, including
single marker and multi-marker analyses containing dif-
ferent numbers and combinations of markers, probably
selected on an ad hoc basis. If a p value just failed to reach
some arbitrary level of significance then it would not sim-
ply be ignored but the region might be kept under consid-
eration for the future, although afforded a lower priority.
Regions yielding the most highly significant results would
probably be examined first but the failure to reach a target
p value would not necessarily mean the difference
between detecting an association and missing it entirely.

With this caveat in mind, it does nevertheless seem that
this investigation demonstrates that haplotype based
analysis, as commonly used, is at least in some situations
not the best way to detect association using multi-marker
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data. This would confirm what might expect from theoret-
ical considerations, in particular that there is a failure to
treat haplotypes which are similar to each other any differ-
ently from those which have no alleles at all in common.
The pattern-matching abilities of ANN analysis do seem
better able to detect the kinds of deviation from random
distribution of multi-marker unphased genotypes which
are generated when a susceptibility locus is present and in
LD with at least some of the marker loci. There is a sugges-
tion from these results that the advantage of ANN analysis
may be more pronounced when there is a larger genetic
effect and when markers are closer together. However fur-
ther work would need to be carried out to formally inves-
tigate whether there were particular situations in which
one the different methods would have different relative
merits. As we have mentioned previously [1], a particular
situation worthy of study would be that in which different
mutations in the same gene can influence risk. From a the-
oretical point of view one might well expect this to have
an important impact but modelling this situation would
require more sophisticated simulation software.

Although ANN analysis demonstrates superiority in this
investigation, it would be unrealistic to recommend that
it be widely adopted. One disadvantage is the lack of the-
ory-driven testing for association. The ANN detects some
kind of patterns which can be used to distinguish the gen-
otypes of cases from those of controls but the nature of
this association is not specified in advance and even after
the ANN has been trained to detect a difference the criteria
it uses are unclear. This is not a desirable situation. The
ANN can output a lists of the genotypes which produce
the highest and lowest outputs and perusing these lists
may offer some indication of which alleles and combina-
tions of alleles appear to be commoner in cases but this is
hardly a rigorous process. There is also a very important
practical disadvantage, which is that ANN analysis is slow.
For each set of markers one has to go through a cycle of
repeated trainings followed by testing and then these
cycles need to be repeated many times on permuted data
to obtain an empirical p value. As currently implemented,
the ANN takes in the region of 20-30 minutes to analyse
one set of markers in a few hundred subjects using an
ordinary desktop PC and 999 permutations. If one wished
to estimate a lower p value, in the region of 0.001, one
would need 10 times as many permutations and the anal-
ysis would take 10 times as long. One approach which can
produce some useful speed benefits is to use sequential
sampling to obtain empirical p values [10]. When carrying
out permutation testing, rather than setting the number of
permuted replicates, n, to a fixed number one instead sets
a target for r, the number of times that a permuted repli-
cate should exceed the test statistic obtained from the real
dataset. Typically a target for r might be set to a value of
10 or 20. One would also set some maximum value of n
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to ensure that the procedure did eventually finish. If the
target value for r is reached then the empirical significance
is given by p = r/n while if the target is not reached before
n reaches its maximum value the empirical significance is
given by p = (r+1)/(n+1), as used in conventional Monte
Carlo testing. This produces a very valuable increase in
speed of permutation testing when the p value to be esti-
mated turns out to be non-significant. If there is no asso-
ciation present then one will expect to only perform 2r
permutations before the target is reached. With a target of
r = 10 then one achieves a 50-fold speed increase com-
pared with using the conventional method with n = 999.
This approach would be very useful when analysing large
numbers of markers, most of which are expected not to
demonstrate association. However sequential sampling
does not provide any advantage when the p value to be
estimated is in fact small and one will still need to carry
out a large number of permutations in order to produce
an acceptably accurate estimate. In some genetic investiga-
tions multi-marker analysis produces p values which are
very small indeed and it would be difficult to obtain these
using a Monte Carlo approach. If one carries out a screen
using hundreds of thousands of markers then one will not
wish to set a threshold of p <0.01 to designate regions for
further consideration, since this would leave one with
thousands of candidate regions. However such a thresh-
old might arguably be appropriate if a small number of
markers were investigated in a region which was already
of interest a priori and it could be noted that in the current
investigation p values of this magnitude were sometimes
produced from a sample of several hundred subjects and
with a disease locus having a moderate effect on risk.

An alternative approach to implementing ANN analysis
for large numbers of markers might be to consider the raw
t statistic as an indicator of association rather than going
on to carry out permutation testing. We have previously
emphasised that, because the ¢ statistic is obtained by test-
ing the same case and control samples as were used to
train the ANN, no formal interpretation can be made for
the magnitude of evidence in favour of association from
the ¢ statistic on its own. It is simply a measure of how well
the network has been able to adapt to the data it has been
presented with in terms of finding an algorithm which
will match inputs with outputs. A number of confounding
factors might theoretically be expected to influence this
ability, in particular the allele frequencies of the markers
used and the LD relationships between them. However,
here we have shown that such concerns may in fact be
exaggerated and that the ¢ statistic is in itself a reasonable
indicator of association. It is highly correlated both with
the empirical p values obtained from permutation testing
of ANN analysis (R = 0.91) and with the p obtained from
conventional tests for heterogeneity of haplotype frequen-
cies (R = 0.86). In practice this means that if one were to
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study thousands of markers one might begin by carrying
out ANN analysis without permutation testing, knowing
that those sets of markers producing the highest values for
the ¢ statistic were likely to be those showing the strongest
evidence for association. One could then select these sets
and carry out permutation testing on them in order to
obtain a formal measure of statistical significance.

Conclusion

This investigation demonstrates that in at least some situ-
ations standard haplotype-based analysis is less powerful
than other methods. Although ANN analysis has per-
formed better we do not envisage that it will be widely
taken up as an alternative. However, the results do suggest
that there is room to develop new methods which might
share the advantages of ANN analysis in terms of imple-
menting a parsimonious approach to detect the patterns
of multi-marker genotypes which can be observed when
an associated susceptibility locus is present. Such methods
might offer useful increases of power. Given the resources
which need to be invested in collecting samples of cases
and controls and obtaining genotypes it seems sensible to
argue that considerable effort should be expended on
ensuring that methods of analysis applied to the data
obtained are as effective as possible.

For now, we suggest that it should be recognised that het-
erogeneity tests of haplotype frequencies may be intrinsi-
cally somewhat conservative. This would imply that when
analysing many markers one might set a somewhat lower
threshold to indicate which markers were worthy of fur-
ther investigation, which would include formal permuta-
tion testing in order to obtain a reliable p value. With the
exception of ANN analysis, which may have a slight
advantage, the other methods studied demonstrate simi-
lar perfomance to each other under the condtions of these
simulations. Investigators could feel reassured about
using any of them until further information regarding
their relative performance becomes available.

Methods

We have described the general approach in more detail
previously [1]. In essence, it consists of using real SNP
genotypes from the HAPMAP project [11] to produce sim-
ulated data for a case-control study based on observed
SNP allele frequencies and LD relationships. The simu-
lated genotypes are then analysed by different methods
and the results compared. The scenario envisaged is that
one SNP affects susceptibility to disease but has not been
genotyped. Available to the investigator are the phase-
unknown genotypes of 4 nearby markers and the aim is to
detect association with the disease phenotype in the con-
text of a case-control association study.

http://www.biomedcentral.com/1471-2156/8/49

Original SNP genotypes

The two sets of markers were downloaded from the HAP-
MAP site [12] from regions of chromosomes 17 and 7.
Genotypes were available from 60 unrelated subjects, who
are parents in the 30 trios comprising the CEPH dataset.
SNPs were used from a non-ENCODE region of chromo-
some 17 spanning approximately 240 kb over 40247240~
40493936. They were chosen to have minor allele fre-
quency >5%, yielding 62 SNPs with an average distance
between them of 4 kb. The chromosome 7 SNPs were
located in a region of chromosome 7 spanning 109 kb
over 2693665-2462902 which had been studied by the
ENCODE Consortium [13] which had made intensive
efforts to identify all available SNPs, meaning that SNPs in
this region would be more closely spaced. Again, SNPs
were selected to have minor allele frequency >5%, yield-
ing 64 SNPs with an average spacing of just 1.7 kb. Any
SNP which was in complete LD with any other was then
discarded, leaving 40 chromosome 17 and 30 chromo-
some 7 SNPs.

Estimation of disease-marker haplotype frequencies

For each of the two regions we selected each SNP locus in
turn to act as a disease susceptibility locus. For each
selected disease locus we then used 4 adjacent loci to act
as markers, using a sliding window ranging from the 4
SNPs on one side of the disease locus to the 4 on the
other. This meant that, except for SNPs at the ends of the
dataset, 5 sets of 4 markers were used for each disease
locus. For each set of disease and marker loci I then esti-
mated the haplotype frequencies in the observed HAP-
MAP genotypes using the SNPHAP program [14], which
provides maximum likelihood haplotype frequencies
from unphased multilocus genotypes. These real haplo-
type frequencies were then used to generate simulated
datasets such as might be observed in case-control studies
were the marker(s) to be typed in a sample in which the
disease locus exerted an effect on susceptibility.

Simulation of genotypes

For each disease locus 4 different transmission models
were used by considering a dominant or recessive effect
and a relative risk of 2 or 3. A penetrance of 0.01 was used
for subjects having no copies of the disease allele, while
for subjects having one (dominant) or two (recessive)
copies of the disease allele the penetrance was set to 0.02
or 0.03. The allele frequencies of the disease locus were
taken to be the observed frequencies of the SNP under
consideration. As described previously [1] the expected
proportions of cases and of controls having 0, 1 or 2 cop-
ies of disease allele were calculated using this transmis-
sion model. A simulated sample of cases and controls was
then generated. Each case or control was first allocated a
number of disease alleles according to probabilities equal
to these expected proportions. Then two haplotypes bear-
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ing this number of disease alleles were sampled at random
according to the estimated haplotype frequencies
obtained from the SNPHAP program. The number of
cases and controls generated was pragmatically chosen to
yield power to detect association ranging between 25%
and 60%. In the event sample sizes were either 300 or 400
each of cases and of controls, depending on whether the
penetrance was set to 0.03 or 0.02.

Analysis of simulated genotypes

The 4-marker phase-unknown genotypes obtained from
the above procedure were analysed using a heterogeneity
test of haplotype frequencies, logistic regression,
UNPHASED analyses and ANN association testing. For
each test the ability to detect assocation at p < 0.01 was
recorded. For heterogeneity testing the GENECOUNTING
program and RUNGC support program were used [3,4].
The GENECOUNTING program estimates maximum like-
lihood haplotype frequencies from unphased multilocus
genotypes, which may include multiallele genotypes and
missing data. It also outputs a log likelihood for the data-
set assuming these frequencies. The RUNGC program
constructs a test for heterogeneity of haplotype frequen-
cies by obtaining these maximised log likelihoods for the
controls, the cases and the combined dataset. A likelihood
ratio statistic (LRS) is derived as 2(LoasptLeontror-Leom.
sinep) and this is taken as a chi-squared statistic with
degrees of freedom equal to the difference in the number
of haplotypes estimated to have non-zero frequency in the
cases plus the controls compared to the combined dataset.
The RUNGC program can also carry out permutation test-
ing to obtain an empirical significance for this LRS and for
the present investigation I used 999 permutations. The
proportion of times the LRSfrom the real data is exceeded
by that obtained from permuted data provides an empiri-
cal p value using the formula p = (r+1)/(n+1) where r is the
number of times the real statistic is exceeded and # is the
number of replicates, here 999 [15,16]. Using 999 repli-
cates means that a p value of 0.01 can be estimated with
reasonable accuracy [10,15]. In order to speed up the
process by reducing the number of permutations required
for some datasets which clearly did not provide evidence
for association, sequential Monte-Carlo testing was
implemented [10]. This meant that a target number of r =
10 was set for the real statistic to be exceeded. If this was
met before all 999 replicates had been performed then the
number of replicates taken to achieve this was recorded as
n and the empirical p value was calculated as r/n. As in our
previous investigation [1], logistic regression analysis was
used to test for the main effects of each marker locus. The
A allele at each SNP was arbitrarily chosen as a risk factor
which might influence risk so that genotypes AA, AB and
BB would correspond to exposure of 2, 1 or 0. No interac-
tion terms of independent variables were included in this
analysis. This method had been implemented within the

http://www.biomedcentral.com/1471-2156/8/49

simulation program and logistic regression was carried
out to estimate the log likelihoods for the dataset assum-
ing no genetic effect on risk or assuming that the risk allele
at each locus exerted an independent effect, producing a
LRS having 4 degrees of freedom.

Two additional methods of analysis were carried out using
the UNPHASED program |[5,6]. The first implemented the
"full" model, in which each possible haplotype is consid-
ered independently. The population haplotype frequen-
cies are estimated from the controls. Each subject is then
assigned a number of possible haplotypes which they may
possess with different probabilities. Logistic regression is
carried out with the haplotypes taken to be risk factors
and each subject's exposure to the risk factor is weighted
according to the probability of possessing that haplotype.
Log likelihoods are obtained under the assumption that
the haplotype has no effect on risk and under the assump-
tion that each haplotype has a separate effect on risk,
again yielding an LRS. The second method carried out
using the UNPHASED program consisted of a logistic
regression analysis similar to the one described above. Log
likelihoods were used to compare the hypothesis that
there is no genetic effect on risk and the hypothesis that
alleles at each locus act in a multiplicative function to
influence risk.

For the ANN analysis previously described software was
used (available from our website [17]) and a network was
constructed having 4 input nodes (one for each marker
genotype, coded 0, 1 or 2), two hidden layers each con-
taining three nodes and one output node. Each node was
connected to every node in the next layer. The output of
each node was obtained by applying a logistic activation
function to the sum of the weighted inputs to that node.
The network was trained over 100 cycles using the marker
genotypes as inputs and the affection status, coded as 0 for
controls and 1 for cases, as target output. A standard back
propagation training algorithm was used and 200 training
sets were run [8]. During these, the weights of connections
between nodes of the network would be adjusted along
with thresholds for the activation function of each node,
the aim being to have the output associated with each set
of inputs match as closely as possible to the target output.
Once the network had been trained a test run was per-
formed in which the genotypes were again input and the
outputs for cases and controls were used to produce a con-
ventional ¢ statistic. This provides a measure of the extent
to which the network has been able to "learn” to distin-
guish cases from controls based on marker genotypes.
Because the training and testing are carried out on the
same dataset it was not expected that the statistical signif-
icance for evidence in favour of association could be
obtained by referring this t statisticto the asymptotic dis-
tribution. Rather, the genotype and case-control status
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were randomly permuted and the whole process was
repeated for 999 replicates, each yielding its own ¢ statis-
tic. This allowed one to assess the extent to which the abil-
ity to distinguish cases from controls based on marker
genotypes differed in the real dataset from that which
might be expected by chance. Again, the statistical signifi-
cance of the test for association was given by the propor-
tion of times the ¢ statistic from the observed data was
exceeded by one from a permuted replicate [9], unless this
occurred on 1 = 10 occasions using only n replicates (n <
999) in which case the empirical p value was calculated as
r/n [10].

Comparisons between methods of analysis

For each disease model, 130 datasets were analysed using
chromosome 7 SNPs and 180 using the more widely
spaced chromosome 17 SNPs. Thus, in all 1240 simulated
datasets were analysed. This was a time-consuming proc-
ess because ANN analysis is intrinsically slow as it involv-
ing training the network repeatedly on many permuted
datasets. Results were considered for each model and
pooled across models. The correlations of the p value pro-
duced from ANN analysis with haplotype analysis and
with logistic regression analysis were calculated, as were
correlations between the raw ¢ statistic from the ANN
analysis with the empirical p value obtained from permu-
tation of ANN results and the asymptotic p value for the
haplotype analysis. For each method the proportion of
times the analysis achieved a p value of 0.01 was recorded.
Formal tests of differences of power between pairs of
methods were compared using a 2-by-2 chi-squared test.
For correlation analyses -log10(p) was used except that for
p values obtained by permutation testing ranks were used
because -log10(p) would have a ceiling of 3.
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SNP - single nucleotide polymorphism
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