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Abstract

Background: Classical genetic studies indicate that nicotine dependence is a substantially heritable
complex disorder. Genetic vulnerabilities to nicotine dependence largely overlap with genetic
vulnerabilities to dependence on other addictive substances. Successful abstinence from nicotine
displays substantial heritable components as well. Some of the heritability for the ability to quit
smoking appears to overlap with the genetics of nicotine dependence and some does not. We now
report genome wide association studies of nicotine dependent individuals who were successful in
abstaining from cigarette smoking, nicotine dependent individuals who were not successful in
abstaining and ethnically-matched control subjects free from substantial lifetime use of any addictive

substance.

Results: These data, and their comparison with data that we have previously obtained from
comparisons of four other substance dependent vs control samples support two main ideas: |)
Single nucleotide polymorphisms (SNPs) whose allele frequencies distinguish nicotine-dependent
from control individuals identify a set of genes that overlaps significantly with the set of genes that
contain markers whose allelic frequencies distinguish the four other substance dependent vs
control groups (p < 0.018). 2) SNPs whose allelic frequencies distinguish successful vs unsuccessful
abstainers cluster in small genomic regions in ways that are highly unlikely to be due to chance

(Monte Carlo p < 0.00001).

Conclusion: These clustered SNPs nominate candidate genes for successful abstinence from
smoking that are implicated in interesting functions: cell adhesion, enzymes, transcriptional
regulators, neurotransmitters and receptors and regulation of DNA, RNA and proteins. As these
observations are replicated, they will provide an increasingly-strong basis for understanding
mechanisms of successful abstinence, for identifying individuals more or less likely to succeed in
smoking cessation efforts and for tailoring therapies so that genotypes can help match smokers

with the treatments that are most likely to benefit them.
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Background

Extensive data from classical genetic studies indicate that
vulnerabilities to substance dependence are complex traits
with strong genetic influences. These genetic influences
are largely shared by abusers of different legal and illegal
addictive substances [1-4]. Nicotine dependence can be
defined by Fagerstrom Test for Nicotine Dependence [5]
or by DSM (diagnostic and statistical manual) criteria.
Defined in either fashion, twin studies of nicotine
dependence support strong heritability in the range of 40
- 70% [6-9].

Phenotypes relating to successful abstinence from smok-
ing have also been studied in twin samples [10,11]. Suc-
cess at achieving smoking abstinence displays heritability
in the range of 40 - 60%. Some of this heritable compo-
nent appears to overlap with heritable features of nicotine
dependence and some does not.

Little current data indicates which specific genes contain
variants that are likely to contribute to vulnerability to
nicotine dependence and/or to success in abstaining from
nicotine in formerly-dependent individuals. Linkage
based genome scans for nicotine dependence, age of
smoking onset and other nicotine dependence related
phenotypes (see discussion) have identified a number of
linkage peaks [12-20]. The most prominent linkage peaks
from these efforts largely differ from sample to sample,
however.

Identifying genomic markers for the allelic variants that
contribute to nicotine dependence vulnerability should
improve understanding of human addictions and aid
efforts to match vulnerable individuals with the preven-
tion and treatment strategies most likely to work for them.
Adding information about genomic variations that help
to distinguish successful quitters from non-successful
quitters could have a significant impact on strategies to
reduce the health burdens that cigarette smoking imposes.

To provide a basis for molecular genetic studies, we
hypothesize that nicotine dependent participants in
smoking cessation studies will display allele frequencies
different from those identified in ethnically-matched con-
trol research volunteers. We postulate that we will find the
most reliable results when the allele frequency differences
between dependent and control individuals identify genes
that we have previously identified in four prior genome
wide association studies that compare allele frequencies
in control individuals to those in individuals who are
dependent on other abused substances. In addition, we
hypothesize that successful cigarette quitters will display
allele frequencies that differ from those found in ethni-
cally-matched individuals who were unsuccessful at quit-
ting. We thus address two research questions: 1) smokers
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vs non-smokers, with special interest in genes that overlap
with genes identified in studies of dependence on other
substances and 2) successful vs unsuccessful quitters.

We thus now report 520,000 SNP genome wide associa-
tion in pools of DNAs prepared from nicotine dependent
European-American smoking cessation trial participants
and control individuals. We compare genotypes from the
entire group of nicotine dependent research participants
to genotypes from European-American research volun-
teers free from any substantial lifetime use of any addic-
tive substance. We also compare groups that displayed
successful abstinence vs those who failed to display absti-
nence (Fig 1.).

Results

SNP allele frequency assessments display modest variabil-
ity. Standard errors for the variation among the four repli-
cate studies of each DNA pool were +/- 0.035. Standard
error for the variation among the pools studied for each
phenotype group was +/- 0.028. Previous validating stud-
ies for these arrays have also revealed good fits between
individual and pooled genotyping, with 0.95 correlations
between pooled and individually-determined genotype
frequencies [21-31]. The observed pool-to-pool standard
deviations from these datasets thus indicate 0.94 and 1.0
power to detect 5 and 10% allele frequency differences
with o = 0.05 in nicotine dependent vs control compari-
sons. We have 0.45 and 0.95 power to detect 5 and 10%
allele frequency differences in successful vs unsuccessful
quitters. Additional false negative results are likely to
derive from the additional stringent requirement that four
other samples each provide supporting evidence for the
nicotine dependent vs control comparisons noted here.

We first focused on the first of the two research questions:
1) smokers vs nonsmokers, with a special interest in the genes
that have overlap with dependence on other substances. When
we compare allele frequencies in 134 nicotine-dependent
vs 320 control individuals, 88,937 of the 520,000 tested
SNPs displayed t values that provide nominally-signifi-
cant abuser vs control allele frequency differences at p <
0.005. These nominally-positive SNPs are positioned near
clustered-positive SNPs from four other abuser-control
comparisons to extents that are greater than expected by
chance (Table 1). 4701 of these nominally-significant
SNPs lie within 100 Kb of a cluster of nominally-positive
SNPs from replicate African-American and European-
American NIDA polysubstance abuser vs control compar-
isons. Monte Carlo p values for this convergence were
0.0002. Thus, only 2 of 10,000 Monte Carlo simulation
trials that each began by selecting 88,937 random SNPs
displayed so many nominally-significant results near the
clustered positive results from the two NIDA samples.
2133 of the nominally-significant SNPs from the current
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Control (Ct) vs Nicotine dependent (ND)

!

Identify nominally significant Ct vs ND
SNPs (p<0.005)

Identify which of the 81 genes that have
been reproducibly associated with
dependence on other substances contain
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NDNQ SNPs (p<0.01)
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Identify which NDQ vs NDNQ nominally
significant SNPs cluster in small
chromosomal regions

nominally significant Ct vs ND SNPs 1

{

Identify which of the genes display
reduced p values after adding data from
the current dataset to prior Monte Carlo
data

Identify which genes contain clustered
nominally significant NDQ vs NDNQ SNPs

Results in Table 1
(confirmed substance dependence
vulnerability genes)

Results in Table 2 (Additional file 1)
(nominated nicotine cessation genes)

Figure |

Diagram outlining the analyses undertaken in this report. (left) Comparisons between allele frequency assessments at
520,000 genomic SNPs in the whole group of European American nicotine dependent subjects who volunteered for inclusion
in nicotine cessation trials in comparison to SNP frequency assessments for European-American control research volunteers
without histories of any substantial use of any addictive substance. The preplanned analysis of this data focused on the extent
to which these nominally positive SNPs added to the significance of the results of previously assembled convergent data from
studies of other four other addict vs control comparisons. Genes for which the Monte Carlo significance increases (eg lower p
values) after adding the current data to previously-obtained data are listed in Table |. (right) Comparisons between allele fre-
quency assessments at 520,000 genomic SNPs in two subgroups of the European American nicotine dependent research par-
ticipants who volunteered for inclusion in nicotine cessation trials, described previously. NDQ subjects successfully abstained
from smoking for at least 6 weeks after completion of therapeutic trials using nicotine and/or mecamylamine, NDNQ subjects
did not abstain for this period. The preplanned analysis of this data focused on the extent to which the nominally-positive SNPs
from this comparison clustered together in genomic regions that encoded genes in comparison to chance levels, assuming inde-
pendence of SNP allelic frequencies. Genes that contain at least three nominally positive SNPs and are thus nominees to con-
tain variants that participate in the genetic underpinnings of individual differences in smoking quit success are listed in [see
additional file I7.

nicotine dependent vs control comparison meet several ~ comparisons and 4) lie within genes that are also sup-
criteria. They 1) lie near clusters of positive SNPs from  ported by nominally-positive results from COGA alcohol
both NIDA samples, 2) lie within annotated genes, 3) lie  dependent vs control comparisons. The Monte Carlo p
within genes that also supported by nominally-positive  value for the observed degree of convergence between the
results from JGIDA methamphetamine abuser vs control ~ current and prior data is 0.018.
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Table I: Nicotine dependent vs control comparisons

Gene/Cluster  Class Chr Bp Rep Pos Snps monte Description
carlo p
CNTNé CAM 3 1,280,415 I 0.00059 contactin 6
LRRNI CAM 3 3,769,591 20 0.00007 leucine rich repeat neuronal |
SEMA3C CAM 7 80,111,952 9 0.00120 sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3C
CSMDla CAM 8 3,184,850 11 0.00083 CUB and Sushi multiple domains |
CSMDIb CAM 8 3,653,990 13 0.00095 CUB and Sushi multiple domains |
PTPRD CAM 9 8,310,837 13 0.00047 protein tyrosine phosphatase, receptor type, D
LRRN6C$ CAM 9 29,153,017 6 0.00118 leucine rich repeat neuronal 6C
CDHI3 CAM 16 81,647,004 11 0.00198 cadherin 13, H-cadherin (heart)
SIPAIL2 ENZ | 228,796,685 16 0.00040 signal-induced proliferation-associated | like 2
PDE4D ENZ 5 58,461,253 4 0.00329 phosphodiesterase 4D, cAMP-specific (phosphodiesterase E3 dunce homolog, Drosophila)
PDEIC ENZ 7 31,648,914 8 0.00204 phosphodiesterase |C, calmodulin-dependent 70 kDa
PRKGla ENZ 10 52,485,930 5 0.00299 protein kinase, cGMP-dependent, type |
PRKGIb ENZ 10 52,986,999 10 0.00214 protein kinase, cGMP-dependent, type |
ELMOI PROT 7 36,840,767 9 0.00243 engulfment and cell motility | (ced-12 homolog, C. elegans)
MICALCL PROT il 12,241,526 7 0.00115 MICAL C-terminal like
IMPACT* PROT 18 20,182,039 9 0.0007 hypothetical protein IMPACT
GRM7 REC 3 6,934,982 5 0.00289 glutamate receptor, metabotropic 7
GPR|54* REC 7 34,383,589 4 0.00123 G protein-coupled receptor |54
HRH4* REC 18 20,280,986 9 0.0007 histamine receptor H4
NFIB TF 9 14,190,005 6 0.00274 nuclear factor I/B
KCNQ3* CHA 8 133,172,472 5 0.00114 potassium voltage-gated channel, KQT-like subfamily, member 3
4
SLC9A9 TRANSP 3 144,947,291 12 0.00333 solute carrier family 9 (sodium/hydrogen exchanger), isoform 9
XKR5* TRANSP 8 6,650,733 4 0.00063 XK, Kell blood group complex subunit-related family, member 5
ABCC4 TRANSP 13 94,600,083 5 0.0035 ATP-binding cassette, sub-family C (CFTR/MRP), member 4
PTHBI DIS 7 33,369,755 21 0.00250 parathyroid hormone-responsive Bl
ACTN2 STR | 233,147,888 5 0.00016 actinin, alpha 2
OC90* STR 8 133,172,472 5 0.00114 otoconin 90
HHLAI* OTHER 8 133,172,472 12 0.00114 HERV-H LTR-associating |
DEFBI* OTHER 8 6,650,733 5 0.00063 defensin, beta |
FGFI4 OTHER 13 101,764,771 12 0.003 fibroblast growth factor 14
A2BPI OTHER 16 6,603,645 9 0.00171 ataxin 2-binding protein |
OSBPLIA OTHER 18 20,182,039 I 0.0007 oxysterol binding protein-like |A

Nicotine dependent vs control comparisons from the current work add support to previous addict vs control association observations in specific
genes. Genes and classes of genes that contain nominally positive (p < 0.005) SNPs in comparisons between nicotine dependent(n = 139) and
control (n = 320) individuals in the current study and enhance the significance of previously-obtained whole genome association results for
addiction. To be included in this list, the data from the current comparison needs to improve the nominal significance of 100000 Monte Carlo
simulation trials by > 10 trials when the current data is added to data from four prior samples. Four prior samples are comprised of genes
previously nominated to play roles in addiction based on reproducible nominally positive allele frequency differences between European-American,
African-American and Japanese individuals who are dependent on illegal substances or alcohol. Genes in this table this contain: I) SNPs that display
p < 0.005 significance for differences between nicotine dependent and control individuals in the present study 2) clustered SNPs that displayed
significant (p < 0.05) differences between both European-American and African-American NIDA polysubstance abusers vs controls in previous
studies 3) SNPs that displayed p < 0.05 significance in 100k association genome scans of alcohol dependent vs control individuals (COGA [55]) and
4) SNPs that displayed p < 0.05 significance in 100k association genome scans of methamphetamine dependent vs control individuals (JGIDA [56]).
Genes are identified when positive SNPs lie |) within the gene's exons or introns or 2) in 3' or 5' flanking sequences that lay within 100 Kb of an
annotated exon or extensions of the currently-annotated exons as described [22]. Genes are grouped by the class of the function to which they
contribute: "CAM" cell adhesion, "ENZ" enzymes, "PROT" protein processing, "REC" receptors, "TF" transcriptional regulation, "CHA" channels,
"TRANSP" transporters, "DIS" disease associated, "STR" structural, "OTHER" other functions. Chromosome number and initial chromosomal
position for the cluster (bp, NCBI Mapviewer Build 35.1) are listed. Monte Carlo p values come from 100,000 simulation trials. In each trial,
randomly selected sequences lying within randomly selected gene sequences of the same length displayed by the actual genomic segments analyzed
here were assessed to determine whether or not they contained at least the number of positive SNPs actually identified for each gene cluster and
gene. The frequency of trials in which at least the observed numbers of nominally-positive SNPs were identified in each of the four samples studied
here was recorded to provide an empirical p value. Several genes are identified by the same clusters of positive SNPs; these genes are indicated with
asterisk symbols. Several genes, identified in several lines of Table |, contain multiple clusters of reproducibly positive SNPs; the clusters are
designated by suffixes a, b etc. We note that the requirements for nominally-significant association signals in each of five samples and increasing
significance based on data from the current nicotine dependent vs control comparisons are likely to increase the number of false-negative results;
interesting genes that receive support from only four samples are not listed here, for example.
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The results of the nicotine-dependence vs control compar-
isons from the current study provide substantial confir-
mation for a number of genes in several gene classes that
have been nominated and confirmed in prior addict vs
control studies. Seven previously nominated genes related
to cell adhesion processes, CNTNG6, LRRN1, SEMA3C,
CSMD1, PTPRD, LRRN6C and CDH13 each receive addi-
tional support from 100,000 Monte Carlo simulation tri-
als. The convergence between current and previously-
obtained data suggest that allelic variants in these genes
are thus likely to contribute to individual differences in
vulnerability to a variety of addictive substances (Table 1).
Four genes related to enzymatic activity, SIPA1L2, PDE1C,
PDE4D and PRKG1 each receive similar support. Genes
involved in protein processing, a transcriptional regulator,
and genes involved in channel, transporter, structural, dis-
ease and other processes receive similar support. Three G-
protein coupled receptors, the GRM7 metabotropic gluta-
mate receptor, the orphan GPR154 and the HRH4 hista-
mine receptor also receive such support. Each of these
genes, taken individually, is thus supported by data from
studies of individuals selected on the basis of their
dependence on illegal substances (largely cannabis, stim-
ulants and opiates), methamphetamine, alcohol and
tobacco.

Controls for occult stratification among these subjects and poor
technical quality in the nominally-positive SNPs identified
here fail to provide alternative explanations for the posi-
tive results of comparisons between smokers and controls.
Only 837 of the nominally-positive SNPs from the
smoker-control comparisons display large allele fre-
quency differences between European- and African-Amer-
ican control individuals. This number is smaller than the
2,223 SNPs that would be expected to have such proper-
ties if they were selected by chance. Only 158 of the nom-
inally-positive ~ SNPs  from the smoker-control
comparisons in these data lie among the SNPs that display
the largest variation between pools in data from this and
other studies using the same arrays. This number is also
smaller than chance values. These comparisons thus fail
to support the alternative hypotheses that either occult
ethnic stratification in these samples or technical prob-
lems with assays for these SNPs provided the basis for the
overall results reported here.

We next focused on the second research question: 2) suc-
cessful vs unsuccessful quitters.

In comparing data from successful vs unsuccessful quit-
ters, we identified 4,570 SNPs whose allele frequencies
differ between these two groups with t values for these dif-
ferences that yield nominal p values < 0.01. The nomi-
nally-positive SNPs from comparisons between successful
vs unsuccessful quitters cluster together to extents much
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greater than expected by chance if their allelic frequencies
were independent of each other (Monte Carlo p <
0.00001). 944 of the 4,570 nominally-positive SNPs lay
in 224 clusters in which each positive SNP lay within 100
Kb of at least one other positive SNP. We would anticipate
such clustering if many of these reproducibly-positive
SNPs identified haplotypes that were present in different
frequencies in our samples of successful vs unsuccessful
quitters, but not if they represented chance independent
observations. We defined clusters as chromosomal sites
where 1) three or more reproducibly-positive SNPs were
positioned within 0.1 Mb of each other and 2) reproduc-
ibly-positive SNPs assessed by two different array types
were represented, so that all positive data did not come
from just Nsp I or from Sty I arrays.

The nominally-positive SNPs from successful vs unsuccessful
quitter comparisons that cluster together on small chromosomal
regions also cluster together in regions that are annotated as
genes to extents much greater than chance if they repre-
sented independent observations (Monte Carlo p <
0.00001 for both).

Neither controls for occult stratification nor for poor technical
quality explain the nominally-positive SNPs from the suc-
cessful vs unsuccessful quitter comparisons. The SNPs that
display the largest allele frequency differences between
European- and African-American controls and the SNPs
that display the largest between-pool variances do not
overlap with those that distinguish successful vs unsuc-
cessful quitters at levels significantly larger than those
anticipated by chance (131 vs 114 and 143 vs 114, respec-
tively).

Haplotypes that were present at different frequencies in
the successful vs unsuccessful quitters by chance, not
based on ethnic stratification, could conceivably contrib-
ute to some of this clustering; we thus view the results
reported here [see additional file 1] as nominally-positive
genes. Nevertheless, the 221 genes identified by these
clustered positive results represent a highly interesting set
[see additional file 1]. Seventeen of these genes produce
products related to cell adhesion, 39 genes' products relate
to enzymatic activities, 37 encode receptors and/or G-pro-
tein mechanisms, 5 encode channels, 27 encode transcrip-
tional regulators, 9 genes' products are involved in
mechanisms for Mendelian disorders, 12 encode struc-
tural proteins, 4 encode proteins involved with vesicle
function, 5 encode transporters, 32 encode genes involved
with DNA, RNA or protein processing and 34 are genes
about which so little is known that we cannot confidently
place them in a functional class.
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Discussion

The molecular genetic observations reported here are con-
sistent with substantial heritabilities for nicotine depend-
ence vs nondependence and for successful abstinence vs
unsuccessful abstinence, as suggested by classical genetic
studies [3,6-8,10,11]. The current data support the idea
that nicotine dependence shares substantial heritable fea-
tures with dependence on other addictive substances.
These molecular results also support the idea that some of
the genetics of nicotine dependence overlaps with the
genetic underpinnings of successful abstinence while
some is independent.

Several genes contain SNPs whose allelic frequencies distin-
guish nicotine dependent from control individuals. We have
focused on the 30 genes for which the differences between
dependent and control individuals enhance the conver-
gence of results previously obtained from four other
abuser vs control whole genome association studies. The
identification of allelic associations within so many genes
that encode cell adhesion and extracellular matrix mole-
cules support important roles for neuronal connectivities
and memory-like functions in individual differences in
vulnerabilities to addictions [32]. Data for each of these
30 genes provides new information about vulnerability to
nicotine dependence. However, the approach that we use
here does bias against genes that may contribute to vul-
nerability to nicotine alone. Failure to be included on this
list should not be taken to exclude involvement in nico-
tine dependence of genes, such as those that encode nico-
tine metabolizing enzymes, that have been associated
with nicotine dependence in previous studies [33].

Nominally-significant linkage of a number of genomic
markers to smoking phenotypes has been identified. Five
reports on data from the Framingham Heart Study (smok-
ing rate) [16], (> O cigarettes/day) [34], (>0.0138 pack/
years) [12], two reports on data from the Collaborative
Study on the Genetics of Alcohol [17,35], (cigarettes/day
for 1 year) [13], ("habitual smoking > 20 cigarettes/day
for > 6 months) [36], two reports on data from a sample
recruited in Christchurch, New Zealand (Fagerstrom)
[18,19], two reports on data from a sample recruited in
Richmond, Virginia (Fagerstrom) [18,19], as well as single
reports on linkage data from Mission Indians (smoking
daily > 1 mo; smoking > 10 cigarettes/day > 1 year) [14],
Oregon Smoking in Families Study (Fagerstrom and nico-
tine dependence measures) [20], and Yale Anxiety Clinic
pedigree members (> 20 cigarettes/day for >1 year or > 10
cigarettes/day for > 10 years) [15] add to the list of mark-
ers with nominally-significant linkage to smoking pheno-
types. Support for cadherin 13 is enhanced by the linkages
to D16S422 and D16S684 identified by Straub and by
Sullivan [18] in New Zealand samples (also, see below).

http://www.biomedcentral.com/1471-2156/8/10

The genes that contain multiple clustered nominally-positive
SNPs that distinguish successful quitters from those who could
not abstain successfully also represent an interesting group.
This list of genes includes several that contain SNPs whose
allelic frequencies also distinguish nicotine dependent
from control individuals. Cadherin 13 is a cell adhesion
molecule identified in both comparisons and in the link-
age results noted above. Cadherin 13 is glycosyl-phos-
phatidylinositol (GPI) anchored and likely to be localized
to lipid raft membrane domains where it produces
homophilic interactions with other CDH 13 molecules
and heterophilic interactions with ligands that include
adiponectin hexamers and low density lipoproteins [37-
40]. Ligand interactions with CDH13 activate signaling
pathways including those that alter intracellular Ca2+ and
tyrosine kinase, Erk 1/2 kinase, RhoA/ROCK and Rac
pathways and NFkB [37-40]. Cadherin 13 can inhibit neu-
rite extension from select neuron populations both as a
substratum and as a soluble recombinant protein [41].
Expression is documented in neurons located in interest-
ing human brain regions including frontal cortex, amy-
gdala and ventral midbrain [42].

The cyclic G dependent protein kinase gene is identified in
both comparisons. This gene is widely and multifocally
expressed in brain in cells including neurons [43]. Proper
PRKG1 expression is important for proper brain develop-
ment [44]. Variants in this gene can lead to marked differ-
ences in behaviors of drosophila [45]. Nitric oxide can
dramatically modulate brain cGMP systems, suggesting
that these systems may provide some of the primary tar-
gets for the products of nitric oxide synthases (NOS).
Mnemonic and addictive functions can each be altered by
changes in cGMP-dependent protein kinase and/or NOS
[46-48].

In addition to CDH13 and PRKG1, 214 additional genes
are identified by the clustered positive results that we
nominate from comparisons of treatment-seeking indi-
viduals who successfully vs unsuccessfully abstain from
smoking. Sixteen of these additional genes produce prod-
ucts related to cell adhesion, 32 genes' products relate to
enzymatic activities, 37 encode receptors and/or G-pro-
tein mechanisms, 27 encode transcriptional regulators
and others encode channels, gene products involved in
mechanisms for Mendelian disorders, structural proteins,
proteins involved with vesicle function, transporters,
genes involved with DNA, RNA or protein processing and
genes of unknown functions. These genes, taken together,
should be considered nominees to contain variants that
could play roles in the genetic underpinnings of successful
abstinence from smoking. We can confidently exclude the
probability that technical features contribute to the genes
identified by the quitter vs nonquitter comparisons. With
the modest sample sizes reported here, however, we can-
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not exclude contributions from random differences in
haplotype distributions between these two groups. Fur-
ther studies will be necessary to confidently identify
which of the individual genes nominated in this study dis-
play replicable results.

The current observations contain significant limitations that
should be considered in their interpretation. First, the
modest sizes of the samples used for these studies provide
moderate power, at best, to detect gene variants related to
nicotine dependence and successful quitting. As noted in
the power calculations, the number of false negative
results is likely to be higher for allelic variants that pro-
duce small effects. Second, in conjunction with the mod-
est sample sizes, we have also imposed stringent
requirements for the genes listed in Table 1. Each of these
genes is required to contain SNPs that display nominally
significant abuser/control allele frequency differences in
four prior samples, and also to display enhanced Monte
Carlo p values when the current dataset is added to previ-
ously-obtained datasets. While these analyses reduce the
probability that these genes will represent false positives,
it is also likely to lead to many false-negative results. If we
even allow genes whose Monte Carlo probabilities are not
reduced by adding the current data to be included, most
of the genes previously supported by the four prior data-
sets for other addictions [22,31,49] would also be
included in Table 1 (data not shown).

Third, the current data for nicotine-dependent vs control
comparisons uses well-characterized research volunteer
European-American control samples that overlap substan-
tially with those used for comparisons with European-
American polysubstance abusers. While we have no evi-
dence for any substantial occult differences between the
underlying European-American research participants
sampled in North Carolina and those sampled in Mary-
land, differences that cannot be detected by our extensive
genomic control procedures are not inconceivable. In
addition, these results are thus not totally independent
from those in the substance abuser vs control compari-
sons to which the current nicotine dependence vs control
data are compared. Since the control group used here
overlaps with only one of the control groups used for the
previous datasets, we believe that this potentially con-
founding influence is unlikely to have a large impact on
the overall results.

Fourth, as noted above, the list of genes that distinguish
successful from unsuccessful quitters should be consid-
ered as a list of nominees, in light of the modest power
available for this comparison and the likely inclusion of
false-positive results on this list. In spite of this caution,
however, we do find that this list of these genes overlaps
with the genes that distinguish nicotine-dependent from
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control individuals. We also note that these positional
cloning results identify genes whose products can sub-
stantially impact animal models for relapse. We identify
corticotrophin releasing hormone (CRH), for example.
Stressors of several sorts elevate CRH and lead to dramat-
ically elevated relapse in animal models [50]. We also
identify a gene cluster that contains two melanocortin G
protein coupled receptors. We have never consistently
identified CRH or melanocortin receptor genes in our
studies comparing addicts to controls. These CRH and
melanocortin receptor genes are thus candidates to con-
tribute to the genetic influences on quitting success that
may be independent of the genetic influences on nicotine
dependence. Fifth, there are modest to moderate differ-
ences in the gender and age of nicotine-dependent vs con-
trol research volunteers studied here. While we have
focused only on data from autosomal regions in these
analyses and sought its replication in studies of several
other addict vs control samples in ways that are likely to
minimize these influences, they may not be able to elimi-
nate them. Both nicotine-dependent and control groups
are also sufficiently old to have passed through the vast
majority of the ages of risk of development of nicotine
dependence. Nevertheless, it is conceivable that the mod-
est age differences in the samples studied here might have
contributed modestly to some of the observed results.
Sixth, in order to enhance the likelihood that the genes
identified in the dependent vs control comparisons repre-
sent true positive observations, we have focused on gene
variants that are also identified in other comparisons
between individuals who are dependent on other sub-
stances vs controls. This strategy may reduce the novelty of
the list of genes reported here, though these findings do
provide novel information concerning the possible roles
of variants in these genes in vulnerability to nicotine
dependence as opposed to dependence on other sub-
stances. We can compare current data to very recent
reports that identify SNPs whose allelic frequencies differ
between dependent vs nondependent smokers [51,52].
Three hundred thirty-one and 623 of the SNPs that distin-
guish nicotine dependent vs control individuals and 16
and 25 of the SNPs that distinguish successful vs unsuc-
cessful quitters lie within 10 and 100 kb of one of these
candidate genes. These SNPs thus provide modest addi-
tional support to findings reported at the ADRBK2,
AVPR1A, BDNF, CCK, CHRNA10, CHRNA2, CHRNA4,
CHRNA5, CHRNA6, CHRNA7, CHRNB2, CHRNG,
CLCA1, CLTCL1, CNR1, CTNNA3, DBH, DDC, DRD1,
DRD3, FBXL17, FMO1, FMO4, FTO, GABBR2, GABRAA4,
GABRB2, HTR1A, HTR5A, KCNJ6, NPY, NRXN1, OPRD1,
OPRK1, PDYN, PENK, PIP5K2A, POMC, SLCO6A3,
SLCG6A4, TRPC7 and VPS13A loci [51,52].
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Conclusion

Repeated studies in carefully selected samples will be nec-
essary to confirm many of these observations. Larger sam-
ples that study effects of single pharmacologic treatments
may also identify genes whose influences are specific to
particular treatments. The current data not only nomi-
nates candidate for replication in further samples, how-
ever. Taken as a whole, it provides molecular genetic
support for the idea that ability to abstain from nicotine
has polygenic genetic components that overlap, in part,
with those that contribute to vulnerability to nicotine
dependence. This work also supports overlaps between
the polygenic molecular genetic determinants that predis-
pose to nicotine vulnerability and those that predispose to
addictions to other legal and illegal addictive substances.
Each of these features thus provides support for further
elucidation of genetic variants that are associated with
smoking cessation success. Each of these results provides
promise that we may be able to begin to use such data to
help match treatments with those most likely to benefit
from them in the relatively near future.

Methods

Experimental subjects

Study participants of self-reported European ancestry
recruited in the Raleigh-Durham metropolitan area by
advertising and word of mouth provided informed con-
sents for studies of smoking cessation, averaged age 44
and were 45% female. These participants reported an
average of 25 years of smoking, displayed initial Fager-
strom Test for Nicotine Dependence (FTND) [5] scores
that averaged 6.4 and provided screening carbon monox-
ide levels that averaged 34.7. Participants received oral
mecamylamine (10 mg/day) and either active (21 mg/24
h) or placebo nicotine skin patches for two weeks before
the target quit-smoking date. After the quit-date, partici-
pants were randomly assigned to groups that received
mecamylamine (10 mg/day) vs matching placebo and 21
mg/24 h vs 42 mg/24 h nicotine skin patch doses to test
how mecamylamine might improve effectiveness of nico-
tine replacement therapy. Behavioral support and self-
help quitting manuals were also provided. Fifty-five study
participants reported continuous abstinence from smok-
ing when assessed 6 weeks after the quit date. 79 partici-
pants were not abstinent at the 6 week time point. Data
from these individuals was compared to data from 320
control study participants of self-reported European-
American ancestry recruited in Baltimore by advertising
and word of mouth who also provided informed con-
sents, averaged age 31, were 36% female and reported no
substantial lifetime histories of use of any addictive sub-
stance [21,53,54].

http://www.biomedcentral.com/1471-2156/8/10

DNA preparation, pooling and analysis

Genomic DNA was prepared from blood [21,53,54], care-
fully quantitated and combined into pools representing
13 - 20 individuals of the same ethnicity and phenotype.
Hybridization probes were prepared from the genomic
DNA pools as described (Affymetrix Genechip Mapping
Assay Manual) with precautions to avoid contamination
that included use of dedicated preparation rooms and
hoods. 50 ng of each pooled genomic DNA was digested
by Styl or by Nspl, ligated to appropriate adaptors and
amplified using a GeneAmp PCR System 9700 (Applied
Biosystems, Foster City, CA) with a 3 min 94 °C hot start,
30 cycles of 30 sec 94°C, 45 sec 60°C, 15 sec at 68°C and
a final 7 min 68°C extension. PCR products were purified
(MinElute™ 96 UF kits, Qiagen, Valencia, CA). PCR prod-
ucts were quantitated and 40 pg were digested for 35 min
at 37°C with 0.04 unit/ul DNase 1. The 30-100 bp frag-
ments resulting from DNAse treatments were end-labeled
using terminal deoxynucleotidyl transferase and bioti-
nylated dideoxynucleotides and hybridized to the appro-
priate Sty 1 or Nsp I early access Mendel® microarrays
(Affymetrix, Santa Clara, CA). Arrays were stained,
washed and scanned as described (Affymetrix Genechip
Mapping Assay Manual) using immunopure strepavidin
(Pierce, Milwaukee, WI), biotinylated antistreptavidin
antibody (Vector Labs, Burlingame, CA) and R-phyco-
erythrin strepavidin (Molecular Probes, Eugene, OR). Flu-
orescence intensities were quantitated using an Affymetrix
array scanner as described [21].

Identification of positive SNPs

Allele frequencies for each SNP in each DNA pool were
assessed based on hybridization to the 12 "perfect match"
cells on each of four arrays from replicate experiments, as
described [31,55]. In brief, each cell's value was analyzed
by subtracting background fluorescence intensities and
normalizing background-subtracted values to the values
for the highest intensities on each array. We averaged the
data from the 12 perfect match cells for A and B alleles for
each SNP. To facilitate comparison of data from multiple
arrays, we derived the arctangent of the ratio between
hybridization intensities for A and B alleles for each array.
We then averaged these arctan A/B values for the four rep-
licate arrays that assessed genotype frequencies for each
pool. We calculated the mean arctan A/B ratios for nico-
tine dependent vs control individuals (and for quitters vs
nonquitters). We divided the mean arctan A/B ratio for
abusers (or quitters) by the mean arctan A/B ratio for con-
trols (or nonquitters) to form abuser/control (or quitter/
nonquitter) ratios. We generated a "t" statistic for the dif-
ferences between abusers and controls or quitters and
nonquitters using the formula described previously
[22,31,55]. "Nominally significant" SNPs display t values
with p < 0.005 for nicotine dependent vs control compar-
isons and p < 0.01 for quitter vs nonquitter comparisons,

Page 8 of 11

(page number not for citation purposes)



BMC Genetics 2007, 8:10

respectively. We thus set a relatively strict preplanned cri-
terion for the first comparison that confirms genes with
good confidence. We set a more modest criterion, with
lower levels of confidence, for the second comparison that
nominates genes that merit replication studies. We
deleted data from SNPs on sex chromosomes and SNPs
whose chromosomal positions could not be adequately
determined using Mapviewer (NCBI, build 35.1) or
NETAFFYX (Affymetrix, Santa Clara, CA).

Nicotine dependence variants

In preplanned assessments of the allelic variants likely to
influence vulnerability to dependence on nicotine and
other addictive substances, we focused on autosomal
SNPs that provided convergent data with four additional
abuser vs comparisons datasets; i.e. SNPs that a) display t
values with p < 0.005 nominal significance in compari-
sons between European-American controls vs nicotine
dependent research participants; b) identify genes that
also display reproducibly-positive associations with
addiction vulnerabilities in data from four other samples:
i) NIDA African-American and European-American
polysubstance abuser vs control comparisons based on
639,401 SNP comparisons with the requirement that
both samples provide nominally significant results (p <
0.0025 for the joint probability) and clustering so that at
least three such SNPs lay within 100 Kb of each other [31]
ii) JGIDA (Japanese genetic investigations of drug abuse)
Japanese methamphetamine abuser vs control compari-
sons, based on a requirement for nominal significance (p
< 0.05) of SNPs lying within the same genes [56] (manu-
script in preparation) and iii) COGA (Collaborative study
on the genetics of alcoholism) alcohol dependent vs con-
trol comparisons, based on a requirement for nominal
significance (p < 0.05) of SNPs lying within the same
genes [55] and c) produce an enhanced (eg. lower) Monte
Carlo p value for the overall association in comparisons of
the current smoker/control data with these four other
sample sets vs the Monte Carlo p values for the data from
the four other sample sets alone. Each of these Monte
Carlo simulation trials began with sampling from a data-
base that contains the results from the current study and
results from a larger database that contains data from the
prior association studies in the four additional samples
noted above to which we compare the current results. For
each of these 100,000 simulation trials, a randomly-
selected set of SNPs was chosen and the same procedure
that had been followed for the actual data was run. The
number of trials for which the results from the randomly-
selected set of SNPs matched or exceeded the results actu-
ally observed from the SNPs identified in the current
study was tabulated. Empirical p values were calculated by
dividing the number of trials for which the observed
results were matched or exceeded by the total number of
Monte Carlo simulation trials performed. Since this

http://www.biomedcentral.com/1471-2156/8/10

method examines the properties of the SNPs in the cur-
rent dataset, assuming independence of their allele fre-
quencies, it should be relatively robust despite the uneven
distribution of Affymetrix SNP markers across the
genome.

Quit success variants

In comparing results related to successful abstinence, we
use less stringent criteria. We focus on autosomal SNPs
that display three features [see additional file 1]: 1) they
display t values with p < 0.01 nominal significance in the
current dataset of successful vs unsuccessful quitters; 2)
they lie within clusters of at least three such nominally
positive SNPs so that each positive SNP lies within 0.1 Mb
of the nearest positive SNP; 3) they lie within genes whose
functions can be inferred. We also compared these
observed results to those expected by chance, based on
independence of SNP allelic frequency estimates under
the null hypothesis, using 10,000 - 100,000 Monte Carlo
simulation trials on the database from the current study's
results, as noted above [21].

Statistical power

To assess the power of our current approach, we used the
observed standard deviations and mean abuser/control
differences for the SNPs that provided the largest differ-
ences between control and abuser population means, the
program PS v2.1.31 [57] and a = 0.05.

Control comparisons

To provide a control for the possibility that the abstainer/
nonabstainer and user/control differences observed at
some of the clustered, reproducibly-positive SNPs were
due to occult ethnic/racial differences in the frequencies
of alleles at these same SNPs between abstainers and non-
abstainers or between abusers and controls, we compared
the present results with those that we have previously
obtained from comparisons of allele frequency data in
self-reported African-American vs European-American
control individuals, focusing on SNPs that display ethnic-
ity difference scores that lie in the outlying +/- 2.5% of all
differences (Table 1).

To provide a control for the possibility that the abuser-
control differences observed at many of the clustered,
reproducibly-positive SNPs were due to noisy assays for
these SNPs, we examined the overlap between the clus-
tered positive SNPs and the 2.5% of SNPs which display
the largest variation between pools in data from this and
other studies using the same arrays.

Abreviations
DSM - diagnostic and statistical manual, CEPH - Center
for human polymorphisms COGA - Collaborative study
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on the genetics of alcoholism, JGIDA - Japanese genetics
initiative on drug abuse
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