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Abstract

Background: Cold carcass weight (CW) and longissimus muscle area (EMA) are the major
quantitative traits in beef cattle. In this study, we found several polymorphisms of growth hormone-
releasing hormone (GHRH) gene and examined the association of polymorphisms with carcass
traits (CW and EMA) in Korean native cattle (Hanwoo).

Results: By direct DNA sequencing in 24 unrelated Korean cattle, we identified 12 single
nucleotide polymorphisms within the 9 kb full gene region, including the 1.5 kb promoter region.
Among them, six polymorphic sites were selected for genotyping in our beef cattle (n = 428) and
five marker haplotypes (frequency > 0.1) were identified. Statistical analysis revealed that -424 /A>T
showed significant associations with CW and EMA.

Conclusion: Our findings suggest that polymorphisms in GHRH might be one of the important
genetic factors that influence carcass yield in beef cattle. Sequence variation/haplotype information
identified in this study would provide valuable information for the production of a commercial line
of beef cattle.

Background ymorphisms that are involved in different phenotypes of
The successful application of marker-assisted selection in ~ quantitative traits, and understanding how these genes/
the commercial animal population will depend on the  polymorphisms interact with the environment or with
identification of genes, including identification of genes  other genes affecting economic traits.

underlying quantitative traits, exploration of genetic pol-
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The growth hormone (GH) is essential for post-natal
growth and general metabolism, and also plays an impor-
tant role in lactation. Current knowledge indicates that
GH exerts a key influence in nutrient use [1], mammary
development [2], and growth [3]. There have been several
reports of association between quantitative traits in cattle,
such as growth performance and carcass merit, and poly-
morphisms in the GH gene [4-6].

The regulation of GH synthesis and secretion is multifac-
torial, but the predominant regulators of GH are the
hypothalamic  hormones, GH-releasing hormone
(GHRH), GH secretagogue (GHS), and somatostatin (SS)
[7]. In spite of the functional importance of GHRH in the
regulation of GH, only one PCR-restriction fragment-
length polymorphism (RFLP) [8] has been reported in cat-
tle.

In this study, we examined GHRH as one of candidate
genes in meat production. We performed extensive
screening of GHRH by direct sequencing to detect poly-
morphisms and examined genetic association with the
carcass traits. Here, we present 12 polymorphisms identi-
fied in GHRH and the results of an association study with
meat quantity in Korean native cattle (Hanwoo).

Results and discussion

By direct DNA sequencing, 12 polymorphisms were iden-
tified in GHRH: one in 5'UTR and 11 in introns. The loca-
tions and allele frequencies of polymorphism are shown
in Table 1 and Figure 1. By pair-wise linkage analysis with
DNA from the 24 unrelated Korean cattle, which were
used for direct sequencing, we have found that two sets of
polymorphisms were in absolute LDs (|D'| = 1 and 2= 1).
Several sets of polymorphisms in complete LDs (|D'| = 1
and 12 1) were also identified (Figure 1 and Table 2).

Among identified polymorphisms, six SNPs (-4241A>T, -
3195T>A, -618T>A, +114C>A, +2042A>G and
+2279C>T) were selected for larger-scale genotyping
based on LDs (only one polymorphism if there are abso-
lute LDs (12 = 1)) and frequencies (> 0.1). Five major hap-
lotypes (freq. > 0.1) were constructed (Table 3). Minor
allele frequencies of SNP are shown in Table 1.

Associations of GHRH polymorphisms with carcass traits
were analyzed using the mixed effect model with sire and
age as covariates. Sire was treated as a random effect and
age a fixed effect. The obtained P values were corrected for
multiple testing by the effective number of independent
marker loci (5.35) in GHRH. In addition, the permutation
tests were performed for adjusting P values and for con-
trolling the false discovery rate (FDR). Among five com-
mon haplotypes (freq. > 0.1) identified, ht3 was not used
for further analysis because it was almost completely (>
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93%) tagged by a single SNP, +2042A>G (Table 3). Hap-
lotypes (ht6 — ht9) with frequencies less than 0.1 were not
analyzed either.

By statistical analyses,-4241A>T showed significant asso-
ciations with cold carcass weight (CW) and longissimus
muscle area (EMA) and the genetic effects of -4241A>T
were in gene dose dependent manner. CW and EMA were
highestin "T" allele homozygotes (CW =321.7 + 36.4 and
EMA = 78.2 + 9.3), intermediate in "A/T" heterozygotes
(CW =315.3 + 33.1 and EMA = 75.7 + 8.7), and lowest in
"A" allele homozygotes (CW = 306.2 + 32.5 and EMA =
74.1 + 8.2) (PR = 0.025 and 0.046 for CW and EMA,
respectively). The simple corrected PCOR and the permuta-
tion based PWY provided consistent results, though there
were some slight differences. The Q54M represents the FDR
value showing the consistent results. Similar mixed model
was fit for the haplotype association analysis. However,
none of the haplotypes were found to be significantly
associated with CW and EMA (Table 4).

Linear growth in vertebrate organisms is highly dependent
on the GH [9]. GH is a lipolytic hormone, activating
lipase and thereby mobilizing fat from adipose tissue
[10]. While the primary action of GH is to stimulate skel-
etal and visceral growth, it has important metabolic
actions as well. As a consequence of these actions, defi-
ciency of GH can result in lowered growth rate [11],
delayed bone maturation [12], decreased body mass [13],
and hypoglycemia [14].

In a recent study, a GHRH polymorphism (Alul) was asso-
ciated with yield traits (the average daily gain and
expected progeny difference for fat thickness) in landrace
pigs [15]. In this study, we also found that polymor-
phisms in GHRH, one of the predominant regulators of
GH releasing [16], were associated with carcass yield traits
(CW and EMA) in Korean native cattle.

Although the mechanisms involved in the association of
alternative genotypes in the UTR and intronic SNPs with
CW and EMA are not currently understood, the crucial
role of the non-coding portion of genomes is now widely
acknowledged. Polymorphisms within introns can affect
gene function by affecting both the splice donor or accep-
tor site or regions nearby and regulatory motifs within
introns. And UTRs are involved in many post-transcip-
tional regulatory pathways that control mRNA localisa-
tion, stability, translation efficiency and initiation of
protein synthesis. The post-transcriptional events play an
important, yet incompletely understood, role in regula-
tory gene expression and cellular behaviour; many of the
identified cis-acting elements for translational regulation
occur within the UTR [17].
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Table I: Genotype and allele frequencies of 12 polymorphisms detected in GHRH

Name Region Genotype Minor allele  Heterozygosit HWE*
frequency y

-4241A>T 5'UTR AA AT TT N 0.290 0.412 0.903
2143 180 34 428

-4144G>A Intron| GG AG AA N 0.091 0.165 0.896
18 4 0 22

-3195T>A Intron| TT AT AA N 0.409 0.484 0.255
140 222 63 425

-2846C>T Intron| CcC CT TT N 0.021 0.041 0.995
23 | 0 24

-2298A>C Intron| AA AC CcC N 0.300 0.420 0.159
8 12 0 20

-618T>A Intron| TT AT AA N 0.278 0.401 0.365
217 183 27 427

+114C>A Intron2 CcC AC AA N 0.311 0.429 0.894
199 186 39 424

+2042A>G Intron3 AA AG GG N 0.193 0.311 0.968
276 134 I5 425

+2279C>T Intron3 CcC CT TT N 0.299 0.419 0.792
206 184 35 425

+2555G>A Intron3 GG AG AA N 0.250 0.375 0.777
13 7 2 22

+3744G>A Intron4 GG AG AA N 0.043 0.083 0.977
21 2 0 23

+4522T7>C Intron4 TT CcT CcC N 0.021 0.041 0.995
23 | 0 24

* P value for deviation of genotype distribution from Hardy-Weinberg equilibrium (HWE)

$number of animals with that particular genotype

Conclusion

We have identified 12 polymorphisms in GHRH, and six
polymorphic sites were selected for genotyping in Korean
native cattle. Statistical analysis revealed that GHRH -
4241A>T showed significant association with carcass
traits. Replication of our finding in an independent data-
set and/or functional validation of polymorphisms
should be performed in the future.

Methods

Animals and phenotypic data

The Korean native cattle genomic DNA samples were
obtained from 428 steers produced from 76 sires used in

progeny testing program of National Livestock Research
Institute (NLRI) of Korea. The dams were inseminated
randomly with young sires. All steers were fed for 731.39
+ 16.53 days period under tightly controlled feeding pro-
gram in Daekwanryeong and Namwon branch of NLRI.
Live weights were determined before slaughter. Mean of
live weights was 539.93 + 51.96 kg. Yield grades for car-
casses were determined by CW and EMA. After a 24-h
chill, CW was measured, and then the left side of each car-
cass was cut between the last rib and the first lumbar ver-
tebrae to determine EMA. EMA was determined at the
surface using a grid [18]. Means of carcass traits were
311.47 + 33.39 kg (CW) and 75.16 + 8.62 cm2 (EMA).
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Map of SNPs in GHRH on chromosome 3. The exons are marked by black block, and 5' and 3' UTRs indicated by open blocks.
First base of translational site is denoted as nucleotide +1. Asterisks (*) indicate polymorphisms genotyped in a larger Korean
cattle (n = 428). tThe minor allele frequency based on 24 sequencing samples only, which is different with minor allele fre-

quency of absolutely linked SNP genotyped in larger population.

Sequencing analysis of GHRH

We have sequenced the 9 kb full genome, including the
promoter region (1.5 kb), to discover variants in 24 unre-
lated Korean native cattle using the ABI PRISM 3730 DNA
analyzer (Applied Biosystems, Foster City, CA). Nineteen
primer sets for the amplification and sequencing analysis
were designed based on GenBank sequences (Ref.
Genome seq.; AF242855 released on July 30, 2000).
Primer information is available on website [19]. Sequence
variants were verified by chromatograms.

Genotyping by single-base extension (SBE) and
electrophoresis

For genotyping of polymorphic sites, amplifying and
extension primers were designed for single-base extension
(SBE) [20]. Primer extension reactions were performed
with the SNaPshot ddANTP Primer Extension Kit (Applied
Biosystems). To clean up the primer extension reaction,
one unit of SAP (shrimp alkaline phosphatase) was added
to the reaction mixture, and the mixture was incubated at
37°C for 1 hour, followed by 15 min at 72°C for enzyme
inactivation. The DNA samples, containing extension

products, and Genescan 120 Liz size standard solution
was added to Hi-Di formamide (Applied Biosystems)
according to the recommendations of the manufacturer.
The mixture was incubated at 95°C for 5 min, followed by
5 min on ice, and then electrophoresis was performed
using the ABI Prism 3100 Genetic Analyzer. The results
were analyzed using the program of ABI Prism GeneScan
and Genotyper (Applied Biosystems). Probe information
is available on website [19].

Statistics

The X2 tests were used to determine whether individual
variants were in equilibrium at each locus in the popula-
tion (Hardy-Weinberg equilibrium). We examined a
widely used measure of linkage disequilibrium between
all pairs of biallelic loci, Lewontin's D' (|D'|) [21], and 2.
Haplotypes and their frequencies were inferred using the
algorithm developed by Stephens et al [22]. Phase proba-
bilities of each site were calculated for each individual
using this software. Association analyses with carcass traits
(CW and EMA) were performed using a mixed effect
model treating "sire" as a random effect. Age at slaughter

Table 2: Linkage disequilibrium coefficient (|D'| and r2) among GHRH SNPs

| D'l
SNPs -4241A>T -3195T>A -618T>A +114C>A +2042A>G +2279C>T

r2 -4241A>T - 0.550 0.121 0.935 0.835 0.129
-3195T>A 0.175 - 0.928 1.000 0.748 0.545
-618T>A 0.002 0.232 - 1.000 0.533 0.181
+114C>A 0.160 0317 0.174 - 0.941 0.126
+2042A>G 0.404 0.187 0.026 0.094 - 1.000

+2279C>T 0.016 0.089 0.029 0.015 0.100 -

Page 4 of 6

(page number not for citation purposes)



BMC Genetics 2006, 7:35

http://www.biomedcentral.com/1471-2156/7/35

Table 3: Haplotypes and frequencies of GHRH among Korean native cattle.

Haplotype -4241A>T -3195T>A -618T>A +114C>A +2042A>G +2279C>T Frequency
htl A T T A A C 0.189
ht2 A A T C A C 0.183
ht3 T A T C G C 0.162
ht4 A T A C A C 0.122
ht5 A T T A A T 0.114
ht6 T T A C A T 0.060
ht7 A T A C A T 0.059
ht8 T A T C A T 0.047
ht9 A T A C G C 0.019

Others* 0.048

*Others contain rare haplotypes: AATCAT, AAACAC, TTTAAT, TTACGC, ATTCAT and TTACAC.

was also included in the model. Other covariates were not
available for this analysis. We fit a full model that includes
all six SNPs in the model. We think the full model is more
appropriate for controlling the closely linked SNPs more
effectively. The effective number of independent marker
loci in GHRH was calculated to correct for multiple test-
ing. The effective number in GHRH was calculated using
the software SNPSpD [23], which is based on the spectral
decomposition (SpD) of matrices of pair-wise LD

between SNPs. The resulting number of independent
marker loci was applied to correct for multiple testing
[24]. In addition, we performed the permutation test by
controlling the P values by the Westfall and Young's
method [25] and by controlling the FDR [26]. For the
haplotype analyses, we fit the model including four hap-
lotypes with the same covariates and performed the per-
mutation test in a similar manner.

Table 4: Association analyses of the GHRH polymorphisms with carcass traits (CW and EMA) among Korean native cattle

Trait Loci Location Genotype P PCOR pwy Qsam
C/C* C/R* R/R*

CW  -424IA>T 5'UTR 214(306.2 £ 32.5)  180(315.3 +33.1)  34(321.7 + 36.4) 0.005 0.025 0.025 0.025
-3195T>A Intronl 140(306.6 + 35.1)  222(312.6 £32.5)  63(314.6 + 30.8) 0.449 I 0.952 I
-618T>A Intronl 217(311.9+£30.9) 183(310.6 +36.3)  27(309.9 + 34.7) 0.859 | 0.995 0.859
+114C>A Intron2 199(314.2 £ 345) 186(308.8 £31.9)  39(309.5 + 35.7) 0.496 I 0.952 I
+2042A>G Intron3 276(310.0 +35.2) 134(313.6 £29.6)  I15(317.8 £29.1) 0.835 I 0.995 I
+2279C>T Intron3 206(308.7 + 32.4)  184(313.3 +£32.8)  35(316.9 + 40.9) 0.815 I 0.995 |

htl 282(313.5+33.1) 129(306.6 + 34.0)  16(308.9 + 34.2) 0.219 | 0.474 0.377
ht2 285(311.8+33.9) 128(309.3 +32.1) 14(316.3 + 36.9) 0.594 | 0.509 0.554
ht4 330(312.5 £32.5)  90(307.3 £ 37.3) 7(302.4 £ 20.1) 0.174 0.931 0.474 0.59
ht5 332(311.2+34.0)  93(311.6 +£32.0) 2(299.5 £ 29.0) 0.340 I 0.474 0.401

EMA  -424]1A>T 5'UTR 214(74.1 £82) 180(75.7 + 8.7) 34(78.2 £ 9.3) 0.009 0.046 0.064 0.066
-3195T>A Intron| 140(75.2 £ 7.6) 222(75.0 £ 8.9) 63(75.6 £ 9.6) 0.583 I 0.991 |
-618T>A Intronl 217(75.2 £ 8.2) 183(75.2 £ 9.1) 27(74.1 £7.7) 0.742 | 0.998 |
+114C>A Intron2 199(75.1 £ 9.5) 186(75.0 + 7.8) 39(75.3 + 6.4) 0.945 I 0.998 0.95
+2042A>G Intron3 276(75.1 + 8.5) 134(75.1 £ 8.9) 15(76.8 £ 9.0) 0.799 | 0.998 |
+2279C>T Intron3 206(74.3 + 9.3) 184(75.6 + 7.6) 35(77.5 + 8.6) 0.920 | 0.998 |

htl 282(75.2 + 8.8) 129(75.0 + 8.3) 16(76.1 £ 5.9) 0.716 I 0.713 0.671
ht2 285(75.6 + 8.2) 128(74.3 £ 9.1) 14(74.3 £ 9.9) 0.402 I 0.574 0.486
ht4 330(75.7 £ 8.3) 90(73.7 £ 9.3) 7(68.3 £ 6.0) 0.022 0.12 0.088 0.089
ht5 332(75.2+£8.9) 93(749 £ 7.1) 2(76.0 £ 2.8) 0316 | 0.528 0.572

Genotype and haplotype distributions, means, standard deviations (SD), P values controlling for sire and age at slaughter as covariates was shown.
*CJC, CIR, and R/R represent the common allele, heterozygotes and homozygotes for the rare allele, respectively. To achieve a simple correction
for multiple testing of single-nucleotide polymorphisms (SNPs) in linkage disequilibrium (LD) with each other, the effective number of independent
marker loci (5.35) in GHRH was calculated using the software SNPSpD [23], on the basis of the spectral decomposition (SpD) of matrices of pair-
wise LD between SNPs [24]. PCOR represents the simple corrected P value. The permutation based P values, P¥Y were obtained by the Westfall and
Young's method [25]. The FDR values Q"M were estimated using the permutation test [26].
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