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Abstract

Background: Heterosis in internode elongation and plant height are commonly observed in
hybrid plants, and higher GAs contents were found to be correlated with the heterosis in plant
height. However, the molecular basis for the increased internode elongation in hybrids is unknown.

Results: In this study, heterosis in plant height was determined in two wheat hybrids, and it was
found that the increased elongation of the uppermost internode contributed mostly to the
heterosis in plant height. Higher GA, level was also observed in a wheat hybrid. By using the
uppermost internode tissues of wheat, we examined expression patterns of genes participating in
both GA biosynthesis and GA response pathways between a hybrid and its parental inbreds. Our
results indicated that among the I8 genes analyzed, genes encoding enzymes that promote
synthesis of bioactive GAs, and genes that act as positive components in the GA response pathways
were up-regulated in hybrid, whereas genes encoding enzymes that deactivate bioactive GAs, and
genes that act as negative components of GA response pathways were down-regulated in hybrid.
Moreover, the putative wheat GA receptor gene TaGIDI, and two GA responsive genes
participating in internode elongation, GIP and XET, were also up-regulated in hybrid. A model for
GA and heterosis in wheat plant height was proposed.

Conclusion: Our results provided molecular evidences not only for the higher GA levels and
more active GA biosynthesis in hybrid, but also for the heterosis in plant height of wheat and
possibly other cereal crops.

Background

Heterosis or hybrid vigour was defined as the better per-
formance of hybrid plants over its parental inbreds in
terms of viability, growth and productivity. Hybrid culti-
vars have been used in many crop plants and have made
significant contribution to the world food supply [1].
However, molecular basis of heterosis is still poorly

understood. Recent studies suggested that differential or
nonadditive gene expression in hybrid might contribute
to the heterosis [2-6]. By using diallel crosses, it was
shown that some of the differential expression patterns
detected between hybrids and their parents in leaf tissues
were significantly correlated with heterosis observed in
agronomic traits in rice [7] and wheat [3]. Subsequent
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identification of the differentially expressed genes indi-
cated that diverse categories of genes are involved [4-6],
[8-10]. Since all the genes in hybrids are derived from its
parental inbreds, the phenotypic differences between
hybrids and their parents, or heterosis, could be best
explained by the spatio-temporal differences in gene
expression [3].

Plant height is one of the typical traits showing heterosis
in many crop plants. In maize and sorghum, the mid-par-
ent heterosis in plant height can be 40% and 16%, respec-
tively [11]. In wheat, over 10% of mid-parent heterosis
was observed in different hybrids [12]. The heterosis in
plant height mainly results from increased internode
elongation other than increases in the number of inter-
nodes. Therefore, investigation on the mechanisms of
increased internode elongation in hybrids will certainly
facilitate our understanding of molecular basis of hetero-
sis in plant height.

Gibberellins (GAs) are plant hormones that participate in
regulation of many growth and developmental processes
in plants [13,14], and are especially important in regulat-
ing stem elongation [15-21]. Therefore, it is reasonable to
look for the relationship between GAs and heterosis in
plant height. Previous studies indicated that GA levels are
correlated with the vigorous plant growth observed in
hybrid F, plants [11,22-24]. Three lines of evidences are
available to support this relationship. Firstly, hybrids have
higher GA levels than parental inbreds in maize
[11,24,25], sorghum [26], poplar [27], black spruce [28]
and interspecific hybrid between Liriodendron chinense and
L. tulipifera [29]. The higher GA levels are correlated with
faster shoot growth rate in hybrids [11]. Secondly, maize
inbreds are more responsive than their hybrids to the
application of exogenous GA [11,25], suggesting that the
growth of maize inbreds is limited by a deficiency of
endogenous GAs, whereas the hybrids possess GA at near
saturation [24]. And finally, the conversion of GA20, the
precursor of bioactive GAs, to GA1, the bioactive GA, is
more rapid in the shoot cylinders of hybrid than in the
shoot cylinders from inbreds [30,31]. Collectively, these
studies suggested that GA content and metabolism are
positively correlated with faster shoot growth rate of
hybrid, or heterosis. However, to our best knowledge,
there has been no study on expression patterns of genes
related to GA metabolism between hybrids and their
parental inbreds.

The GA biosynthesis pathway has been extensively stud-
ied, and most of the genes encoding enzymes in each step
of GA biosynthesis and catabolism pathways have been
identified in the model plant species Arabidopsis and rice
[13,14,18,32]. Recently, GIBBERELLIN INSENSITIVE
DWARF1 has been identified as a soluble GA receptor in
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rice [33]. We hypothesized that higher GA contents in
hybrid plants could result from the differential expression
of genes that participate in the regulation of GA biosyn-
thesis and catabolism, and increased shoot or stem
growth rate of hybrids could be related to the differential
expression of genes participating in regulation of GA
response pathways. In order to provide evidences, in this
study, by using the uppermost internode tissues of wheat,
we examined expression patterns of genes participating in
both GA biosynthesis and GA response pathways between
a wheat hybrid and its parental inbreds. Our results indi-
cated that among the 18 genes analyzed, genes encoding
enzymes that promote synthesis of bioactive GAs, and
genes that act as positive components in GA response
pathways were up-regulated in hybrid, whereas genes
encoding enzymes that deactivate bioactive GAs, and
genes that act as negative components of GA response
pathways were down-regulated in hybrid. Taken together,
these data provided molecular evidences not only for the
higher GA levels and more active GA biosynthesis in
hybrid, but also for the heterosis in plant height of wheat
and possibly other cereal crops.

Results

Heterosis in plant height and internode length

The plant height and length of internodes in two wheat
hybrids and their parental inbreds were measured. Signif-
icant heterosis in plant height was observed (Tables 1 and
2). The HP (high parent) heterosis in plant height for
hybrid 309-1/AIM-11 was 18.36% in greenhouse condi-
tion, whereas, the HP heterosis for hybrid Ai9/Jiai8 were
22.42% and 18.84% in the greenhouse and field growing
conditions, respectively. The lengths of five internodes
were also determined for each genotype, and it was found
that four of the five internodes in length showed signifi-
cant HP heterosis. For both hybrids, the uppermost inter-
node or the first internode showed the largest heterosis,
followed by second and third internodes (Tables 1 and 2),
suggesting that the increased elongation of the uppermost
internode is the major contributor to the heterosis in
plant height. However, the length of the fifth internode
showed no significant heterosis (Tables 1 and 2).

Contents of GA3 and GA4 in hybrid Ai9/Jiai8 and its
parents

Previous studies in maize and sorghum indicated that
hybrid contained higher endogenous GAs level than its
parents, which was correlated with heterosis in shoot cyl-
inder height [25,26]. Since GAs play important roles in
regulating stem elongation, and the length of uppermost
internode in wheat hybrids showed the most significant
heterosis, we determined the concentrations of two bioac-
tive GAs, GA; and GA,, in the uppermost internode tissues
in a wheat hybrid Ai9/Jiai8 and its parents using GC-MS-
SIM. The basal 1 cm portion of the uppermost internode
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Table I: Heterosis in plant height and internode length in hybrid 309-1/AIM-11

Female parent(309-1) hybrid male parent(AIM-11) HP heterosis
ear 534+ 0.31 5.76 £ 0.25* 52 +0.25 7.86%
Ith internode 14.98 £ 1.94 20.78 £ 4.42*+* 14.45 + 1.33 38.72%
2th internode 1323+ 1.7 14.85 + 0.94+* 13.07 £ 1.0 12.24%
3th internode 8.98 + 0.56 9.98 £ 0.62** 833+0.3 11.36%
4th internode 6.43 £ 0.15 6.87 £ 0.1%* 6.15+0.3 6.84%
5th internode 223+0.12 235+ 0.1 225+ 0.11 4.44%
plant height 51.19 £7.57 60.59 £ | |.3** 49.25 £ 9.39 18.36%

*, F ; different between hybrid and high parent at p < 0.05 and p < 0.0, respectively

contains IM and elongation zone and is responsible for
stem elongation [34], and therefore used for GA content
analysis. We found that hybrid had significantly higher
GA, content than its parents, with the HP heterosis of
43.80% (Table 3). However, heterosis in GA; content was
not statistically significant (Table 3). These results con-
firmed previous findings that hybrids contained higher
level of bioactive GAs as compared to their parents.

Differential expression of genes in GA biosynthesis
between hybrid Ai9/Jiai8 and its parents

Previous studies suggested that the higher level of GAs
content in hybrid was associated with faster conversion of
the precursor of bioactive GAs to the bioactive forms. We
further hypothesized that genes in GAs biosynthesis
might be differentially expressed, which, in turn, could
result in the differences in GAs content between hybrid
and parents.

Up to date, most of the genes encoding enzymes of GA
biosynthesis have been identified from wheat and other
plant species, which makes it possible to determine the
expression patterns of these genes between hybrid and
parents. The biosynthesis of GA in higher plants can be

divided into three stages. CPS, KS, KO and KAO are
involved in the first and second stages, whereas GA200x,
GA30x and GA2ox are involved in the third stage of GA
biosynthesis. In this study, we detected expression pat-
terns of genes encoding KS, KAO, GA20o0x, GA3o0x,
GA20x, RSG (the positive regulator of KAO) and 14-3-3
(the negative regulator of RSG) between a hybrid and its
parents (Table 4).

Real time quantitative PCR analysis indicated that KS gene
was down-regulated in wheat hybrid as compared to its
parents, but the difference between hybrid and the lower
parent was not significant. KAO gene was significantly up-
regulated in hybrid. Three wheat homoeologues of
TaGA20o0x1 had been cloned in wheat and were mapped
on chromosome 5BL, 5DL and 4AL, respectively [35]. We
found that expression of TaGA200ox1D was significantly
up-regulated in hybrid, whereas expression of
TaGA200x1A and TaGA200x1B were not detected. The
expression of putative wheat TaGA200x2 gene was also
up-regulated in wheat hybrid, though difference between
hybrid and the higher parent was not significant. Three
homoeologues of TaGA30x2 had also been cloned [35].
Real-time quantitative PCR analysis indicated that all the

Table 2: Heterosis in plant height and internode length in hybrid Ai9/}iai8

female parent (Ai9) hybrid male parent (Jiai8) HP heterosis
ear 536 +£0.192 576 £ 0.18 55+0.18 4.73%
8.66 £ 0.21b) 10.30 £ 0.23 9.88 + 0.20 4.25%
Ith internode 13.92 £ 1.21 22.23 £ 2.35%* 16.36 + 1.82 35.88%
18.15 £ 1.68 27.68 £ 2.25%* 20.35+2.13 36.02%
2th internode 12.84 £ .13 16.25 £ |.85%*F 13.72 £ 1.24 18.44%
16.56 + 1.23 21.78 £ 1.96 18.23 £ 1.37 19.47%
3th internode 8.32 £ 0.52 9.62 + 0.86%* 8.50 + 0.93 13.18%
10.26 £ 0.98 12.33 £ 1.23 11.18 £ 1.12 10.29%
4th internode 6.30 + 0.28 7.33 + 0.68** 5.60 + 0.27 16.35%
8.66 + 0.63 9.78 + 0.76 9.03 £ 0.57 831%
Sth internode 220 £ 0.28 2.65+0.19 2.44 + 0.28 8.61%
3.06 £ 0.32 3.67 £0.27 3.31 £033 10.88%
plant height 48.94 £+ 841 63.84 + 5.5%* 52.15 £ 7.8l 22.42%
65.35 + 6.22 85.54 £ 7.35%* 7198 £7.18 18.84%

*, %% : different between hybrid and high parent at p < 0.05 and p < 0.01), respectively.
a) Data from greenhouse experiment in 2005; b) Data from field experiment in 2006/07
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Table 3: GA; and GA, contents (ng/g FW) in IM and elongation zone

Ai9 Ai9 X Jiai8 Jiai8 HP heterosis
GA; 1.404 + 0.047 1.528 £ 0.114 1.462 + 0.034 4.51%
GA, 0.452 + 0.072 0.650 + 0.057* 0.408 + 0.024 43.80%

*, different between hybrid and high parent at p < 0.05

3 homoeologues of TaGA30x2 were expressed in wheat
internode tissues and were significantly up-regulated in
hybrid (Table 4). Analysis also showed that the putative
TaGA2o0x-1 was slightly down-regulated in hybrid. RSG,
the positive regulator of KAO, was expressed as mid-par-
ent value in hybrid, and the difference between hybrid
and parents was not significant. 14-3-3, the negative regu-
lator of RSG, was down-regulated in hybrid (Table 4).

Differential expression of genes in GA response pathway
between hybrid Ai9/Jiai8 and its parents

Studies revealed that GA response pathways were linked
tightly to its biosynthesis and catabolism, and played cru-
cial roles in GA-regulated developmental processes [14].
Different components of GA response pathway and the
down-steam target genes had been identified [14,36-38].
To further determine whether genes in GA response path-
ways are differentially expressed and to elucidate their
possible roles in heterosis of plant height, the expression
patterns of several GA response pathway genes were deter-
mined, including the soluble GAs receptor GID1, the neg-
ative regulator GAI, the positive regulator GAMYB, and
GA-regulated target genes such as expansin, endoxyloglu-
can transferase (XET) and gibberellins induced protein
(GIP). Analysis indicated that both the putative wheat

homologs of GID1 and GAMYB were up-regulated in
hybrid, whereas GAI (Rht-1) was expressed as mid-parent
value, the putative wheat homolog of GIP was up-regu-
lated in hybrid, XET was expressed at the level close to the
higher parent (Table 4). In our previous study, semi-quan-
titative PCR revealed that four members of -expansins
were also up-regulated in hybrid [39].

Response of GA response pathway genes to application of
exogenous GA

To verify whether the genes we detected in GA response
pathway were responsive to GA, GA; was applied to the
internode sections and response to exogenous GA applica-
tion was determined. Real-time quantitative PCR analysis
indicated that transcript level of GAI was decreased to
about half of control within 6h of GA; treatment, and
transcript level of GAMYB and GIP was significantly
increased after GA, treatment, whereas transcript level of
XET was slightly down-regulated, but this decrease was
not significant (Table 5).

Anatomy of internode in hybrid Ai9/Jiai8 and its parents

GAs promotes stem elongation by enhancing cell division
and elongation. Since internode from hybrid contains
higher level of bioactive GAs, and in this study we found

Table 4: Differential expression of target gene relative to (3-actin between hybrid and parents.

Genes Ai9 (female) hybrid Jiai8(male)

RSG 0.155+0.014 0.122 £ 0.016 0.0772 + 0.0087
14-3-3 1.119£0.11 1.096 £ 0.17 1.514 £ 0.067*

KS 5.31E-05 £ 4.48E-06 4.78E-05 + 5.48E-06 8.67E-05 £ 3.12E-06**
KAO |.08E-05 + |.47E-07** 3.52E-05 + 5.24E-06 2.00E-05 + 3.6E-06*
TaGA200x-2 0.000797 + 0.00027** 0.00647 + 0.0013 0.00497 + 0.00012
TaGA200x|D 0.00264 + 0.00058* 0.00605 + 0.0016 0.00347 + 0.00066*
TaGA3ox2-1 0.0021 * 0.0006* 0.00408 + 0.0007 0.00077 + 7.4E-05%*
TaGA3ox2-2 0.0067 * 0.00049** 0.011 +0.00037 0.0031 £ 0.0002**
TaGA3ox2-2 0.00092 + 9.2E-05** 0.0019 £ 0.00023 0.00096 + 0.00022%**
TaGA2ox-1 0.0019 + 0.00036 0.0017 £ 8.1E-05 0.0022 + 8.6E-05**
GAl 0.270 £ 0.031 0.217 £ 0.037 0.0808 + 0.0075**
XET 0.324 £ 0.022%* 0.684 + 0.069 1.00 £ 0.24

GAMYB 0.00045 + 6.4E-05** 0.0019 £ 0.00025 0.00072 + 6.4E-05**
GIP 0.045 + 0.002** 0.108 + 0.007 0.093 £ 0.007*
TaGID| 0.055 £ 0.0027* 0.11 £0.029 0.029 + 0.0029**

Average of the three 2 -ACT values for each sample was listed. t-test was used for statistical analysis.
*, F* different between hybrid and parent at p < 0.5 and p < 0.01, respectively.
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Table 5: Expression of GAs responsive genes with the application of exogenous GA;

Gene control GA; treatment

GAI 0.37 £ 0.019 0.18 £ 0.016 **
Myb 0.0017 £ 0.00019 0.0023 £ 0.00019 *
XET 0.09 +£0.014 0.097 £ 0.017

GIP 0.38 + 0.027 0.53 £+ 0.055 *

Average of the three 2 -ACT values from 3 repeated PCR were listed. t-test was used for statistical analysis.
* ** different between hybrid and parent at p < 0.5 and p < 0.01, respectively.

that most of the positive components of GA response
pathways were up-regulated in hybrid, we speculated that
the increased internode elongation observed in hybrid
could result from the enhanced cell division and cell elon-
gation. To provide evidence, internode sections of 1cm
above the uppermost node, which contains IM and elon-
gation zone, were sectioned, and cell number and length
were determined. Internode sections from differentiation
zone were also observed. It was found that cell number in
the IM zone of hybrid was 73 within 500 uM x 80 uM
scope, whereas this number was 64 and 74 for the two
parents, respectively (Fig. 1). The average cell length in
elongation zone was 50 um in hybrid, but was 50 pum and
45.45 um for the two parents, respectively (Fig. 1). In our
observation, the average cell length in differentiation zone
was 89 um in hybrid, and but was 73 pm and 71 pm for
the two parents, respectively (Fig. 1), with the HP hetero-
sis of 21.9%.

Discussion

Higher GAs contents in hybrid might result from
differential expression of genes involved in GA biosynthesis
Previous studies in maize, sorghum, poplar, black spruce
and Liriodendron indicated that endogenous GAs content
in hybrid was usually higher than their parental inbreds

F

Figure |

M

[24-29], and the higher GA levels were correlated with
faster shoot and stem growth rate in hybrid [11,22]. Fur-
ther studies showed that the conversion of GA,,, the pre-
cursor of bioactive GAs, to GA,;, bioactive GA, was more
rapid in the shoot cylinders of hybrid than in the shoot
cylinders from inbreds [30,31], which provided physio-
logical and biochemical basis of higher GAs contents
observed in hybrids. In this study, higher GAs contents
were also observed in the internode tissues of a wheat
hybrid. In crops such as rice and wheat, stem elongation
is caused by mitotic activity of the cells in the IM and by
the elongation of these cells in the elongation zone imme-
diately above the IM [34]. Endogenous GA in this region
directly promotes internode elongation. Thus, the higher
endogenous GA level in IM and elongation zone of wheat
hybrid might promote its cells to divide and elongate
more vigorously, and generate more and/or longer cells in
comparison with parents. Histological observation in this
study provided further evidence that increased GA con-
centration could enhance cell division and cell elongation
in wheat hybrid.

However, molecular basis of higher GAs contents and
faster conversion to bioactive forms of GAs in hybrids are
still unknown. Intensive investigations in model plant

Sections of the uppermost internodes of hybrid Ai9/Jiai8 and its parents. F for the female parent, H for the hybrid, and M for
the male parent. (A) Longitudinal sections through the IM. Ba = 0 um. (B) Longitudinal sections through the elongation zone.
Bar = 20 um. (C) Longitudinal sections through the differential zone. Bar = 45 pm.

Page 5 of 10

(page number not for citation purposes)



BMC Genetics 2007, 8:40

4

i _’ pog : 1
Ei] I:.:I | Ghlas GAaq :
1
14.3.3 RSG ; i &%] L !
(negative regulator (positive regulator s o Gy i
of RSG) of ZA0) i 1
1
1
1
il | ¢ Mo |
GiDi : |
(soluble GA 1y, GASox y 1
egeotar) Pk L LT
+ ’ 1™ "= 0
1
.......... N SEEN NE
1 Sensilivity to : Content of GAs : 1 GAZox :
: endogenous GAs was : | andGAywas 1 oA Ghy
| increasedinbybrid | 1 increased in nybrid | (inactive) (inactive)
IL ______ r-- ._I | P j=——-——- 1
1 1
v v
| e o e e E s e e e e e e e e -
1 Changed expression of Ghs responsive components in!
' hybrid ]
lsiiaota bia i nisie s anis i mg sty s asao il I
1
1
1
w
e e Sy |
----------------- | Entanced expression of targel genes of)
- L [.3 o |GAs cignal in hybrid, inchuding XY2T,!
1 ! | GJP and Expansins 1
| GAWYE GAT : 1
e L L L T I |
1 el !
y G XBT :
I
1
v
| Increased internode elongationin hyhbrid and formation |
L of heterosis in plant height 1
Figure 2

A proposed model for GA biosynthesis and response path-
way in regulation of heterosis in plant height. Differential
expressions of genes in GA metabolism and response path-
ways are listed in the box, with the bar heights representing
the expression levels of female (left bar), hybrid (middle bar)
and male (right bar) parent.

species, such as Arabidopsis and rice, have identified most
of the genes encoding enzymes in each steps of GA bio-
synthesis [13,14,18,32], and manipulation of some of
these genes caused changes in GA contents as well as mor-
phological changes, including changes in plant height.
The biosynthesis of GA in higher plants can be divided
into three stages. In the first stage, geranylgeranyl diphos-
phate is converted to ent-kaurene by CPS and KS, in the
second stage, ent-kaurene is converted to GA;, by KO and
KAO, and in the third stage, GA,, and GA; are converted
to bioactive GAs by 2-oxoglutarate-dependent dioxygen-
ases, GA20ox and GA3o0x, whereas the conversion of bio-
active GAs to inactive form is catalyzed by GA2ox [13,14].
Studies suggested that GA200x, GA30x and GA20x encode
enzymes important in regulation GA contents and home-

http://www.biomedcentral.com/1471-2156/8/40

ostasis. Overexpression of GA20ox and GA3ox increased
GA content and enhanced stem elongation [40-44],
whereas overexpression of GA20x reduced GA content and
produced dwarf phenotype [17,37,43]. However, overex-
pression of genes in early steps of GA biosynthesis path-
way caused no changes in plant morphology and levels of
active GAs [45], suggesting that later steps were more rate-
limiting in bioactive GAs biosynthesis. In this study, we
demonstrated that GA20ox and GA3o0x genes were up-reg-
ulated in a wheat hybrid, whereas GA2ox gene was down-
regulated in hybrid. One of the genes in early steps, KAO,
was also upregulated in hybrid, whereas KS gene was
down-regulated in hybrid. Considering their roles in GA
biosynthesis, upregulation of KAO in hybrid might pro-
duce more early intermediates for bioactive GAs, upregu-
lation of GA20ox and GA3ox in hybrid, and down-
regulation of GA2o0x in hybrid could result in the higher
GA contents in hybrid.

Several regulators of GA biosynthesis genes have been
found in plant. RSG is a bZIP transcription factor that acti-
vates expression of KAO gene [46], and 14-3-3 protein can
repress expression of RSG by participating in GA induced
feedback down-regulation of RSG [47,48]. In this study,
we found that RSG was expressed as mid-parent value in
hybrid, and 14-3-3 was down-regulated in hybrid, which
might provide a regulating mechanism to ensure the up-
regulation of KAO genes in hybrid.

Differential expression of genes involved in GA response
pathways might be responsible for the increased internode
elongation in hybrid

Studies indicated that genes in GA response pathway
played crucial roles in GA-regulated developmental proc-
esses, and expression patterns of these genes were linked
tightly to GAs biosynthesis and catabolism, and affected
by GAs concentration [14]. GID1 is a soluble GAs receptor
and overexpression of GID1 lead to elevated sensitivity to
GAs signal and increased plant height [33]. In this study,
we found that transcript level of the putative wheat
homolog of GID1, TaGID1, was up-regulated in hybrid,
suggesting that higher GAs contents might enhance
expression of GAs receptor gene in hybrid, or the sensitiv-
ity to endogenous active GAs in hybrid may be higher
than parents. In GA signal pathway, GAMYB is an impor-
tant positive regulator which binds the target genes and
activate their transcription [49]. In this study, the wheat
homolog of GAMYB, TaGAMYB, was also up-regulated in
hybrid. Thus, the enhanced transcription of TaGAMYB in
hybrid might result from the increased GA level in hybrid
or elevated sensitivity to GA signal. Moreover, upregula-
tion of TaGAMYB in wheat hybrid could lead to the
enhanced expression of GAMYB regulated target genes in
hybrid and thus regulating hybrid vigor in growth and
plant height. As a negative regulator in GA response path-
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Table 6: PCR Primer sequences, length of PCR products and similarity with known genes

Genes primer sequences length of PCR product (bp) Similarities with homologous genes
Actin S 5-TCATTGGTATGGAAGCTGCTGAATC-3' 300 Oryza sativa actin mRNA,
A 5-CCTGACTCATCATACTCGCCCTTCG-3' complete cds
Identities = 279/330 (93%)
Actin S 5-GGAAGTACAGTGTCTGGATTGGAGGGT-3' 150 Oryza sativa actin mRNA,
A 5'-TTCAGAAGACCCAGACAACTCGCAAC-3' complete cds
Identities = 140/150 (93%)
14-3-3 S 5'- CACTATGTCTGGGGTCG -3' 340 Triticum aestivum 14-3-3
A 5'- ATTTAGGACTTGCTGGCA -3' protein Identities = 100%
RSG S 5-TGGGCTACCGGACTACGCCAAG-3' 367 Nicotiana tabacum mRNA for
A 5'-CCT TGGAACTTGACCTGCCGCTT-3' bZIP transcriptional
activator RSG ldentities = 67%
KAO S 5'-ACAACTGCCTGGCCAAGATCACCAG-3' 184 Hordeum vulgare KAO mRNA
A 5-GTGACAACTTTGACTCATCCGCGACAACAA-3 Identities = 166/184(90%)
KS S 5' CCCCTGAACTTTCTGATGCTTGCATAT-3' 137 Hordeum vulgare KS-like gene
A 5-TTGAAGGACTGTACTTCTCAACCAATGCT-3' Identities = 116/127 (91%)
TaGA2ox-1 S 5-TCGCTCCGCCTAAGCCACAG-3' 104 Oryza sativa mRNA for
A 5'-CTGCAACTCAAGCAGTCATCCCTC-3' OsGA2ox |
Identities = 73/104 (71%)
TaGA20ox-2 S 5-GCTGAGCCAGGGCGTGGAGAAG-3' 260 Oryza sativa gibberellin
A 5-CCATGAAGGTGTCGCCGATGTTG-3' 20-oxidase 2 (Sd-1) gene
Identities = 240/260 (92%)
TaGA20oxID S 5-AGCACTACCGGGCGGACATGAA-3' 260 Wheat GA20-oxidase | gene
A 5-GCCATCCATCCATGCTTCTTCGTAC-3 homoeologous TaGA20ox /D
Identities = 100%
TaGA3ox2-1 S 5'-GTACATGGGCGTGCGCAAGAA G-3' 219 Wheat GA3-oxidase 2 gene
A 5-GCACGCATCCACCAGCATCATC-3' homoeologous TaGA3ox2-1
Identities = 100%
TaGA30ox2-2 S 5-GTACATGGGCGTGCGCAAGAAG-3' 258 Wheat GA3-oxidase 2 gene
A 5'-CAGCTAAGCTACCAGCCCACCATG-3' homoeologous TaGA3o0x2-2
Identities = 100%
TaGA30x2-3 S 5-GTACATGGGCGTGCGCAAGAAG-3' 260 Wheat GA3-oxidase 2 gene
A 5'-GCTAATCTAACAGCCCGCCACCAT-3' homoeologous TsGA30x2-3
Identities = 100%
GAl S 5'-GCACATTCCTGGACCGCTTCACC-3' 422 Triticum aestivum Rht-1 gene
A 5'-GCAGCCTTCCTTCTCCTCCACCTTG-3' Identities = 100%
TaGID | S 5'-CCACCATCGGCTTCTACCTGCTGTC-3' 133 Oryza sativa mRNA for GID |
A 5-GGCGAGCTCATCCACGACGAGAC-3' Identities = 120/133 (90%)
GAMYB S 5-CGTGAGAAGTTCAAGTTCCTCTGT-3' 287 Triticum aestivum MYB3 gene
A 5-AAGTTTTCAGGATGAGACGAAGTG-3' Identities = 100%
GIP S 5-GGGACGCAGTACAAGAAGG-3' 300 Petunia hybrida mRNA for (gip5 gene)
A 5'-GGAAACTGGGAGGGCAAT-3' Identities = 64/69 (92%)
XET S 5-GCCCTTCGTCGCCTCCTAC-3' 300 Wheat mRNA for endo-

A 5-CGGCACAACAACAACTAGTGGTAG-3'

xyloglucan transferase
Identities = 100%

way, GAI restrain the transcription of target genes in the
GA signal pathway, the so-called repress-derepress
hypothesis of GAs signal response [50]. Expression of GAI
in hybrid was of mid-parent value, suggesting that in
hybrid the negative regulation of GAI in GA response
pathway was weaker than in higher parents, thus enhanc-
ing GA signal transduction.

Through specific response pathway, expression of target
genes in GA signal pathway is induced, and expression of
these target genes may directly promote cell division and
cell elongation, and thus result in stem elongation. Up to
date, known target genes of GA signal include expansin,
XET (xyloglucan endotransglycosylase) and GIP (gib-
berellins induced protein). Semi-quantitative PCR analy-
sis in our previous study revealed that transcripts of 4 B-
expansin genes were up-regulated in wheat hybrid [39].
The function of expansin is unlocking the network of wall
polysaccharides and permitting turgor-driven cell enlarge-

ment, and B-expansins may act selectively on cell walls of
monocots, whereas o-expansins have been shown to
loosen more effectively on cell walls of dicots [51,52].
Taken together, the higher transcription level of the 4 -
expansin genes in hybrid is likely to promote internode
elongation in hybrid. Sharing high sequence similarity
with GAST of tomato and GASA of Arabidopsis, GIP gene
family in Petunia is induced by GAs and involved in stem
elongation. Result in this study showed that transcript of
wheat GIP homolog was up-regulated in hybrid. In Petu-
nia, GIP1 and GIP2 mainly participated in cell elongation,
whereas GIP4 and GIP5 were mainly involved in cell divi-
sion [38]. As wheat homolog of GIP, TaGIP, is homolo-
gous to Petunia GIP5, we speculated that its higher
transcription level in hybrid might promote activity of cell
division in hybrid and thus contribute to hybrid vigor in
stem growth. XET gene is also a GA-induced gene and par-
ticipates in reconstruction of cell wall structure and pro-
motes cell elongation. We found that transcript level of
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XET gene in wheat hybrid was close to the higher parent,
which might also contribute to increased internode elon-
gation in hybrid to some extent.

In order to verify whether GA response pathway genes
were responsive to exogenous GA application, expression
patterns of GAMYB, GIP and XET were determined before
and after GA treatment. We found that transcript level of
positive regulator GAMYB was up-regulated and negative
regulator GAI was downregulated after applying exoge-
nous GA;. Expression of GIP, a target gene of GA response
pathway, was also enhanced after GA treatment. This
result confirmed the conclusion that expression of GAs
responsive components was linked to the GAs biosynthe-
sis and affected by GAs concentration [14]. Considering
that GAs content was higher in hybrid, at the same time
GAs responsive genes were differentially expressed
between hybrid and parents, we suggested that the higher
GAs content in hybrid could be responsible for the differ-
ential expression of GAs responsive genes between hybrid
and parents. Transcript level of XET gene was slightly
decreased after GA; treatment, which was unexpected.
Studies suggested that XET was regulated by both GA and
BR [36], and we found that transcript level of XET in
wheat hybrid was close to the higher parent, thus the
expression pattern of XET in hybrid might be explained by
involvement and cooperation of different plant hor-
mones, however, this will need further investigation.
Since both GA and BR are related to the internode elonga-
tion in plants, further studies are also needed to investi-
gate the how these two phytohormones are cooperatively
regulating heterosis in plant height.

A proposed model of GA and heterosis in wheat plant
height

Taken the results above together, a model for GA biosyn-
thesis and response pathway in regulation of heterosis in
plant height of wheat was proposed (Fig. 2). In the first
part of the model, combination of upregulation of genes
enhancing bioactive GA production and down regulation
of genes deactivating bioactive GA resulted in higher level
of endogenous GAs in hybrid. In the second part of the
model, upregulations of positive components, including
GA receptor GID1 and GAMYB in GA signal transduction
and response pathway, and downregulation of negative
component of GA response pathway, GAI, could result in
enhanced sensitivity to endogenous GAs signal in hybrid.
And in the third part of the model, expression GA
response target genes, including expansins, GIPs and XET,
were up-regulated due to increased GA concentration and
enhanced sensitivity to endogenous GAs in hybrid could
promote cell division and cell elongation, and thus con-
tributed to the increased internode elongation in hybrid
and therefore heterosis in wheat plant height. It must be
noted, however, that differences in mRNA quantity might

http://www.biomedcentral.com/1471-2156/8/40

not necessarily reflect the differences in the protein level,
more works in protein level and enzymology are needed.

Conclusion

Our results clearly shown that GA200ox and GA3ox genes
were up-regulated in a wheat hybrid, whereas GA2ox gene
was down-regulated in hybrid, which, in turn, could con-
tribute to the increased bioactive GAs contents observed
in hybrid. This increased GA contents could lead to the
enhanced transcription of GAMYB, a positive regulator in
GA signal pathway, in hybrid, which could then result in
the increased expression of GA responsive target genes,
including expansins, XET and GIP, and promoted elonga-
tion of internodes in hybrids. Therefore, this study pro-
vides molecular evidence for the heterosis in plant height
in wheat and possibly other cereal crops.

Methods

Plant Materials and estimation of heterosis in plant height
Two spring wheat lines 309-1, AIM-11 and their F; hybrid,
two winter wheat lines, Al9, JiAi8 and their F; hybrid were
used for this study. For greenhouse experiment under-
taken in 2005, the germinated seeds of each genotype
were vernalized for 5 weeks at 0-4°C, 15 seeds of each
genotype were planted in plastic pot (40 cm x 40 c¢m),
which were placed in a greenhouse under 25°C/15°C
(day/night) temperature. For field experiment in 2006/
07, only the hybrid AI9/JiAi8 and its two parental lines
were used, and the materials were planted with three rep-
licates in October 5% of 2006 in the field and plant height
was recorded from 15 plants for each replicate in May 17th
of 2007. To determine the heterosis in plant height, final
plant height and length of five internodes from the
hybrids and their parents were determined, and paired t-
test was used to determine the significance of differences
between hybrids and their corresponding parents. The
basal 1 cm-long portion of the uppermost internode (1
cm above the uppermost node) was excised in the green-
house condition and stored at -80°C for GA content anal-
ysis and RT-PCR analysis from the hybrid Ai9/JiAi8 and its
parents at the stage when the young ear was emerging
from flag leaf and the uppermost internode was elongat-
ing rapidly. This portion of internode included the inter-
calary meristem (IM) zone and the elongation zone where
the cells undergo continuous division and elongation.

GA treatment

For GA treatment, the whole uppermost internode includ-
ing ear of the genotype Ai9 was excised and soaked in 200
pg/L GA; solution or distilled water (control). After 6 h of
treatment, the basal 1 cm part of the internode was excised
and stored at -80°C after frozen in liquid N, for use.
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Measurement of endogenous GAs content

Gibberellins (GAs) content in the internode was deter-
mined as described previously [53,54]. Briefly, the inter-
node tissues were ground into fine powder in the liquid
nitrogen and 0.5 g samples were extracted in 80% metha-
nol with 2 ng each of 2H-labeled GAs (2H-GA;, 2H-GA,)
as internal standards. After a series of organic extractions,
the extracts were purified through C'8 column, and then
analyzed by gas chromatography-selected ion monitor-
ing. Three independent samples were measured, and t-test
was used to determine the significance of differences in
GA content between hybrid and its parents.

RNA isolation and Reverse-transcription

Total RNA was isolated and purified from each sample
using TRIzol according to the manufacturer's instructions.
Two microgram total RNA of each sample was used for
first-strand cDNA synthesis in 100 pl reaction containing
20 ul 5 x RT buffer, 20 ul 2.5 mM dNTP, 10 ul 50 mM T15
anchor primer, 2.0 ul RNase Inhibitor (20 U/ul), 2.5 ul
reverse transcriptase (50 U/ul). Reverse transcription was
performed 42°C for 45 minutes with a final denaturation
at 95°C for 5 minutes.

cDNA cloning and primer design

For the genes that the sequences are not available in
wheat, gene sequences from other plant species were used
to search the wheat ESTs with high similarities in Gen-
Bank. The specific PCR primers (Table 6) were designed
based on these wheat EST sequences and used to amplify
¢DNA. Amplified products were cloned and sequenced to
verify the specificity of PCR primers. For those wheat
genes, specific primers were designed and amplified prod-
ucts were also cloned and sequenced to verify identity of
PCR products. Sequence analysis was performed using
DNAMAN.

Real-time quantitative PCR

A 300 or 150 bp B-actin gene fragment was amplified as
an endogenous control using the primer pairs in Table 6.
For real-time quantitative PCR, cDNAs from three biolog-
ical samples were used for analysis and all the reactions
were run in triplicate and included no template and no
reverse transcription controls. Quantification results were
expressed in terms of the cycle threshold (CT) value deter-
mined according to the manually adjusted baseline. Rela-
tive gene expressions in hybrid and parents were
determined using the method as described previously
[55,56]. Briefly, differences between the CT values of tar-
get gene and B-actin were calculated as ACT = CT target —
CT#p-actin, and expression levels of target genes relative to f3-
actin were determined as 2 -ACT, For each sample, PCR was
repeated three times, and the average values of 2 -ACTwere
used to determine difference in expression between
hybrid and parents.

http://www.biomedcentral.com/1471-2156/8/40

Histological analysis

Internode tissues of about 1 cm above the uppermost
node, which containing IM (intercalary meristem) and
elongation zone, were fixed in solution of formalin: acetic
acid (FAA):70% ethanol (1:1:18). For hematoxylin stain-
ing, plant materials fixed in FAA were dehydrated through
a graded ethanol series and embedded in Technovit 7100
resin. Microtome sections (3-5 pum thick) were stained
with hematoxylin, and were observed and photographed
using microscope.
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